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ABSTRACT

We investigate frequency-dependent frequency estima-
tion-errors in the DESA-2 energy separation algorithm as-
sociated with the- discrete Teager-Kaiser energy operator
(TKEQ). The TKEQO and DESA-2 algorithm associate in-
stantaneous amplitude and frequency functions to a real-
valued discrete-time signal. It has been observed informally
that there seems to be a frequency dependent error in the in-
stantaneous frequency estimates delivered by the approach,
where ‘the error is more pronounced at lower frequencies.
By studying quadratic phase signals, we demonstrate that
this TKEO “low frequency error” does in fact exist and is
related to both the magnitude frequency and the signal chirp
rate.

1. INTRODUCTION

The continuous-time Tcéger—Kaiser energy operator
(TKEQ) applied to a real-valued signal z(t) is given
by [1,2]

T [z()] = £2(8) - E(t)=(t). - (0

This operator and its discrete counterpart were introduced
by Teager and systematically studied by Kaiser and oth-
ers [1-3). For a pure sinusoid z(t) = A cos(wqt), where
A,wp € R are constants, application of the TKEO results in

T [z(t)] = A%, 2)

The quantity in (2) is known as the Teager energy of the
signal; it is proportional to the energy required to generate
the displacement x(¢) in a mass-spring harmonic oscillator.

More generally, consider a real signal z(t) with joint
amplitude and frequency modulation given by

z(t) = a(t) coso(t)], 3

where a, 0 : R — R. Signals of this type are referred to as
AM-FM signals. The function a(t) is called the AM func-
tion of x(t}), while (¢} is called the FM function of z(%).
Although it is often useful to make a further constraint in

0-7803-7523-8/02/$17.00 ©2002 IEEE

the medel (3) by requiring a(t) to be positive semidefinite,
we will not do so in this paper because we will be concerned
primarily with frequency modulation.

If the modulating functions a(t) and (¢} in the AM-
FM signal (3) are locally smooth in a certain sense [4,5], or,
alternatively, if the AM and FM modulation indices are not
too large [1,2], then application of the TKEO yields

@ [z(t)] ~ HOVAON (4)

with an approximation error that is generally small. The
quantity a?(t)¢*(t) on the RHS of (4) defines the Teager
energy of the general AM-FM signal (3). :

The discrete TKEQ is defined by [3]

Ta(z[n)) = 2%[n] - z[n + 1z[n - 1]. &)

Analogous to the continuous case, application of the dis-
crete operator (5) to a discrete-time AM-FM signal

zln] = afn] cos(pln]) ®)

yields
T4(z[n)) = a*[n]sin® (p[n]) Q)

with an error that is small under appropriate smoothness as-
sumptions on the local variations in the AM and FM func-
tions [1,2,4, 5]. The notation ¢[n] in (7) indicates that the
derivative operates symbolically on the discrete variable ry
as though it were a continuous variable; an equivalent in-
terpretation is that x{n] in (6) contains the samples of z(#)
in (3) while @[] contains the samples of ¢(¢) (where a unity
sampling interval may be assumed for simplicity WLOG).
The RHS of (7) defines the discrete Teager energy for the
signal (6). Like the continuous case, there is no approx-
imation error in (7) when z{n] is a pure sinusoid. Also,
the approximation errors tend to increase as a[n] and p[n]
increasingly deviate from constant and linear behaviors, re-
spectively.

The nonlinear operators ¥, and ¥y are interesting be-
cause they are computationally simple, temporally local-
ized, and capable under appropriate signal constraints of
accurately tracking the instantaneous amplitude a and in-
stantaneous frequency . Clearly, it is the discrete operator
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Ty that is of greater practical interest in modern DSP ap-
plications. ¥4 has been used extensively in digital speech
processing and analysis with significant results [2,6-9].

In Section 2 we briefly review energy separation algo-
rithms (ESA’s) that use the TKEO to estimate individually
the AM and FM functions of a signal. On several occa-
sions we have heard it remarked informally that, relative to
the frequency estimation error that is incurred at high in-
stantangous frequency, there seems to be an increased er-
ror in the estimates of ¢[n] that occurs when the instanta-
neous frequency is low. We have also observed this unex-
pected “low frequency error” in our own laboratory. This
paper presents preliminary results from the first systematic
study of the TKEQ “low frequency error,” where our in-
vestigation is limited to discrete-time quadratic phase sig-
nals (chirps). We present empirical results in Section 3 that
clearly demonsirate the existence of a consistent, repeat-
able frequency-dependent frequency estimation error that
increases as the instantaneous frequency [n] approaches
zero. Conclusions are reserved for Section 4.

2. ENERGY SEPARATION

It was shown in [2] that, for the signal z(t) in (3), applica-
tion of the TKEO to the differentiated signal £(t) gives

O [E(2)] ~ a® ()¢ (1) (8)

with approximation errors that may be expected to be small
under conditions similar to those that lead to small errors
in (4). Together, (4) and (8) immediately imply the ESA [2]

o P[z(t)]
|a(E)| =~ T 0] 9]
A 2 (20)

for estimating the magnitudes of the AM and FM functions
individually.

Discrete energy separation algorithms (DESA’s) appli-
cable to the signal z[n] in (6) were also developed in [2].
By passing the continuous-tirne derivatives in (9), (10) to
discrete asymmetric backward differences, one obtains the

DESA-1a algorithm

1- (1 Helgplealath)
l¢[n]| =~ arccos (1 - ‘pd(xggd_(gg)ﬂ 1])) (12)
and the DESA-1 algorithm
latn)] ~ Palalr) (13)

1-— l_Wdyn P {y[ntl
4V (zin

Ugly[n]) + Talyln + 1]
49 ([n]) ) ;14

where y[n] = 2[n] — z[n — 1], By alternatively passing the
continucus-time derivatives in (9), (10} to discrete symmet-
ric differences, the DESA-2 algorithm

2W,(z[n])
VE8a(z[n + 1] — z[n — 1])

|pln)] ~ arcsin (\/%(m[n&ﬂ;[nﬁ)[n - ID) "

is obtained.

The three algorithms DESA-1a, DESA-1, and DESA-2
generally deliver comparable performance with regards to
approximation errors for broad classes of signals of gen-
eral interest in practical applications. Since DESA-2 offers
the lowest computational complexity, it has been the most
widely utilized among the three; we henceforth focus our
attention on DESA-2 exclusively.

|¢p[n]} = arccos (1 -

|a[n]] = (15)

3. DESA-2 FREQUENCY ESTIMATION ERRORS

For a discrete-time signal z[n] that is a pure sinusoid (con-
stant AM and linear phase}, there are no approximation er-
rors in the DESA-2 algorithm. To investigate the discrete
TKEO *low frequency error,” we consider the simplest non-
trivial case where the AM function a[n] is constant and the
instantaneous phase ¢[n] is a quadratic of the form

2
pn] = wen + w (n'_ﬁ - ) + 8 an

defined for 0 < n < N. In(17), & = [0] is a constant
phase offset, the constant w, may be interpreted as the FM
carrier frequency, and the constant wr, determines the chirp
rate of the signal {(which will be defined below).

For the AM-FM signal in (6} with constant AM given
by a[n] = 1 and phase given by (17), the FM function (in-
stantaneous frequency) is given by

onl = wc+wm(2§—1)
= gx—mnﬂwc—wm). (18)

Thus, the signal z]n] has an instantaneous frequency that is
linear in n. We refer to the slope 2—‘]”\;1 as the chirp rate. The
discrete Teager energy of this signal is given by sin®(¢[n]).

It was shown in [1] that application of the discrete
TKEO to this chirp signal yields

a(olal) = sin*(glal) +sin (22) sn (20} + 227 ),
(19)
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where the term D[n] = sin®([n]} is the desired discrete
Teager energy and the term

Efn] = sin (%) sin (2&,0[11] + %T’") (20)

may be regarded as an additive approximation error. Clearly
Eln] is itself a chirp with a chirp rate that is twice that of
the original signal z[n] and with a constant AM function
given by sin (“’—1(',1) For 2w, < Nw, which is typical, the
maximum magnitude of the error term E[n] grows as the
chirp rate is increased. This is precisely as one would ex-
pect, since increases in w,, represent increasing departure
of the instantaneous phase from a purely linear behavior.

For any given fixed chirp rate, however, (20) does not
indicate the presence of an error depending directly on the
instantaneous frequency ¢[n] itself. In other words, the ex-
istence of the TKEQ “low frequency error” is not revealed
by (20). Nevertheless the “low frequency error” has been
observed informally or suspected in a variety of cases not
limited to FM-only chirps, but including more general AM-
FM signals generated from analytical models for the AM
and FM functions as well as experimentally acquired sig-
nals for which the true AM and FM functions are unknown.

For a variety of FM-only chirp signals, the actual esti-
mation errors that occur in the DESA-2 frequency demodu-
lation algorithm {16) are depicted in Fig. 1. The time vari-
able n does not appear explicitly in the figure; rather, the z-
axis gives the chirp rate in cycles/sample/sample while the
y-axis gives the instantaneous frequency ¢»[n] in cycles per
sample. The frequency estimation error is depicted along
the z-axis, also in units of cycles per sample. Two con-
sistent, systematic trends are immediately apparent in the
plotted data. First, as predicted by (20), the magnitudes of
the maximum errors that occur in a neighborhood about any
fixed frequency ¢[n] grow as the chirp rate increases. Sec-
ond, and even more pronounced, the TKEQ “low frequency
error” is clearly visible. At each chirp rate, the magnitude
of the maximum frequency errors more than doubles .as the
instantaneous frequency approaches zero. With regards to
the high frequency error behavior, it should be noted that
the DESA-2 algorithm is capable of estimating frequencies
only up to % of the sampling frequency, or 0.25 cycles per
sample.

In an effort to gain additional insight into the nature of
the “low frequency error,” we numerically studied the ap-
proximation errors in the numerator of {(16). For an FM-
only chirp z{r] with a constant AM function and an FM
function given by (17), the desired discrete Teager energy
of the symmetric difference signal (z[n + 1} — z[n — 1])/2
is sin*(¢[n]). Comparing this quantity to the actual value
¥y{(z[n + 1] — z[rn — 1])/2}, we obtained the surprising
result that the approximation error in ¥ 4 oscillates with a
maximum magnitude that rapidly decreases as the instanta-
neous frequency descends teward zero. Thus, independent

study of neither the numerator nor the denominator approx-
imation errors in (16) alone is sufficient to explain the “low
frequency error” As the frequency decreases, the approxi-
mation error in the denominator oscillates with a quadratic
phase between extrema of + sin (Eﬁl), while the numera-
tor oscillates between extrema that decay rapidly. We be-
lieve therefore that the TKEO “low frequency error” must
be subtly manifest in the local interplay between the os-
cillating numerator and dencminator approximation errors.
Rigorous analysis of this phenomenon is difficult to carry
through the radical and transcendental in (16) and is beyond
the scope of the preliminary results presented in this paper.

4. DISCUSSION

The data in Fig. 1 clearly demonstrate existence of the
TKEO “low frequency errer” that has previously been ob-
served informally by us as well as by others. For a dis-
crete AM-FM signal with constant amplitude and quadratic
phase, there seem to be two main trends in the frequency
estimation errors delivered by the DESA-2 algorithm. First,
as predicted by theory, the maximum magnitudes of the er-
rors grow as the chirp rate is increased. Second, for any
given chirp rate, there is a dramatic increase that occurs in
the maximum magnitudes of the frequency estimation er-
rors as the frequency decreases toward zero. This second
effect is surprising and is not predicted by any theoretical
results we are aware of.

As we commented in Section 3, independent study of
the numerator and denominator errors in (16) is not suffi-
cient to explain the “low frequency error,” which must there-
fore arise from the interaction between these osciltating er-
rors. Although analytical treatment of the error is difficult
due to the nonlinear nature of the DESA-2 algorithm, this is
an aspect that we will continue to pursue in our ongoing re-
search. There are several additional questions that deserve
future investigation. Our study here was limited to the ap-
plication of DESA-2 to FM-only chirp signals. Informally,
we have observed a similar “low frequency error” in the
DESA-1a and DESA-1 algerithms, although we have not
investigated these systematically (DESA-2 is used most of-
ten in practice because it provides an attractive tradeoff be-
tween error performance and computational efficiency [2]).
It would also be interesting to add a mild cubic component
to the instantaneous phase (17) and/or a mild but nontrivial
AM function to the signal (6) and see if the “low frequency
error” persists in these cases — we believe emphatically that
1t will.

We close by suggesting two strategies that may be ef-
fective for improving the error performance of the DESA-2
algorithm at low frequency. Since DESA-2 is highly local-
ized in the time variable n, it is quite easy to monitor the
frequency estimates and make adjustments to the algorithm
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Figure 1: DESA-2 frequency estimation errors for several FM-only chirp signals. The error is depicted as a function of the
chirp rate and of the instantanecus frequency ¢{n}. The TKEO “low frequency error” is clearly visible at all chirp rates,

on the fly. When low frequencies are detected, it may be
possible to elevate the frequency perceived by the algorithm
by replacing the central difference {z[n + 1] — z[n — 1])/2
in the numerator of (16) with a quantity such as (z[n+ K]—
z[n — K}/(2K) for K > 1. We refer to this approach as
the wide algorithm. Another possibility is to elevate the per-
ceived frequency by performing a rational rate conversion to
decrease the effective sampling rate. Since DESA-2 is ca-
pable of estimating frequencies oaly up to % the sampling
rate, care must be taken to avoid aliasing in this case.
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