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ABSTRACT

We have previously developed an uncertainty measure that is
suitable for finitely-supported (N samples) discrete-time signals.
A specific instance of our measure has been termed the “Discrete
Hirschman Uncertainty Principal” in the literature, and we have
adopted this terminology for our more general measure. We
compare the optimal signals of this discrete version to the
already determined optimal signals of the (continuous-time)
Hirschman Uncertainty Principal. From our comparison, we
conclude that a basic premise in signal processing, that if we
sample densely enough, the discrete-time case directly
corresponds to the continuous-time case, is not correct in this
instance. The arithmetic of N, which seems to have no analog in
continuous time, is crucial to the construction of the Hirschman
optimal discrete representation. We suggest that more work in
this important area be performed to determine what impact this
has, and to find out how widespread this problem may be.

1. INTRODUCTION

In [1], we introduced a measure H, that predicts the

compactness of a discrete-time signal in the sample-frequency
phase plane. This measure was used to show that discretized
Gaussian pulses may not be the most compact basis, and a lower
limit on the compaction of the phase plane was conjectured. We
have since discovered that part of this conjectured lower limit
was proven in [2] under the moniker “a discrete Hirschman’s
uncertainty principle.” However, that result did not describe the
characteristics of the signals that meet the limit, as our conjecture
did [3]. We further argued in [4] that this measure indicates two
possible “best basis” options:

1. The multi-transform (non-orthogonal) option
2. The orthogonal discrete Hirschman uncertainty principle
option

We have discussed many results in the first option (see [1] for
many references to this work). We have very recently discovered
a result for the second option [5). We first discuss this result,
giving the theorem that defines signals that meet the bound and
their uniqueness. We will then briefly review the continuous-time
Hirschman uncertainty principle, and discuss the results that
previous researchers have found regarding optimal signals in this
case. From these results, we conclude that the conditions of finite
support and discrete time sampling significantly alter the
solution, and that no matter how densely we sample, the discrete-
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time result does not directly correspond to the continuous-time
solution. We acknowledge that our example given in this paper
does not address these other two important questions: Is the
difference relevant? Is the difference universal? These two
questions suggest that more work in this important area needs to
be performed to determine the impact as well as the applicability
of this “non-convergence” of the discrete-time case to the
continuous-time case. However, our work clearly indicates that
treating the discrete-time case as a continuum of the continuous-
time case will not produce our Hirschman optimal discrete
representation.

2. THE DISCRETE HIRSCHMAN
UNCERTAINTY PRINCIPLE

2.1 Definitions

Fix a positive integer N . Let A denote the ring Z/NZ . Thus
A :{0,1,2,.A.,N—l}, with the addition and multiplication
modulo N . Often we shall view A as a group with respect to
addition.

The Heisenberg group of degree one, with coefficients in A, is
the group G, (A) of all matrices of the form

1 x z
0 1 y|(xyzeA)
001

We shall identify G,(A) with the cartesian product AXAXA

via the map

1 x z
G(A)3[0 1 y[-(xyz)e AXAXA N
0 01

In terms of (1) the matrix multiplication and the inverse look as
follows:

(y.2)(xhyh2)=(x+xy+yLz+z2+ 1),

(x.y,2) = (~x-yi—z+xy)  (xy.2.x,y.2'€ A)



Let

2ma

F(a)=¢ ¥ (acA)

This is a unitary character of the (additive) group A. For a
function u: A - C let

o =[§u(a)rf

and let [’(A) denote the Hilbert space of all such functions,
with the norm (2). Let

2

p(x.y.2)u(a)= Hay+z)u(a+x)

3
(ue L(A)a,x.y.z€ A) ©

It is easy to check that p is a group homomorphism from
G,(A) to the group of unitary operators on L,(A). In other

words, p is a unitary representation of G,(A) on the space

L(4).

Recall the discrete Fourier transform, defined with respect to the
character .2’ :

fu(b)=a(b)=|A|‘§ Su(a)¥(-ab) (ue’(A).be A)

aeA

Here lA[ = N is the cardinality of the set A . The inverse Fourier

transform is given by
i
u(a)= |A|_3 212 (6) ¥ (ab) (u e I’(A),ae A)
he A

A straightforward calculation shows that

Fp(oy2)F =p(-yxz-x) (ny.zeA) @)

In other words, the Fourier transform normalizes the group
p(G,(A)). For ue L’ (A), with [lu, =1, let

H ()=~ Zfu(a) 108 ()
and let
H,(u)=pH (u)+(1~ p)H ()
It is easy to see that
H,(p(h)u)=H,(u)
We would like to consider u€ L7 (A) with Ju]|=1 equivalent to

v=Au where [A|=1. As H(u)=H(v) and H,(u)=H (v)

for equivalent u and v, H and H, are defined on the

(he G(a),0< p<1)

equivalence classes. This set of equivalence classes form a
complex projective space which we will denote by P(A). Note

that being orthogonal is well-defined on the equivalence classes,
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so a subset of P(A), being orthonormal makes sense. There is

an induced action of the Heisenberg group G,(A) on P(A)

defined via (3) at the level of representatives for the equivalence
classes. Below we will use the same symbol u for an element of

L’(A) with Ju|=1 and the equivalence class it represents in

P(A).

If B is a subset of A, let I, denote the indicator function of
B .Thus I,(a)=1if ae B,and I,(a)=0 if ac A\B.

2.2 Theorem

Here is our main theorem.

Theorem 1 (Main Theorem)

(a) If ue P(A), then Hl(p)Z—;-log(lAD

(b) The set of vectors ue P(A) and H, (u)= %log(]AI)
coincides with the union of the orbits .
1
p(G,(A))—=1I, (B -asubgroupofA (5)
( 1 ( ))m B ( )
(c) Each orbit (5) is an orthonormal basis of I’ (4).
(d) The set of vectors ue P(A) and H ,(u) =%log(lA]) forall

0< p <1 is non-empty if and only if |A| is a square. In this
case, this set coincides with the orbit (5) for the unique
subgroup B < A of cardinality [Bl = 1”Al .

Part (a) of the above theorem has been proven by A. Dembo, T.
M. Cover and J. A. Thomas in [2]. The idea of their proof is
based on Hirschman's work in [6]. In fact, those authors name the
inequality (a) “the Hirschman Uncertainty Principle.” Following
this line we have chosen the title of this paper. While unaware of
the work in [2], we conjectured a result close to the above
theorem in [1]. Part (c) suggests a close connection of the
functions listed in (b) with wavelets, along the lines explored
partially in [7].

A complete proof of the theorem is given in [5). The importance
in this paper is that we now not only have a signal that meets the
lower bound, but that we have uniquely identified all signais that
meet the lower bound, and determined that they can form an
orthonomal basis. From this theorem, we can define the
Hirschman Optimal Transform (HOT) that may be computed via
a fast algorithm due to its relationship to the Fourier transform.

2.3 The HOT

The basis functions that define the HOT are derived according to
the second item of the theorem. The functions are suggested in
[12], though in that paper they were derived without any measure



using entropy. Consequently, we use the K -dimensional discrete
Fourier transform (DFT) as the originator functions for an
N = K? -dimensional HOT basis. Each of the basis functions
from the K -dimensional DFT are shifted and interpolated to
produce the sufficient N basis functions that define the HOT.
We note that the DFT basis could be extended in a similar
manner to produce a N = KL -dimensional transform, but as the
fourth item of the theorem shows, this transform is not HOT
optimal. Plots of the N =4 case are shown in Figure 1.
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Figure 1. HOT and DFT basis functions: a) The real part
of the HOT basis functions b) The imaginary part of the
HOT basis functions ¢) The real part of the DFT basis
functions d) The imaginary part of the DFT basis
functions
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Because the HOT is based on periodic shifts of the DFT, the
N = K? -point HOT can be accomplished using K separate X -
point DFT computations. However, since the HOT requires
lengths N =K?, the efficiency of any computational procedure
will depend on the exact length N . For N =4,16, 64,256 etc.,

this HOT that O(NlogK)

computations. For other lengths the efficiency of the HOT
calculation will be less. Thus, in general, the N -point HOT is
more efficient than the N -point DFT.

provides a fast requires

3. THE CONTINUOUS-TIME
HIRSCHMAN UNCERTAINTY
PRINCIPLE

3.1 The Hirschman Uncertainty Principle

First, we provide some definitions similar to the discrete-time
case. Let § (]R") be the Schwartz space of functions on the

Euclidian space R” [8]. Recall the Fourier transform
FE =] f(x)edr, (fes(R").EcR")

where &-x=x& +x,&, +-+x&, . Asin (2), let

Il =([..

Consider a function fe S(R") with | f]

refaf. (rese)

, =1. Then If(x)|2 isa

probability distribution on R". Hence the notion of entropy,

introduced by Shannon [9] applies to |f(x)|2. We shall denote

by H(f) the entropy of lf(x)r :

H(f)==[ 1 (< 1o\ (f . (£ e S(R7) s

3

=)

As is well known, | f], = ||f|| . Hence, as in the previous section,
2

we define
H,(f)=pH (£)+(-p)H(F). (e s(R").]1],=1)

The following theorem, conjectured by Hirshman [6], has been
proven by Beckner [10],[11]:

Theorem. Let f € S(R"), |f||2 =1. Then
H%(f)zgln(g)

This is a beautiful result, and we would like to thank Waldemar
Hebisch for the reference [10].



3.2 Continuous-time Results

It is easy to check that the equality occurs if f is obtained by a

x
-=x
translation, dilation or modulation of the Gaussian g(x)=¢e 2 .

Hirschman has conjectured that H, (f) is minimial (i.e. that
2

H i ( f )=%]n(§) after the work of Beckner) only for these

functions, [6]. As far as we know, this conjecture is still open.
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Figure 2. Non-optimality of a discretized Gaussian pulse:
a) N=4b) N=16 c¢) N=256

4. COMPARISONS

The most important relevant issue that we wish to make clear in
this paper is that the discrete- and continuous-time versions of
the Hirschman uncertainty principle yield solutions that are
different, and significantly so. The discrete-time (unique)
solution is distinctly non-Gaussian, as exemplified in Figure 1. In
the discrete-time case, we have measured the non-optimality of
the Gaussian solution in several instances. For a sampled zero-
mean and unit-variance Gaussian pulse, we have the results for
varying N shown in Figure 2. Note that the minimum of the
main theorem is the solid line in each of the plots in Figure 2,
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and that, of course, our HOT basis function achieves this
minimum for all valid p, ie. 0< p<1. As noted in [4], the

value of N where the “cross-over” takes place depends on the
variance of the discretized Gaussian pulse.

5. SUMMARY

In this paper, we have shown that the Hirschman uncertainty
principle, when developed in the continuous- and discrete-time
cases, leads to completely different optimal solutions. As we
have seen, we have proven in [5] that the uniquely optimal
solution for the discrete-time Hirschman uncertainty principle is
a class of signals derived from [12]. These signals are not shaped
as Gaussian pulses. In fact, as we have seen, discretized Gaussian
pulses are not optimal. However, one optimal solution for the
continuous-time case is a Gaussian pulse. Here, it is apparent that
the premise commonly used in signal processing, namely that if
we sample densely enough, the discrete-time case converges to
the continuous-time case, is not correct in this instance. This lack
of transferance across the “sampling” process could indicate a
larger problem — We suggest that more work in this important
area be performed to determine what impact this has, and to find
out how widespread this problem might be.
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