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Abstract

For the first time, we perform normalized correlation
template tracking in the modulation domain. For each
frame of the video sequence, we compute a multi-component
AM-FM image model that characterizes the local texture
structure of objects and backgrounds. Tracking is carried
out by formulating a modulation domain correlation func-
tion in the derived feature space. Using visible and long-
wave infrared sequences as illustrative examples, we study
the performance of this new approach relative to two basic
pixel domain correlation template trackers. We also present
preliminary results from a new dual domain tracker that op-
erates simultaneously in both the pixel and modulation do-
mains.

1. Introduction

Although computationally expensive, template tracking
is of interest in applications where well known techniques
such as the Kalman filter, extended Kalman filter (EKF),
and particle filter cannot be conveniently formulated due to
insufficient a priori knowledge of the object kinematics that
are expected to be observed in the image plane [1, 16, 18].
Situations of this type arise, for example, in military ap-
plications where the object signatures and dynamics may
be poorly known or even totally unknown prior to the ini-
tiation of tracking, where the sensor platform may be sub-
ject to strong ego-motion relative to the imaged objects and
backgrounds, and where it is infeasible to compensate for
the ego-motion in real-time via registration techniques such
as those given in [13, 16] due to insufficient computational
bandwidth and/or insufficient inertial measurements. Tem-
plate tracking is commonly applied directly to the video
frames acquired from an imaging sensor, where the peak
of the normalized correlation between the template and lo-
cal neighborhoods of the most recently acquired frame is
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declared as the track centroid (see, e.g., the recent survey
of tracking techniques given in [17]). We will refer to tech-
niques of this type as pixel domain template tracking.

In many applications, including notably those where an
imaging electro-optical sensor is used, there may be highly
structured clutter and backgrounds exhibiting signatures
that are as strong as or stronger than the signatures of the
objects of interest. Hence, the object-background class sep-
arability that can be achieved by processing the raw pixel
domain data alone is typically poor and pixel domain tem-
plate tracking is subject to failure. In such cases, a sig-
nal processing advantage can be obtained by performing
object detection and tracking in a transformed space or in
a joint feature space [4, 12]. Based on preliminary re-
sults appearing in [11], it has been suggested recently that
object-background class separability in midwave and long-
wave infrared imagery may be tangibly enhanced by per-
forming signal processing in the modulation domain. How-
ever, modulation domain target tracking has not been stud-
ied previously. In this paper, we formulate a normalized
correlation template tracker in the modulation domain for
the first time. We study the performance of this new tech-
nique relative to elementary pixel domain template track-
ers with fixed and updated templates, where visible infrared
video sequences are used as illustrative examples.

Because this work is exploratory in nature and because
our main goal is to introduce the modulation domain tem-
plate tracking approach and demonstrate its feasibility, we
limit our attention to the case of simple detection process-
ing. In particular, we consider only static templates and
temporally updated templates of a fixed size and shape. This
restriction is unrealistic for practical deployment systems
that must typically deal with strong evolution of the object
pose and magnification, as well as partial and full occlu-
sions. However, our results demonstrate that modulation
domain template tracking is both feasible and capable of
delivering good tracking performance. We also briefly ex-
amine a preliminary strategy for performing template track-
ing jointly in the pixel and modulation domains and obtain a
performance that is substantially superior to tracking in ei-
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ther domain individually. In Section 2, we briefly review the
basic pixel domain normalized correlation template tracker,
while the modulation domain normalized correlation func-
tion is formulated in Section 3. We compare the perfor-
mance of the pixel domain, modulation domain, and joint
domain trackers in Section 4. For the experiments we as-
sume that a target detection is available in the first frame
to initialize the trackers, either from an auxiliary detection
process or from a manual designation.

2. Pixel domain template tracking
In this section, we formulate a simple, well-known strat-

egy for performing template tracking in the pixel domain
(see, e.g., [15]). We assume that a temporally evolving
scene composed of a moving object immersed in a struc-
tured background is observed by an imaging sensor. The
sensor delivers a sequence of video frames s(m, k), where
m ∈ Z2 is the discrete spatial position vector and k ∈ Z is
the discrete time index. We assume that the spatial signature
of the target is unknown a priori, but that a template of size
(2K +1)×(2L+1) pixels that is matched to the object sig-
nature in the initial frame s(m, k0) is available from an aux-
iliary detection process or a manual designation. The tem-
plate is denoted T (u), where u ∈ O = [−K, K]× [−L,L].

The normalized cross correlation between the template
T (u) and a (2K +1)× (2L+1) neighborhood of the frame
s(m, k) centered about the pixel m is given by

γpix(m, k) =∑
u∈O

[s(m + u, k)− 〈s(m, k)〉] [T (u)− 〈T 〉]

×

[ ∑
u∈O

[s(m + u, k)− 〈s(m, k)〉]2
]− 1

2

×

[ ∑
u∈O

[T (u)− 〈T 〉]2
]− 1

2

, (1)

where 〈T 〉 = |O|−1
∑

u∈O T (u) and 〈s(m, k)〉 =
|O|−1

∑
u∈O s(m + u, k) are the mean values of the tem-

plate and of the (2K + 1) × (2L + 1) neighborhood of
s(m, k) centered about pixel m.

The pixel domain track centroid for frame k is given by

Cpix(k) = argmax
m

γpix(m, k), (2)

which must in general be evaluated by exhaustive search. If
reasonable bounds can be placed on the observed velocity
of the object based on a priori knowledge of the geome-
try and of the kinematics of both the object and the sensor
platform, then it may be possible to reduce the complexity
of (2) by limiting the search to a small neighborhood about
Cpix(k−1) or by applying the computationally efficient gra-
dient descent algorithm given in [9].

3. Modulation domain template tracking
A multi-component AM-FM image model is a dense fea-

ture space where the feature vectors consist of spatially lo-
cal amplitude and frequency modulations that characterize
the local texture structure of the image [2, 3, 6]. When
signal processing is applied directly to these feature vec-
tors, it is referred to as processing in the modulation do-
main [7]. To perform modulation domain target tracking,
we first compute a multi-component AM-FM model for
each video frame s(m, k) and then compute a normalized
correlation function between the AM-FM model and a mod-
ulation domain object template. Computation of the model
and formulation of the correlation function are described
below in Sections 3.1 and 3.2.

3.1. AM-FM image model

In this section, we briefly review the technique given
in [6] for computing multi-component AM-FM image mod-
els. Assume that the digital video frame s(m, k) con-
tains samples of a spatially continuous frame s(x, k), where
x ∈ R2. In the interest of brevity and clarity, we dis-
cuss demodulation with reference to the continuous frame
s(x, k); for a practical implementation the demodulation
algorithms stated here should be appropriately discretized
as described in [6] or [10]. So that the instantaneous am-
plitude and frequency of s(x, k) can be well defined, let
z(x, k) = s(x, k) + jH[s(x, k)] be a complex extension
of s(x, k) computed using the partial 2-D Hilbert trans-
form [3, 5, 6].

The AM-FM image model considers that z(x, k) is a
sum of components of the form

zp(x, k) = Ap(x, k) exp[jϕp(x, k)], (3)

so that

z(x, k) =
P∑

p=1

zp(x, k) =
P∑

p=1

Ap(x, k) exp[jϕp(x, k)].

(4)
For each component zp(x, k), the AM function Ap(x, k)
characterizes the local texture contrast while the FM func-
tion ∇ϕp(x, k) characterizes the local texture orientation
and granularity.

If the component zp(x, k) could be observed directly,
then the AM and FM functions could be obtained accord-
ing to [6]

∇ϕp(x, k) = Re
[
∇zp(x, k)
jzp(x, k)

]
(5)

and
Ap(x, k) = |zp(x, k)|, (6)

which may be verified by direct calculation using (3). In
practice, however, only the image z(x, k) is observable, and



some type of filtering must by applied to isolate the compo-
nents zp(x, k). Following [2, 3, 10], we process the frame
z(x, k) with a bank of P circularly symmetric Gabor filters
arranged to tile the right frequency half-plane, where each
filter has a half-peak radial bandwidth of one octave. Let
gp(x) and Gp(ω) be the impulse response and frequency
response of the p’th filter. Under the assumption that the
response is given by

yp(x, k) = z(x, k) ∗ gp(x) ≈ zp(x, k) ∗ gp(x), (7)

it may be shown that

∇ϕp(x, k) ≈ Re
[
∇yp(x, k)
jyp(x, k)

]
(8)

and

Ap(x, k) ≈
∣∣∣∣ yp(x, k)
Gp [∇ϕp(x, k)]

∣∣∣∣ (9)

with an error that was bounded in [6]. The
modulation domain feature vectors are given by
[Ap(x, k) Rp(x, k) θp(x, k)]T , where

θp(x, k) = arg∇ϕp(x, k) (10)

is the local texture orientation and Rp(x, k) = |∇ϕp(x, k)|
characterizes the local texture granularity. In a dis-
crete implementation, one obtains P feature vectors
[Ap(m, k) Rp(m, k) θp(m, k)]T at each pixel m, where P
is the number of components in the model (4) and is by de-
fined by number of filterbank channels.

3.2. Modulation domain correlation function

In Section 2, we assumed that the object signature (tem-
plate) T (u) in the initial frame s(m, k0) was known from
an auxiliary detection process or a manual designation, i.e.,
that T (u) was given by a particular (2K + 1) × (2L + 1)
neighborhood in the frame s(m, k0) centered about some
pixel m0. By extracting corresponding neighborhoods of
size (2K +1)× (2L+1) centered about the pixel m0 from
the modulation domain images Ap(m, k0), Rp(m, k0),
and θp(m, k0), we obtain a set of 3P templates TA

p (m),
TR

p (m), and T θ
p (m) that are matched to the modulation do-

main signature of the object in frame s(m, k0).
Intuitively, we define the modulation domain normalized

correlation function γmod(m, k) as an equally weighted av-
erage of the normalized correlation function between each
of these templates and the corresponding components of the
feature vectors [Ap(m, k) Rp(m, k) θp(m, k)]T computed
from the frame s(m, k). Let O be defined as in Section 2.
Formally, we take

γmod(m, k) =

∑P
p=1 γA

p (m, k) + γR
p (m, k) + γθ

p(m, k)
3P

,

(11)

where

γA
p (m, k) =∑

u∈O

[Ap(m + u, k)− 〈Ap(m, k)〉]
[
TA

p (u)− 〈TA
p 〉

]

×

[ ∑
u∈O

[Ap(m + u, k)− 〈Ap(m, k)〉]2
]− 1

2

×

[ ∑
u∈O

[
TA

p (u)− 〈TA
p 〉

]2 ]− 1
2

, (12)

and where 〈Ap(m, k)〉 = |O|−1 ∑
u∈O Ap(m, k) and

〈TA
p (u)〉 = |O|−1 ∑

u∈O TA
p (u). The terms γR

p (m, k) and
γθ

p(m, k) are defined analogously to (12).
The modulation domain track centroid for frame k is

then given by

Cmod(k) = argmax
m

γmod(m, k). (13)

As with (1), the naı̈ve, brute force approach is to evalu-
ate (13) by exhaustive search. If a priori information about
the geometry and the kinematics of the sensor platform and
the objects of interest are available, then they can be used to
limit the search space to a neighborhood about Cmod(k−1).
Alternatively, if the sensor ego-motion is not too severe,
then it may be possible to use a Kalman filter or EKF to
predict the track centroid based on recent observations and
limit the search to a neighborhood (or track gate) about the
predicted location.

4. Examples
In this section, we illustrate the modulation domain

normalized correlation template tracker developed in Sec-
tion 3 and characterize its performance relative to compa-
rable pixel domain techniques. In all cases, the object to
be tracked is designated in the initial frame and the desig-
nated signature is used as the initial template. The shape
and spatial extent of the template are not adapted. In both
the pixel domain and modulation domain, we consider two
elementary cases. In the first case, denoted static, the ini-
tial template is used throughout the entire sequence. In
the second case, denoted updated, the template is updated
every frame using the observed object signature from the
previous frame. The frame size in all of the examples is
128 × 128 pixels, and the Gabor filterbank comprises 18
channels (P = 18).

In Fig. 1, the object of interest is the face of a human
who is walking through the field of view. The sensor is a
visible wavelength digital video camera and the length of
the sequence is 40 frames. Each row of the figure corre-
sponds to a video frame, where the frame number is de-
noted at the far left. The raw video frames are shown in
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Figure 1. Modulation domain and pixel domain template tracking with static and updated templates for the task of tracking a human face
in a visible wavelength video sequence. Results for the four trackers are shown in columns 1-4, while the modulation domain correlation
function is depicted in the rightmost column.
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Figure 2. Row and column of the track centroid for all four meth-
ods as function of the frame number for the example in Fig. 1.

Frames Dropped (out of 150)
pixel domain modulation domain dual

static updated static updated domain
32 11 72 0 0

Table 1. Tracking performance on the example of Fig. 3 measured
in terms of the number of dropped frames where track lock could
not be maintained.

the first column. The track centroids for the pixel domain
tracker with static and updated templates and the modula-
tion domain tracker with static template are overlayed on
the frames in columns two through four, where the tracking
method is denoted along the top of the figure. Although the
centroids are not shown for the modulation domain tracker
with updated templates, they are not significantly different
visually from the result for the static modulation domain
template. The rightmost column depicts the modulation do-
main normalized correlation function. Despite the presence
of some structured background, all four techniques perform
well. The upper and lower graphs in Fig. 2 show, respec-
tively, the row and column of the track centroids in units of
pixels for all four trackers as a function of frame number.
Despite the simplicity of the normalized correlation tracker,

it is a powerful albeit computationally expensive approach.
For example, the centroids shown in Fig. 1 exhibit both im-
proved accuracy and reduced jitter compared to a condensa-
tion filter and a particle filter where state space partitioning
and a bank of EKF’s were used to improve the proposal dis-
tribution.

Fig. 3 shows tracking results for one of the well known
AMCOM infrared missile closure sequences (see, e.g., [1,
8, 14, 18]). With reference to the AMCOM data set, this
is longwave sequence rng18 03. Although the difficulty
of this sequence is typical for the AMCOM data set, it is
significantly more challenging than the example in Fig. 1,
mainly due to a dim target, ambient noise, and a poor target-
to-clutter ratio. The layout of Fig. 3 is identical to that of
Fig. 1, where each row corresponds to a frame and each
column corresponds to a tracking method. The length of the
original sequence was 450 frames. Tracking was initiated in
frame 290 and carried out for 150 frames (over this range of
frames, the magnification changes in the target are relatively
benign compared to the sequence as a whole).

In this case, the static template trackers in both domains
fail to track the target, while the updated templates perform
relatively much better. The modulation domain template
tracker with static template achieves the best performance
out of the four basic methods for this sequence. The num-
ber of frames dropped by each tracker (out of 150) is shown
in Table 1, where a dropped frame is one for which the er-
ror in the tracked centroid relative to ground truth exceeds
the spatial support of the template. For the basic techniques
considered in this paper, where pose and scale are not adap-
tively estimated, the performance seen in this example is
fairly typical for the AMCOM data set. It is is not un-
common for either the static or updated approaches to fail.
Moreover, both approaches fail on some of the more diffi-
cult sequences such as rng19 13.

It is interesting to note in columns two and four of Fig. 3
that the pixel domain tracker with static template and the
modulation domain tracker with static template seem to ex-
hibit failure modes that are quite different from one another.
In a preliminary analysis of 14 of the AMCOM sequences,
this seems to occur consistently: the pixel domain and mod-
ulation domain trackers (with both static and updated tem-
plates) all fail frequently; however, it is rare for failure to
occur in both domains on a single frame. This suggests that
a significant performance gain might be obtained by track-
ing jointly in the two domains.

As a preliminary investigation of this idea, we con-
structed a dual domain track filter where the pixel domain
and modulation domain template trackers operate indepen-
dently with static templates. However, when the distance
between the two centroids exceeds an empirical threshold
(four pixels in this case), both trackers refresh their template
using the target signature observed in the most recently



tracked frame. The results of this approach for rng18 03
are shown in Fig. 4, along with the modulation domain
correlation function. For reference, the track centroids ob-
tained from the pixel domain tracker with updated template
as shown in the third column of Fig. 3 are repeated in the
first column of Fig. 4. As can be seen from the figure, per-
formance of the dual domain tracker is superior to any of
the results given in Fig. 3. This outcome has occurred con-
sistently on the 14 AMCOM sequences on which we have
run the dual domain tracker to date.

5. Conclusion
For the first time, we formulated a normalized correla-

tion template tracker in the modulation domain, where ob-
ject detection and tracking are based on an explicit, spa-
tially and spectrally local texture model. We demonstrated
that modulation domain object tracking is feasible and ca-
pable of delivering performance comparable to that of tradi-
tional pixel domain template trackers. The multiband mod-
ulation domain template and correlation function given in
Section 3 are distinct from any prior AM-FM or modula-
tion domain technique of which we are aware. We focused
on the fundamental ideas behind this new approach and pro-
vided a baseline performance comparison with comparable
elementary pixel domain techniques. However, we did not
consider practical issues including template resizing, pose
estimation, scale estimation, and occlusion; these are im-
portant topics for future research. Both the modulation do-
main and pixel domain template trackers performed well
against the task of tracking the face of a walking human in
a visible wavelength video sequence. Tracking errors in the
much more difficult task of tracking a ground vehicle in a
longwave infrared AMCOM missile closure sequence were
larger for both techniques, but still comparable. For this
task, it is very likely that performance in both domains can
be dramatically improved by incorporating standard tech-
niques for adaptively resizing the template and estimating
pose and scale. Our most significant finding was that, even
with the elementary template updating considered here, per-
formance was significantly improved by tracking jointly in
both domains. This result has been demonstrated consis-
tently on 14 of the AMCOM closure sequences to date.
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Figure 3. Modulation domain and pixel domain template tracking with static and updated templates for the task of tracking a ground vehicle
in a longwave infrared AMCOM missile closure sequence (rng18 03). The basic layout of the figure is the same as in Fig. 1.
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Figure 4. Comparison of dual domain tracking and pixel domain tracking with updated template on AMCOM sequence rng18 03. This
is the same sequence that was depicted in Fig. 3. The modulation domain correlation function is also shown.


