
Prediction Aggregation of Remote Traffic Microwave Sensors Speed
and Volume Data

John R. Junger, Joseph P. Havlicek, Ronald D. Barnes, and Monte P. Tull

Abstract— Short term traffic speed and volume prediction is
an important component of well developed Intelligent Trans-
portation Systems and Advanced Traveler Information Systems.
In this paper, we examine the use of polled Remote Traffic
Microwave Sensors as a data source for aggregate traffic
predictors. Clock skew and data loss due to network transience
pose significant challenges to integrating polled data into such
a predictive system. To overcome these, we present a new
interpolation and evaluation scheme for data regularization and
predictor generation. A method for evaluating the validity of
the test sets is proposed and illustrated in a case study using
an aggregate predictor with real traffic sensor data acquired
in Oklahoma City.

I. INTRODUCTION

Traffic speed and volume prediction are important compo-
nents of Advanced Traveler Information Systems (ATIS) and
Intelligent Transportation Systems (ITS). Such predictions
are useful for formulating travel-time predictions and in
optimal route planning algorithms, and also enable dynamic
traffic flow management. As a result of recent ITS research,
traffic flow modeling and prediction has moved towards
aggregated data systems [1]–[5].

Many machine learning paradigms and algorithms are
available for traffic flow prediction, including neural net-
works (NN) [2], [3], [6]–[8], Support Vector Machines [7],
Kalman and particle filters [5], and time series methods
[9]. For most models of traffic flow prediction there are
components that are relatively easy to predict and compo-
nents which are relatively difficult to predict. In general,
prediction performance degrades in proportion to how far
into the future it is desired to predict the speed and volume;
we refer to this as the prediction interval. The point at which
this degradation is no longer acceptable to the application
that uses the prediction is called the prediction horizon [4].
The finest time resolution with which a system can generate
predictions also affects how the predictions can be used.
Intuitively, for example, a metropolitan travel-time predictor
would have poor performance if its most precise estimation
of traffic flow was for a one-hour interval, since traffic
flow during peak hours likely shows appreciable variance
on that time scale. Since traffic flow prediction has many
specific uses, it is beneficial to maximize the prediction
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horizon while simultaneously maximizing the fineness of the
temporal granularity of the predictions.

Roadside detector networks are often widely dispersed
geographically, and they can suffer from data loss because
of compromised network reliability which can occur in any
number of situations. Polled networks often have a semi-
fixed sampling frequency giving time series data with an
irregular support (i.e., irregularly spaced sampling times).
Data regularization by interpolation or extrapolation then
becomes an important aspect of the design and implementa-
tion of predictor systems in order to shift the sample times
onto a regular lattice. One of the fundamental decisions
made during the data regularization process is at which point
the sampling times of the interpolated data are skewed too
significantly from the original sampling times at which data
were actually measured. The First Moment Predictor (FMP)
described below is an effective, new, and practical tool for
making this design decision.

An FMP estimates the mean (location estimate) of a ran-
dom variable from a limited set of historic data. Conceivably,
there are many ways to generate an FMP; but a computation-
ally simple one is given by the sample mean of the historical
data under the naı̈ve assumption that the theoretical mean
is globally stationary. The benefits and drawbacks of this
technique are considered below in Section II.

Aggregate predictors generate a prediction from two or
more component predictors. Many of the predictors men-
tioned in the second paragraph of this section have been used
to construct aggregate predictors. Aggregating prediction
types, and specifically aggregating predictors that are well-
adapted for different types of data sets, tends to yield tangible
gains in prediction performance [1].

In this paper, we look specifically at the benefits of
generating FMPs for data interpolation and the generation
of training sets for neural network based speed and volume
prediction algorithms. As an illustrative example, we also
present a case study where we generate two FMPs. These
two predictions are then used as inputs to a Neural Network
which serves to aggregate recent historical data and arbitrates
between the speed and volume estimates given by the FMPs
and NN, all of which are generated using real traffic data
acquired in Oklahoma City.

II. FIRST MOMENT PREDICTOR DESIGN

A first moment predictor is characterized by two param-
eters. The time interval is the total period of time over
which historical data will be considered in formulating the
predictor. For example, if predictions are based on data
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acquired over the last year, then the time interval is one
year. The predictor period, denoted T , specifies the temporal
scope with which the historical data is considered in the
prediction algorithm. For example, if traffic volume at 5:00
PM is estimated using historical data acquired at 5:00 PM
every day for the last year, then the time interval is one year
and the predictor period is one day. Alternatively, if traffic
volume at 5:00 PM Tuesday is estimated using historical data
acquired at 5:00 PM Tuesday for the last two years, then the
time interval is two years and the predictor period is one
week.

The temporal granularity is the nominal (time) sampling
period of the detector which generates the historical data
for the predictor. In terms of the granularity, the predictor
period admits an interpretation as the number of sampling
intervals that the prediction algorithm considers as distinct
random variables. If dt is the value of the time series acquired
from the sensor at time t, then an FMP considers dt+kT ,
0 ≥ k ∈ Z, as multiple realizations of a single random
variable.

Let t be the present time and let the time interval be [ti, tf ];
tf determines how near to the present time data points will
be considered in the estimation algorithm and ti determines
how far into the past they will be considered. If tf = t−∆f

and ti = tf − ∆i, 0 ≤ ∆f ,∆i ∈ R, then the FMP is
a moving average (MA) model and may be interpreted as
a causal finite impulse response (FIR) digital filter. In this
case, the prediction algorithm requires online calculations
to be performed in real-time as the data are acquired.
Alternatively, if tf and ti are fixed instants of time in the past,
then the predictions can be precomputed and only a table
lookup of these precomputed values is required to deliver
the predictions in real-time. In this case, we refer to the time
interval as static. Note that the most recently acquired data
can not be considered by the prediction algorithm in the static
time interval case.

Let d̂t be the FMP prediction of dt. In a practical network
of polled sensors, individual data points may be lost for a
variety of reasons ranging from hardware failures to buffer
overruns to network outages. Let At be the set of time indices
τ such that the datum dτ is supposed to be included in
the FMP prediction calculation and such that dτ is in fact
available:

At = {τ = t+ ξ : 0 ≥ ξ ∈ R,∃ dτ ,mod(ξ, T ) = 0}.

Then the straightforward FMP prediction for dt is given by

d̂t = |At|−1
∑
τ∈At

dτ , (1)

where |At| is the cardinality of the set At.
One of the primary disadvantages of an FMP with a static

time interval is that it does not react to significant nonsta-
tionarities in the data. For example, a static time interval
FMP cannot generally react to a lane closure that lasts for
several predictor periods or to a work zone associated with
a long-term construction project that begins after tf .

Fig. 1. Physical location of the RTMS sensor used for data acquisition.

III. NEURAL NETWORK DESIGN CONSIDERATIONS

It is commonly agreed that no one machine learning
algorithm or neural network architecture can provide the best
performance for predicting traffic speed and volume in all
traffic environments [2]. Traffic flow is inherently noisy due
to traffic clustering, traffic jams, and shock wave formation
among other factors.

Neural networks (NNs) are well suited for modeling
non-linear and discontinuous phenomena [10]. NNs have
also been shown to perform well in the task of deciding
which from among a set of multiple predictions to select at
any given time. Thus, in the speed and volume prediction
problem an NN may perform two roles [2]. Specifically, an
NN might perform as both a primary predictor and as a
consumer of primary predictions which are to be arbitrated.
However, NNs require training (either online or off) and
may also require online training in a deployed environment.
This makes NNs a somewhat computationally expensive tool.
Fortunately, adaptation cost may be small and it may be
possible in many cases to limit the training so that the
training cost need only be expended once.

NNs may have any number of layers and any number of
neurons in each layer. Increasing these numbers provides
a greater capability to model discontinuities and non-linear
phenomena. However, since larger networks require longer
training periods and increased computation to generate a
prediction, there is a trade-off between network size and the
expense associated with high computational complexity.

IV. AGGREGATED FMP SPEED AND VOLUME
PREDICTION

A. Data Collection & Regularization

Timestamped speed and volume data were acquired from
an EIS Remote Traffic Microwave Sensor (RTMS) located
0.7 miles south of the intersection of I-35 and I-240 in
Oklahoma City, as shown in Fig. 1. The time interval was
April 4, 2006 through January 10, 2007. The mean sampling
period averaged across all ten months was 1.001 minutes.
The Akima interpolation method was chosen because it
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contributes relatively little to high frequency noise, has an
intuitive result, and is readily available on most platforms
[11]. A “data metric” was also generated for the control of
clock skew and missing data.

Let tk be the time that the k’th data sample is acquired,
let sk be the speed measured at time tk, and let vk be the
volume measured at tk. Then dtk = (tk, sk, vk) and the set
of all sampled data is given by X = {(tk, sk, vk)}k=1...N ,
where N is the number of data samples actually acquired.
Interpolation is applied to X to obtain the interpolated data
set X̂ = {(t̂k, ŝk, v̂k)}k=1...K . Note that, since some data
will generally be lost, N 6= K in most cases. It is important
to note that interpolation is used only for approximating
missing data and not as a predictor itself.

The data metric is given by δk = min1≤j≤N |tj − t̂k|. We
use this metric to generate thresholds to determine which
data points should be included in generation of the FMP
as well as generation of the training sets for the neural
networks. Thresholding the data metric limits the distance
(time skew) between the support of the interpolated values
X̂ and the temporally nearest datum actually acquired in X .
One of the benefits of using the Akima interpolation is that
it ensures that if the data metric is zero, then the interpolated
data value is equal to the sampled data value with the same
sampling time. Since the Akima interpolation scheme uses
polynomials of order less than three it is clear that arbitrarily
close support implies arbitrarily close value in the interpolant
function. However, Akima interpolation is not the only data
interpolation scheme with this property.

B. FMP Implementation

Two FMPs were developed for testing on the Oklahoma
City traffic speed and volume data. The predictor period for
the first FMP was one day, while it was seven days for
the second FMP. These predictor periods were selected by
examining the spectral energy density plots of the regularized
data. As expected, the spectral energy was greatest for
predictor periods of one day and one week. The one-day
FMP also differentiated between weekday and weekend data
due to dissimilarity. These facts are apparent in Fig. 3.

A static time interval was used to include the entire data
set in the prediction algorithm. The data metric threshold was
set at 10 minutes. This threshold value may seem high given
the sampling frequency, but there were 154.94 data points
averaged per table entry for the 1-Day Weekday predictor,
62.40 for the 1-Day Weekend predictor, and 31.05 data points
for the 7-Day predictor. Noise introduced by the interpolation
mechanism was reduced by averaging over such a large
number of data points (see Fig. 3). As shown in Table I, the
mean predictors developed here can be conveniently thought
of as a table where two values are associated with a time
index.

Determining the data-metric for the mean predictor is
easier in general than determining the value for the NNs.
Since averaging the data reduces noise, the data threshold
tolerance is much higher for this type of predictor than
for NNs. Fig. 2 is a plot of speed vs. volume for the two

TABLE I
SAMPLE OF ENTRIES IN 7-DAY PREDICTOR

Index Speed Volume

8487 64.95 14.72
8488 64.00 15.53
8489 64.32 16.07

FMPs developed as described above. If the 1-day predictor is
thought of as in Table I, then, since the sampling period is 1
minute, there are 1,440 table rows in the weekday predictor
and 1,440 rows in the weekend predictors. Each row in both
conceptual tables is plotted in Fig. 2(b). The 7-day predictor
is similarly plotted, but has only one table with 10,080 rows.
There is a noticeable lack in the available predictions of both
predictors that are low in speed and volume simultaneously.
Since simultaneously low data points are apparent in the real
data as shown in Fig. 2(a), some level of data aggregation
would be beneficial to a prediction system utilizing these
tables.

C. Aggregate Predictor

Feed Forward NNs with one hidden layer were generated
to arbitrate between the two FMP predictions and temporally
local traffic flow information. Levenberg-Marquardt training
was used to reduce the training time [12]. A log-sigmoid
transfer function was used in the hidden layer and a linear
transfer function was used in the output layer. Since a
hidden layer that is larger than the input and output layers
allows for greater generalization and relationship forma-
tion, and since there is only one output, d1.5 × (number
of inputs)e was used to determine the number of nodes
in the hidden layer. Separate NNs were developed for
the prediction of speed and volume data. For this experi-
ment the prediction intervals were selected such that t ∈
{1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}.

The inputs for the NNs were the two FMP predictions,
which we call αt and βt for the 7-Day and 1-Day predic-
tors, respectively, as well as historic speed or volume data
ŝ1, ŝ2, . . . , ŝK−1, ŝK , where the subscript for ŝ is the number
of minutes prior to the time of the prediction.

D. Training Sets

We use mean square error (MSE) to quantify the predictor
performance. If p̂k is a prediction for some time k and pk is
the actual value for the time series at time k, then

MSE =
∑N
k=1(p̂k − pk)2

N
. (2)

Training sets for the neural network were generated from in-
terpolated data as mentioned above. It may be acceptable that
δk < 10 for a mean predictor. However, such a high threshold
would lead to poor performance in generating a data set as
the interpolation scheme has introduced some noise. As a
principle, it should be the case that if the data set used to
generate the FMP is a large, representative sample, and if
its predictions are evaluated against a large representative
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(a)

(b)

(c)

Fig. 2. Speed/Volume Plots: (a) Approx. 104,000 Data Points From RTMS sensors. (b) 1-Day Predictor. (c) 7-Day Predictor.

sample regardless of non-stationarities, then the MSE of that
sample will not change for a given prediction horizon. That
is, an FMP meeting these two conditions should perform
equally well predicting any number of sampling intervals
into the future. However, if the data threshold applied to the
training set is too high, then prediction behavior of the FMP
becomes noisy as demonstrated in Table II.

This observation can be used whenever one is uncertain
about the nature of the sampling interval or needs to evaluate
the training set generated by interpolated data for validity.

Since there is relatively little variance and since greater
thresholds yield larger training sets, δ < 1.0 was used to
generate the training sets.

TABLE II
MSE FOR GIVEN δ FROM 7-DAY PREDICTOR

SPD. IN MPH2 VOL. IN (VEHICLES/MIN)2

δ < 0.5 δ < 1.0 δ < 2.0

t spd. vol. spd. vol. spd. vol.

1 313.3 131.7 309.7 131.4 334.4 144.9
5 313.3 131.2 309.9 131.0 324.5 144.4

10 313.4 130.3 310.0 130.4 315.9 143.5
15 313.6 129.7 310.1 129.8 312.9 142.6
20 313.7 129.4 310.2 129.6 311.3 141.3
25 313.8 128.8 310.4 129.3 305.2 140.4
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(a)

ı (b)

Fig. 3. Speed/Volume Plots: (a) 7-Day Predictor. (b)1-Day Weekday and Weekend Predictor Replicated to 7-Days. Upper plot is Speed in (MPH), Lower
Plot is Volume (Cars/Minute). 1430 is the 24-hour time of day giving a visual reference for time.

E. Training

The data were divided into training (70%), validation
(15%), and testing (15%) sets. The number of training
epochs was limited to 1,000 and training terminated if further
training provided worse performance on the validation set six
times consecutively. The NN performance was evaluated by
calculating the MSE on the testing set. The MSE conver-
gence goal was set to machine precision. Each training set
had 288,411 input/target sets.

F. Results

The MSEs for the NNs evaluated on the testing sets
described in Section IV-E are plotted in Fig. 4. The MSE for
both speed (in MPH2) and volume (in (Vehicles/Min.)2 are
shown with the numbers of historical inputs varying from 0
to 10. It is worth noting that the improvement in using FMPs
as the only input into the NNs as described in Section II was
from on average 310.05 MPH2 for the 7-day and 282.77
MPH2 for the 1-day to 11.00 MPH2 using the NN as an
aggregator. For volume, the improvement was from 130.25
(Vehicles/Min)2 for the 7-day to 11.02 (Vehicles/Min)2.

In general, for both speed and volume, more inputs yield
better predictions and smaller MSE for a given prediction in-
terval, making the benefit of adding recent traffic information
apparent. While typically more accurate in their predictions,
NNs with greater numbers of inputs are computationally
more expensive at prediction time. It should also be consid-
ered that some of the benefit may occur due to the increased
size of the network rather then the increased information in

estimation since the size the hidden layer and thus the NN
increases with the size of the inputs. The designer should
be able to choose a point where the accuracy required for
the application is achieved while the number of inputs is
minimized for computational efficiency.

The prediction horizon effect is demonstrated in Fig. 4(b).
For numbers of inputs greater than 5, there is an upward
slope from the 1 minute prediction interval to the 60 minute
interval. It appears that this effect is nascent in the number
of speed history inputs greater than 8, but as the speed data
shows considerably less prediction horizon effect than the
volume data, further research is required to verify this.

V. CONCLUSION & FUTURE WORK

FMPs provide a computationally simple and relatively
effective stand alone prediction model for traffic flow. As
they are implemented in our case study, a marked improve-
ment through neural network refereed prediction aggrega-
tion is demonstrated. We proposed a technique for data
regularization that provided the basis for both FMP and
neural network training sets that yielded satisfactory results
and provided useful information for the design of future
aggregate predictor systems.

The design of the FMP as described in the case study
is also an extremely effective tool for determining the data
skew/data loss cutoff metric. The formulation and develop-
ment of this tool to verify data set validity is straightforward
to generate hence making it appealing.

Comparing the results of traffic flow prediction systems
proves difficult in that studies use different temporal reso-
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Fig. 4. MSE vs. Number of Inputs: (a) Speed Results (b) Volume Results

αt

βt

ŝ1

ŝK,

σt

Fig. 5. Diagram of neural network for speed prediction. The neural
networks for predicting volume are similar.

lutions, for example 15-minute in [8] or 1-hour as in [2],
[9]. These termporal resolutions are dependent on the type
of sensor being deployed. The sensing volume for RTMS or
laser are relatively small, whereas the sensing volume for
inductive loop is large by comparison. As these technologies
become available for research new studies will be required
to examine their use in ATIS systems.

It seems unlikely that a NN trained for one particular lane
will yield effective results for lanes that do not exhibit similar
traffic cycles and patterns. Development of a methodology
to group lanes that can effectively use the same prediction
engine would be necessary to develop a widely distributed
prediction system. Most studies up to this point have used
relatively few data source locations, e.g. one in [2], [7]
and two in [9]. With the proliferation of distributed RTMS
networks (Oklahoma has more than 75 sensors installed)
and other sensor systems, further research into NN based
prediction and extension of the use of a single prediction
engine to many sensors or lanes would provide widely
applicable information.

It is also likely that extending our study with a greater
number of speed inputs would result in a more pronounced
speed horizon effect. Further inquiry is required to explain
the rate of development for this effect and how it differs
between speed and volume data. This extension would also
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explore the upper limit to prediction system benefit gained
by increasing the number of historic speed inputs, which is
not apparent in this study.

Interpolation as described in the paper is an effective
technique for approximating missing data and support reg-
ularization given that the consecutive data loss is limited to
some small portion of the speed history. Not discussed in
this paper, but potentially promising, is the idea of using
the output of the predictive system to replace missing input
to the same system. This offers one potential solution to
the data loss problem. This speculative prediction is used in
branch prediction algorithms in computer architecture [13].
Researching the use of known data replacement and replica-
tion techniques in these predictors also seems promising.

The predictor proposed in the case study here used a neural
network to aggregate FMP predictions and historic traffic
flow data and was shown to be an effective predictive system.
The relative ease and configurability of this system makes it
a feasible and desirable choice for deployment in real world
systems.
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