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ABSTRACT
For the first time, we compute modulation domain features for
infrared targets and backgrounds, including dominant modu-
lations that characterize the local texture contrast, orientation,
and granularity. We present a practical computational ap-
proach and introduce a new FM algorithm designed to reduce
the approximation errors characteristic of many existing dis-
crete techniques. By performing experiments against actual
FLIR approach sequences, we verify that typical IR imagery
does indeed possess sufficient texture structure for effective
modulation domain characterization. We demonstrate quali-
tatively that the modulation domain features can significantly
enhance target-background class separability relative to pixel
domain features.

Index Terms- Amplitude modulation, frequency modu-
lation, infrared imaging, infrared tracking, object recognition

1. INTRODUCTION

The problem of detecting military targets in forward-looking
infrared (FLIR) imagery has been studied extensively. As is
well-known, it is an extremely challenging problem (see, e.g.,
[1] and the references therein) due to the confluence of sev-
eral factors, including both the complex nature of the thermal
scenes typical of the modern battlespace and the relative im-
maturity of the materials used in fabricating infrared sensors
compared to their visible wavelength counterparts. In particu-
lar, FLIR images frequently exhibit weak signal-to-noise ratio
and strong clutter, where the term clutter refers generically to
any structures in the image that arise from sources other than
the target. Often, the radiometric signature of the background
can be as strong as or stronger than the actual target signa-
ture, and it is not uncommon for the clutter variance to also
be stronger than that of the target. The inherent difficulty of
this problem is borne out by the vast body of literature that
has been devoted to it.

In this paper, we introduce a radically new approach. For
the first time, we consider computing low-level target and
background features in the modulation domain as opposed to
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traditional pixel domain and Fourier domain features. Our
central hypothesis, which is supported by the preliminary ex-
perimental results given in Section 4, is that, in the modu-
lation domain, military targets should exhibit a significantly
higher degree of organization or local coherency [2,3] com-
pared to naturally occurring clutter backgrounds. Our results
strongly suggest that this characteristic can be used to advan-
tage to improve target detection performance in a variety of
FLIR signal processors by augmenting their feature vectors
with modulation domain data.

2. MODULATION DOMAIN IMAGE MODEL

Multidimensional AM-FM models seek to represent an im-
age t : JR' -) R as a sum of quasi-sinusoidal components
of the form a(x) cos[po(x)], where the AM function (i.e., in-
stantaneous amplitude) a(x) is positive semidefinite and the
FM function (i.e., instantaneous frequency) Vy : R' -) IR'.
This is motivated by a compelling body of psychophysical ev-
idence indicating that, quantitatively, these modulating func-
tions are intimately related to visual perception in humans and
other mammals.

For a real-valued image, the modulating functions are am-
biguous in the sense that they cannot be uniquely defined. Al-
though excellent techniques such as the Teager-Kaiser opera-
tor [4] exist for estimating the modulating functions directly
from the real values of an image, we prefer to disambiguate
the problem by adding to t(x) an imaginary component equal
to the multidimensional Hilbert transform given in [5]. We
model the resulting complex-valued image z(x) according to

K

z(x) = t(x) +j§J[t(x)] ak (x) exp[j k(x)], (1)
k=1

where t(x) is interpreted as a sum of K AM-FM compo-
nents. This model has been used successfully to treat tex-
tured images in particular, where ak admits an interpretation
as the local texture contrast of the k'th component, whereas
Vp, characterizes the local texture orientation and granular-
ity. Discrete algorithms for estimating the modulating func-
tions from the samples of z(x) were given in [3,4,6].
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The fundamental question we address in this paper is the
following: do infrared targets and backgrounds possess suf-
ficient texture structure that (1) can be applied to enhance
target-background class separability in FLIR imagery? While
a definitive answer to this question is beyond the scope of
this paper, we will present compelling examples in Section 4
that strongly suggest, albeit in a qualitative sense, that the an-
swer is yes. This finding is important because it indicates
that modulation domain features have the potential to make a
significant impact on the notoriously difficult infrared target
detection problem. In Section 3, we describe techniques for
computing the modulation domain features.

3. FEATURE SPACE COMPUTATION

Since all practical discrete AM-FM demodulation algorithms
are nonlinear, it is generally necessary to apply some type of
filtering to isolate the components in (1) from one another on
a spatially local basis prior to estimating the individual modu-
lating functions. The filters must also be well localized in fre-
quency to resolve closely spaced components and avoid cross-
component interference; consequently, the complex-valued
Gabor filters, which admit optimal joint time-frequency lo-
calization, are a popular choice. Hence, we assume a bank
of Gabor filters with impulse responses gk (x) and frequency
responses Gk (f), where k e [1, K] and x, Q Ce R'.

Let Zk(x) = ak(x) exp[fpk(x)] and let yk(x) be the re-
sponse of the kth filter, so that yk(x) = z(x) * gk(x))
Zk (x) * gk (x). Applying the quasi-eigenfunction approxima-
tions given in [2,3], we obtain

yk (X) Zk(x)G[V(0k(X)1, (2)

which motivates the FM estimation algorithm [3]

V9(X) ~Re [VYk(()]. (3)

The AM function ak (x) may then be obtained by

ak(x)> G[VOk(X)]. (4)

In practice, the main problem with (3) and (4) is that addi-
tional approximation theory must be applied to obtain discrete
versions of these algorithms, and this can result in nontrivial
approximation errors if the modulating functions fail to be
sufficiently smooth over one or more local spatial neighbor-
hoods.' This problem is not unique to the techniques pre-
sented here and is also characteristic of, e.g., the discrete en-
ergy separation algorithms associated with the n-D Teager-
Kaiser operator described in [4]. Consequently, we as well
as others have recently investigated schemes for fitting con-
tinuous interpolants to the discrete image samples. With this

'This notion of local coherency is is made precise in [3].

approach it becomes possible to apply continuous algorithms
such as (3) and (4) directly to the interpolating functions,
where the results are subsequently restricted to the pixel lat-
tice to obtain a discrete solution. For example, cubic tensor
product splines were fit to the image phase in [6,7], while 1-D
cubic splines were fit to the real-valued signal samples in [8].
Unfortunately, extending this idea to compute VOk (x) in (1)
by direct continuous domain differentiation requires unwrap-
ping the phase of Yk (x) prior to performing the spline inter-
polation.

Here, we consider a new approach that entirely circum-
vents the difficult multidimensional phase unwrapping prob-
lem. Noting that G[Vpk (x)] is both real and nonnegative, we
let ak(x) = ak(x)G[V Ok(x)1. From (2), we then have that
yk (X) aka (x) exp[j Ok(x)] and ak (X) yk (X) 1, where-
upon it follows that (3) may be expressed as

1 ,
Vpk (X) (X! 2 Re [yk(x)] Im [Vyk(x)]

-YIm [yk(x)] Re [Vyk(x)1). (5)

We obtain estimates of the AM and FM functions of all K
components in (1) at all pixels by first fitting the cubic ten-
sor product splines described in [9, 10] to the real and imag-
inary parts of the complex images yk(x), then applying (5)
followed by (4) to the K resulting spline models, and finally
discretizing the obtained AM and FM functions to the pixel
lattice.

At each each pixel m C 7n, we apply the dominant com-
ponent analysis (DCA) computational paradigm given in [6]
to extract dominant modulations aD (m) and VCOD (m) corre-
sponding to the AM-FM component that dominates the local
structure of t(x) at the pixel, where

(6)D = argmax Yk (m)
k maxQ Gk(Q)

The 3-D modulation domain feature space of the image t(x)
is then given by the locus of vectors [A(m) R(m) 0(m)]T,
where A(m) aD(m), R(m) VcOD (m) 1, and 0(m)
arg V)OD (m)

4. EXAMPLE

We applied the techniques given in Section 3 to compute
modulation domain feature vectors for a comprehensive set
of AMCOM infrared missile closure sequences provided by
the Johns Hopkins University Center for Imaging Science.
This dataset consists of 49 longwave (LWIR) and midwave
(MWIR) FLIR sequences, each containing about 100 frames.
Each frame comprises 128 x 128 8-bit pixels.

Computation of the feature space is not terribly sensi-
tive to the specific structure of the filterbank, provided that
the frequency half-plane where the discrete complex image
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Fig. 2. Scatter plots of pixel gray levels corresponding to tar-
get (upper trace) and background (lower trace).
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Fig. 1. Original image and dominant modulations. (a) Origi-
nal FLIR image. (b) Dominant AM function A(m). (c) Dom-
inant FM function VCOD(m) depicted as a needle diagram.
Each arrow points in the direction 0(m) and has length pro-

portional to R(m)).

z(m) is supported is covered by a reasonably dense tesse-
lation of jointly localized filters. For the AMCOM closure
sequences we used a polar Gabor filterbank of the type de-
scribed in [2, 1 1], where 32 constant-octave bandwidth chan-
nels were arranged along rays at eight orientations with four
filters per ray. Each filter had a bandwidth of one octave, and
the center frequencies along each ray followed a geometric
progression with common ratio 1.8, with the lowest frequency
filter being placed at a radial center frequency of 9.6 cycles
per image (cpi). Adjacent filters intersected at half-peak, re-

sulting in an angular ray spacing of 20.640.
A typical frame from one of the LWIR sequences is shown

in Fig. l(a). Since our objective here is to demonstrate the
utility of modulation domain features in discriminating in-
frared targets and backgrounds, and most certainly not to pro-

pose a complete target detection algorithm, we used a pri-
ori ground truth information about the target location and ap-

plied (6) to determine the channel D containing the dominant
modulations of the target signature only. This is meaning-
ful since, in any practical system, independent detection and
tracking processes would be used to place a track gate around
the predicted target location in each successive frame. The

AM function aD (m) computed according to (4) is shown in
Fig. 1(b), while the FM function V9OD (m) obtained using (5)
is given by the needle diagram of Fig. 1(c). From this figure,
it is clear that the image possesses a rich texture structure well
suited for modulation domain representation.

Fig. 2 shows a scatter plot of the pixel gray levels corre-

sponding to the target (upper trace) and background (lower
trace) of Fig. 1(a). As is typical in infrared military target de-
tection applications, the raw gray level histograms of the tar-
get and background are completely overlapping, a fact which
severely limits the utility of the pixel values in discriminating
between target and background.

The modulation domain feature space is shown in Fig. 3.
Each cross corresponds to a background pixel in Fig. l(a),
while each circle corresponds to a target pixel. In stark con-

trast to Fig. 2, we see here that the modulation domain repre-

sentation has clearly succeeded in pulling the target signature
out of the background. Indeed, the average nearest neighbor
Euclidean distance between target and background pixels in
Fig. 2 is identically zero, whereas it is 6.03 units in the fea-
ture space of Fig. 3. Although beyond the scope of this paper,

it is an important component of our planned future work to
evaluate quantitatively the impact of the modulation domain
features on discrimination performance in terms of both prob-
ability of detection and false alarm rate.

5. CONCLUSION

For the first time, we considered computation of modulation
domain features for discriminating targets and backgrounds
in FLIR imagery. We outlined a practical computational ap-

proach and introduced a new spline-based frequency demodu-
lation algorithm that effectively reduces the approximation er-

rors typical of many previous discrete FM algorithms. While
preliminary and qualitative in nature, the examples of Sec-
tion 4 provide a convincing proof of concept clearly demon-
strating the power of AM-FM features for enhancing class
separability relative to pixel domain features. Our future work
will focus on the application of these new features in practical
targeting systems and quantitative assessment of the associ-
ated processing gain.
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Fig. 3. Scatter plot showing A(m) (pixel units), R(m) (cpi), and 0(m) (deg) in the modulation domain feature space.
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