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ABSTRACT

We introduce a multidimensional quasi-eigenfunction ap-
proximation useful for characterizing and analyzing the re-
sponses of discrete linear systems to inputs modeled as AM-
FM image functions. A new theorem is presented which
provides a global bound on the approximation error. We
demonstrate how the approximation may be used to de-
velop discrete AM-FM demodulation algorithms, and show
dramatic demodulation examples where the essential struc-
ture of natural images is captured using only a small number
of AM-FM components.

1. INTRODUCTION

The use of AM-FM modeling techniques for analysis and
representation of nonstationary signals and images has been
the subject of intense recent research [1-8]. In multi-compo-
nent AM-FM image analysis, a complex-valued image ¢(x)
is modeled as a sum of nonstationary, locally coherent AM-
FM functions

K
t(x) = ) _ ax(x) explipr(x)], (1)

k=1

where x = [z1,22]7, t : R2 = C, ax : R = [0,00), and
¢r : B2 = R, A real-valued image s(x) may be analyzed
against the model (1) using the unique complex extension
t(x) = s(x)+jH [s(x)], where # [-] indicates the 2D Hilbert
transform acting in the horizontal direction. The AM-FM
analysis problem is concerned with estimating the ampli-
tude modulation functions ax(x) and the frequency mod-
ulation functions Vi (x). This is normally accomplished
using nonlinear algorithms, making it necessary to isolate
the individual components from one another prior to per-
forming the estimation in order to avoid cross-component
interference effects. The separation may be effected on a
spatio-spectrally localized basis by processing the image
with a multiband linear filter bank.

However, the development of frequency demodulation
algorithms for filtered components is, in general, quite dif-
ficult. Excellent approximate estimation algorithms have
been derived by making use of a family of approximations
known collectively as quasi-eigenfunction approzimations,
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or QEAs [3,5,6,9-12]. The exact response of the filter g(x)
to image component ti(x) = ar(x) exp [jor (x)] is

) = [t y)ateiay @
The QEA for the reéponse is
d(x) = t&(x)G [Vi(x)], (3)

where G(2) = F[g(x)] is the Fourier transform of g(x).
Note that all quantities in the QEA (3) are spatially vary-
ing. The approximation is exact if ¢4 (x) is monochromatic,
viz. if the modulating functions are both constant. Other-
wise there is generally an error in (3). However, theoretical
results tightly bounding the approximation error have been
obtained for the case of 1D continuous-domain signals [9],
1D discrete-domain signals [6,11,12], and multi-dimensional
continuous-domain signals [5,10]. The errors are generally
small, provided that the filter impulse response is local-
ized and the modulating: functions are smooth, or locally
coherent. The 2D continuous-domain QEA may be used to
establish the validity of the following approximate, filtered
AM-FM demodulation algorithm:

Vorx) ~ Vg(x)=Re [%&Z] , @)
gy d(x)
ar (x) ~  ag (x) = —-———-G [V{ﬁk (x)] . (5)

Since the algorithm (4), (5) is spatially local, it is only nec-
essary for the filtering operation described in (2) to separate
the components from one another on a pointwise basis; the
filter response may, in general, be dominated by different
image components at different points in the domain. The
demodulation algorithm is valid for the dominating compo-
nent, provided that at most one component dominates the
response image at each point.

In this paper we present, for the first time, the discrete
2D QEA and a bound on the approximation error. We
use the approximation to develop discrete-domain AM-FM
demodulation algorithms. This is significant since images
almost always are acquired as discrete-domain signals, since
there are considerable differences between the 1D and 2D
discrete bounds, and since there are subtleties in discretiz-
ing the algorithm (4), (5).

2. THE 2D DISCRETE QEA

We approximate the response of absolutely summable, 2D
discrete linear systems to AM-FM inputs and bound the



approximation error. Consider a discrete, complex-valued
AM-FM image component

c¢(m) = a(m) exp [jp(m)] (6)

and an arbitrary discrete linear system g : Z> — C with
unit pulse response g(m) € £1(Z?%) and frequency response
G(£2). Henceforth, we write g(m) < G(2) to indicate that

g(m) and G(Q) are a Fourler transform pair. The exact
response of G to input ¢(m) is given by
d(m) = ) g(p)c(m —p). (7)

peZ?

The quasi-eigenfunction approximation to the response is
d(m) = c¢(m)G [Vp(m)], (8)

where Vo{m) = Ve(x)|,_,,. Note that the form of the
QEA in (8) is analogous.to the eigenfunction interpretation
of the response of a discrete linear system to a monochro-
matic input. While an arbitrary image component mod-
eled as an AM-FM function may bear little similarity to
an eigenfunction of g(m) when viewed at a global scale,
all of the quantities involved in the approximation (8) are
spatially localized. If the modulating functions of ¢(m) are
locally coherent at scales smaller than the spatial support
of g(m), then we reason that c(m) may look very much like
an eigenfunction on a spatially local basis. In the theorem
below, we provide a global bound on the approximation
error. First, we introduce some convenient notation.
Let ed(m) denote the error in the 2D QEA: g4(m) =

ld(m)- d(m)| Denote the maximum value of the amplitude
modulation function a(m) by amax = maxp a(p), and the
absolute sum of a sequence by ||glla =3__.z29(p)I-

Use the notation £,(F') to denote the supremum of the
magnitudes of-all line integrals of the vector-valued func-
tion F along paths o(s) € P™, where P" is the space of
polynomials with degree less than or equal to n. Thus

/UF(x)-dx.

Similarly, use the notation &, (F) to denote the supremum
of all line integrals of the magnitude of the vector—valued
function F along paths o‘(s) € P™:

&, (F) = sup /]F(x)lds.
geP™ Jo

Ln(F)= sup
Tepn

(9)

(10)

Let e; denote the unit vector in the i direction: e; = [1, O]T,
e2=[0,1]%. Let ¢q,(x) = 3‘?0—1,30(}(), the partial of p(x) in
the e; direction. Finally, quantify the spatial duration of the
filter g(m) in the e; direction using the generalized moment

functional
Ai(g) =Y |pei"p|lg(P)I. (11)
pGZ2

Theorem: Let ¢(m) be as in (6) and let a(m), ¢(m), and
g(m) € £1(Z?). Let a(x) be continuously partially differ-
entiable and (x) be twice continuously partially dlfferen—
tiable. Let £4(m) be as defined above. Then

ea(m) < {||gllex — 19(0)[} £1(Va)
+ amax {21(9)81(Vz,) + A2(9)61(Vipa, )} (12)
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Proof: omitted for brevity.

The error bound in (12) is global in the sense that it is
independent of the spatial coordinates. Note that the term
£1(Va), the supremum of the magnitudes of all line inte-
grals of Va(x) along straight paths, tends to grow inversely
with the smoothness of a(x), and vanishes altogether in
the limit as ¢(m) tends toward a true eigenfunction. The
terms G1(Ve, ) and 61(Vys,), which are the suprema of
all line integrals of the gradient magnitudes of the compo-
nents of the instantaneous frequency vector along straight
paths, also tend to grow inversely with the smoothness of
¢(x), and vanish as c(m) tends to a true eigenfunction.
Hence, the QEA errors will be small when the input is lo-
cally coherent. Furthermore, the bound in (12) is tight in
the sense that it tends to zero as ¢{(m) tends to an eigenfunc-
tion of g(m). Also of interest is the fact that both terms
in thé bound (12) can be made arbitrarily small through
the choice of a filter g(m) that is highly spatially localized.
This is true independent of the local coherency of the input
c(m).

3. APPLICATION TO AM-FM IMAGE
DEMODULATION

We begin by using the QEA to develop demodulation al-
gorithms for an unfiltered image component. Consider a
system parameterized by constants ni,ne € Z and ¢ = £1,
where the unit pulse response and frequency response of the
system are

hi(m) = §(m + nie;) + ¢d(m + noe;)
< Hi(Q) = M7 qejnznTe". (13)
The exact response of h; to the component (6) is
s(m) = c¢(m) * hi(m) = c(m + nie;) + ge(m + nze;), (14)
while the QEA is
3(m) = c(m) {exp [jmies Vep(m)]
+ gexp [jnzeiTth(m)] } . (15)

Equating (14) and (15) with n; = 1 and ng = ¢ =1, we
have almost immediately that

e Vop(m) ~ ;T V@(m)

_ .| e(m+e;) — e(m —e;)
= arcsin [ 2j(m) ] , (16)
while choosing n; = ¢ = 1 and ny = =1 yields
. e’ Vi(m) ~ e, T VH(m)
_ c(m + e;) + e(m —e;) '
= arccos [ o) ] . 17

The algorithms (16), (17), called the Sine and Cosine al-
gorithms respectively, are the discrete equivalents of (4).
They may be used individually to estimate the components
of the frequency modulation vector to within =« radians, or
together to place the frequencies to within 2« radians. The
amplitude modulation a(m) is estimated by a{(m) = |c(m)].



Next, we use the QEA to develop algorithms for esti-
mating the modulating functions of ¢(m) in (6) from the
filtered component d(m) given by (7)., Consider a cascade
system f(m) = g(m) * h;(m), where g(m) € £*(Z?) as be-
fore, and h; is as defined in (13). By definition, the response
of the cascade system to input (6) is

r(m) = c(m)=* f(m) (18)
= d(m) = h;(m). (19)

Using (13), Equation (19) may be expressed as
r(m) = d(m + nye;) + gd(m + nze;). (20)

Applying the QEA first to (18), and then to (7), we have

Rm) = o(m)G[Vip(m)) {exp [jmiei” Vio(m)]
+ gexp [jnae;" Vo(m)] } (21)
= d(m) {exp [jmie:" Vip(m))]
+ gexp [jnzeiTVnp(m)] } . (22)

Equating (20) with (22), subject to the QEA error, es-
tablishes immediately that both the Sine and Cosine algo-
rithms may be applied directly to the filtered image d(m)
in (7) to obtain Vi(m). In estimating the amplitude mod-
ulation of ¢(m) from d(m), the scaling effects of the filter
g(m) must be factored out. Hence, it follows from the QEA
that the discrete, filtered amplitude algorithm is

d(m)

GV )] | (23)

a(m) = a(m) =

4. EXAMPLES

In this section we present dramatic new examples of multi-
component AM-FM image analysis and representation. In
each example, components were isolated from one another
using a spatio-spectrally localized multiband bank of one-
octave Gabor filters in a wavelet-like tesselation [10]. The
modulating functions of individual components were then
estimated from the channel responses using the discrete de-
modulation algorithms (16), (17), and (23).

An analysis paradigm called dominant component anal-
ysis, or DCA, was described in [5]. The object of DCA is
to estimate, at each point in the image, the values of the
modulating functions of the component that dominates the
local image spectrum at that point. The frequencies so ob-
tained are termed emergent, and characterize the dominant
features of the local texture structure. Fig. 1 (a) shows the
image Tree. The estimated emergent frequencies are shown
in Fig. 1 (b), where each needle is oriented with the esti-
mated frequency vector and needle length is inversely pro-
portional to the frequency magnitude. Hence, long needles
correspond to low spatial frequencies and image features
of large spatial extent, while short needles correspond to
high spatial frequencies and image features of small spa-
tial extent. A reconstruction of the dominant component
of the image from the estimated frequency and amplitude
modulation functions (the latter is not depicted) is given
in Fig. 1 (¢). While the AM-FM component obtained from
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DCA is not necessarily locally coherent, it reveals the dom-
inant structure of the image on a spatially local basis using
only a single AM-FM component.

The details of an approach for simultaneously estimat-
ing the modulating functions of multiple AM-FM image
components from the Gabor channel responses was also de-
scribed in [5]. The image Reptile is shown in Fig. 1 (d).
Modulating functions for five nonstationary, locally coher-
ent AM-FM components of this image were estimated us-
ing (16), (17), and (23). Reconstructions of the individ-
ual components from the estimated modulating functions
are shown in Fig. 1 (e) - (g), (i), and (j). The effects of
smooth, nonstationary varjations in both the amplitude and
frequency modulating functions are clearly visible. Fig. 1
(h) shows the reconstructed image obtained from the esti-
mated modulating functions of all five components. It is
truly remarkable that the essential structure of the image
has been effectively captured with such a small number of
components.

Similarly, Fig. 1 (k) and (1) show the image Burlap and a
reconstruction from the estimated modulating functions of
eight nonstationary, locally coherent AM-FM components.
Again, this example clearly demonstrates the power of AM-
FM modeling to capture the essential and perceptually im-
portant structure in a complicated image using only a small
number of nonstationary, locally coherent AM-FM compo-
nents.

5. CONCLUSIONS

For the first time, we gave & discrete multidimensional quasi-
eigenfunction approximation for analyzing the responses of
discrete linear systems to AM-FM inputs. We also gave
a new theorem bounding the approximation error. Using
the approximation, we established discrete algorithms suit-
able for simultaneously estimating the modulating functions
of multiple image components from the responses of linear
multiband filters. The filters were required to separate the
components from one another on a spatio-spectrally local-
ized basis. We used the discrete demodulation algorithms
to estimate modulating functions for the multiple compo-
nents of three natural images, and demonstrated the power
of AM-FM modeling techniques to capture and represent
the essential structure of images using fewer than ten com-
ponents.
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Figure 1: AM-FM discrete demodulation examples. (a) Tree image. (b) Estimated frequency modulation for Tree dominant
component. Needle length is proportional to instantaneous period. (c) Reconstruction of Tree dominant component from
estimated modulating functions. (d) Reptile image. (e)-(g) Three AM-FM image components of Reptile, reconstructed from
estimated modulating functions. (h) Reconstruction of essential structure of Reptile from estimated modulating functions of

five AM-FM-components, as shown in (e)-(g),(i),(j). (i)-(}) Remaining two reconstructed components of Reptile. (k) Burlap
image. (1) Reconstruction of Burlap from estimated modulating functions of eight AM-FM components.
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