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ABSTRACT
A new joint view-identity manifold (JVIM) is proposed for multi-
view shape modeling that is applied to automated target tracking
and recognition (ATR). This work improves our recent work where
the view and identity manifolds are assumed to be independent for
multi-view multi-target modeling. A local linear Gaussian process
latent variable model (LL-GPLVM) is used to learn a probabilistic
JVIM which can capture both inter-class and intra-class variability
of 2D target shapes under arbitrary view point jointly in one co-
existed latent space. A particle filter-based ATR algorithm is devel-
oped to simultaneously infer the view and identity parameters along
JVIM so that target tracking and recognition can be achieved jointly
in a seamlessly fashion. The experimental results using SENSIAC
ATR database demonstrate the advantages of our method both qual-
itatively and quantitatively compared with existing methods using
template matching or separate view and identity manifolds.

1. INTRODUCTION

With the ability to detect, track and recognize both known and un-
known targets, automated target tracking and recognition (ATR) is
widely used in various military and civilian applications. In vision-
based ATR applications, target appearance could change dramati-
cally due to the variations of viewpoint and 3D structure of the tar-
get as well as the possibility of unknown target types, which makes
ATR a challenging problem in practice. In order to represent the
appearance of a 3D rigid object, three major approaches have been
used. The first approach suggests a set of representative 2D snap-
shots [1, 2] captured from multiple viewpoints. Templates [3], his-
tograms [4], edge features [5] etc. are the commonly used non-
parametric representation methods for these snapshots. Complex
features such as SIFT, HOG, or image patches can be used too.
The second approach involves an explicit 3D object model [6] where
common representations vary from simple polyhedrons to complex
3D meshes. The third approach uses a manifold learning method to
build a low-dimensional nonlinear shape model to capture the shape
variability of different objects. For example, in [7] and [8] a non-
linear probabilistic and variational method for adding shape infor-
mation to level set based object segmentation and tracking was pro-
posed, where GPLVM (Gaussian process latent variable models [9])
is applied to learn a low dimensional latent space and where segmen-
tation and tracing are lined by an image-driven optimization in the
latent shape space. However, only one latent factor is considered,
either different vehicles under the same view or different poses of
the same person. In order to support robust ATR in a 3D scene for
both known and unknown targets under an arbitrary view, a general
shape model that supports multiple continuous-valued factors would
be useful and flexible, e.g., identity and view.
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In [10, 11] a couplet of identity and view manifolds was applied
to ATR where the two manifolds are integrated into a compact target
generative model. The main assumption of this method is that the
view manifold and identity manifold are independent with the former
one pre-designed (a 3D hemisphere) and the latter one learned (a 2D
closed-loop), as shown in Fig.1. All target types share the same
idealized view manifold. In this paper, we propose a new joint view-
identity manifold (JVIM) that captures the coupling effect between
the two manifolds for multi-view and multi-class shape modeling.
Compared with [10] where the two manifolds are all deterministic,
JVIM is probabilistic and involves one co-existed latent space, which
is more robust and flexible to handle uncertainty and ambiguity for
shape matching. This is demonstrated by the experimental results on
the newly released SENSIAC ATR database [12].
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Fig. 1. A couplet view-identity manifolds for shape modeling where
a new shape can be interpolated by sampling each manifold [10].

2. PROPOSED METHOD

The key to the JVIM learning is to incorporate certain topology con-
straints where all latent points can be optimized with respect to both
the data terms and the topology prior in a probabilistic manner. In
this work, we adopt LL-GPLVM [13] to learn JVIM where the topol-
ogy priors are inspired from the two manifold structures used in
[10]. Moreover, we make two efforts to reduce the complexity of
LL-GPLVM learning. One is to use a DCT-based shape descriptor
recently proposed in [7] to reduce the dimensionality of input shapes,
and the other is to invoke a local point approximation-based learn-
ing method [14]. To facilitate the inference process, JVIM can be
further represented into one view-independent identity manifold and
an identity-dependent view manifold given an identity hypothesis, as
shown by Fig. 2. Then a similar particle filtering-based ATR infer-
ence method in [10] can be used to recognize a target (at both class
and sub-class levels) and to track the 3D position/pose simultane-
ously.
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Fig. 2. Illustration of the generative model for shape interpolation along the manifold.

2.1. Target Representation

All shapes in this work were initially represented implicitly by using
the signed distance function (120× 80 = 9600), and then we apply
the 2D DCT-based shape descriptor [7] to reduce the dimensionality
of training data, making the GLPVM learning more tractable. As
shown in Fig.3, the DCT quantization with 30 × 30 = 900 coeffi-
cients preserved can reconstruct a shape with a reasonable quality.
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Fig. 3. DCT-based shape representation where only less 10% DCT
coefficients are used for shape reconstruction.

2.2. GPLVM and LL-GPLVM

GPLVM represents a set of high-dimensional (HD) data ,Y =
{y1, . . . , yN}

T and yi ∈ Rd, in a low-dimensional (LD) latent
space, X = {x1, . . . , xN}T and xi ∈ Rq , and a Gaussian process is
used as the nonlinear mapping from the latent space to the data space
where a covariance function is (KY)ij = kY(xi, xj) is involved. The
learning of GPLVM seeks to maximize the likelihood of the data
given the latent positions,

p(Y|X, β) =
1

Z
exp(−1

2
tr(K−1

Y YYT )), (1)

where Z is a normalization factor, KY is known as the kernel ma-
trix, and β denotes the kernel hyper-parameters. In order to reflect
the natural (or intrinsic) topology of the data or to encourage a given
manifold topology, the local linear GPLVM (LL-GPLVM) was pro-
posed in [13] for human motion modeling. LL-GPLVM introduces
topological constraints based on a neighborhood structure learned
from local linear embedding (LLE) [15]. The objective function for

LL-GPLVM is

Ls = log p(Y|X, β)p(β)p(X|w)

=
d

2
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‖xi −
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j=1

ωijxj‖2 + C, (2)

where C is a constant, ωij is the weights that best reconstruct
each data point xi from its neighbors xj by minimizing Φ(w) =∑N

i=1 ‖xi −
∑N

j=1 ωijxj‖2, σ2 is used to adjust the strength of
topology constrained. After learning, given a LD point xtest, its
corresponding HD distribution is defined by

p(y|xtest,Y,X, β) = N(y|µ, υ), (3)

where µ = kT
x (K + σ2I)−1Y, υ = Kxx − kT

x (K + σ2I)kx and
kx = k(xtest, x). In this work, µ is used for shape reconstruction,
and υ indicates the reconstruction confidence.

2.3. JVIM Learning by LL-GPLVM

One important feature of JVIM is that its latent space is semantically
meaningful, and it is ensured through the topology constraints to be
involved in LL-GPLVM. As discussed in [10, 11] a 2D hemisphere-
shaped view manifold shared by all target types is used to deal with
view variations by spanning all possible view angles for ground ve-
hicles and a 1D circular-shaped identity manifold is used to captures
both inter-class and intra-class shape variability. Let yk

m ∈ Rd to
be the d−dimensional (d=900) data of target k under view m, and
xk
m = [θkm, φ

k
m, α

k], 0 ≤ θkm ≤ 2π, 0 ≤ αk ≤ π, 0 ≤ θkm ≤ 2π
denote the corresponding point in the LD space. The first two pa-
rameters θkm and φk

m represent the azimuth and elevation angles
of view m respectively, and the last one αk is the identity term.
We can separate the LD space into two parts x = [xview, xid] and
xk
view = [θkm, φ

k
m], xid = α, the first part can be treated as an

identity-dependent view manifold, and the second part is an view-
independent identity manifold. As shown in Fig. 4 for each identity-
dependent view manifold a hemisphere structure is used to initialize
JVIM. It’s worth noting that both view and identity factors are jointly
optimized during the LL-GPLVM learning process.

An important issue in LL-GPLVM is the selection of neighbor-
hood for each data point that is preferred to be done in the LD latent
space. In JVIM learning, we choose the neighborhood for each train-
ing data point in the latent space according to the semantic structure
of JVIM. As in Fig. 4, for a training point (red point) we have two
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Fig. 4. Initialization structure and neighborhood structure for JVIM.

steps to choose neighbors. The first step (left) is to choose some
neighbors (4 black points) along the α (identity) direction without
changing the view parameters, and the second step (right) is to se-
lect some neighbors (14 black ones) along θ and φ directions under
the same identity parameter. All neighbor points (18 in this work)
will be used to calculate the LLE weights ωij in (2). The weights
can be computed by solving, ∀j ∈ ηi, the following system,∑

k

Ckjωij = 1, (4)

where Ckj = (xi − xk)T (xi − xj) if j, k ∈ ηi, and 0 otherwise.
Then scaling them to satisfy

∑
j ωij = 1. Ckj is computed using

the neighborhood shown in Fig. 4 as follow,

Ckj = Cx1
kj + Cx2

kj + Cx3
kj + Cx4

kj + Cx5
kj

Cx1
kj = (cos(φi) cos(θi)− cos(φk) cos(θk))

(cos(φi) cos(θi)− cos(φj) cos(θj))
Cx2

kj = (cos(φi) sin(θi)− cos(φk) sin(θk))
(cos(φi) sin(θi)− cos(φj) sin(θj))

Cx3
kj = (sin(φi)− sin(φk))(sin(φi)− sin(φj))

Cx4
kj = (cos(αi)− cos(αk))(cos(αi)− cos(αj))

Cx5
kj = (sin(αi)− sin(αk))(sin(αi)− sin(αj)),

(5)

where θ, φ and α are the azimuth angle, elevation angle in the
identity-dependent view manifold and identity parameter in the
identity manifold in Fig. 4.

2.4. Efficient JVIM Learning

A computational bottleneck of GPLVM learning is the gradient-
based iterative optimization method where the inverse of KY in
(1) is involved and could be computationally prohibitive for a large
training data set. There are two approaches to address this issue.
One is to use an active set for sparse learning where the active set is
optimized during each iteration [16], and the other is to use a local
approximation to define KY for each point via its neighbors [14].
In this paper, we use the later one that is more efficient and sim-
pler. More importantly, the topology-awareness of JVIM facilitates
the neighborhood selection for the local approximation to KY , and
makes JVIM amenable to this approach. Similar to the topological
constraint shown in Fig. 4, we expand the neighborhood definition
for each data point by including more neighbors to compute the
local KY matrix for efficient JVIM learning as well as JVIM-based
shape interpolation.

3. EXPERIMENTAL RESULT

We used the newly released SENSIAC ATR database to test the pro-
posed JVIM. 24 night-time midwave infrared (MWIR) sequences

(8 vehicles at 3 ranges, 2km, 2.5km and 3km) were used. The back-
ground substraction was applied to obtain the initial target segmenta-
tion results. Three methods were tested, including the proposed one
(Method-I), the one in [10] (Method-II), and the traditional template-
based method without shape interpolation (Method-III).

3.1. Model learning

We used the same 36 3D CAD models for JVIM training as in [10],
six for each of the six target types (APCs, tanks, pick-ups, cars,
minivans, SUVs), as shown in Fig. 5, where 36 target types are or-
dered according to a unique topology obtained by finding a shortest-
closed-path [10]. For each 3D model, we generate a set of training
data. In this work, 12◦ and 10◦ intervals along the azimuth and ele-
vation angles were used and 150 training viewpoints were obtained
for each target. The learned JVIM can be examined in terms of its ca-
pability of shape interpolation alone the joint manifold. Fig.6 shows
the interpolation result, which shows semantically meaningful inter-
polated shapes, making it possible to handle not only new viewpoints
for a known target but also arbitrary viewpoints for unknown targets.
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Fig. 5. All 36 3D CAD models used for learning.
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Fig. 6. JVIM-based shape interpolation along the view manifold (a)
and along the identity manifold (side-view only) (b).

3.2. Target Tracking

The tracking and recognition efficiency was validated against SEN-
SIAC ATR database, which includes a rich set of meta data for each



frame of every sequence and can be used to calculate the ground
truth data. The performance of our method was evaluated based on
the error in the estimated 3D position and aspect orientation. For
each sequence we chose approximately 1000 frames for testing, and
only the other frame was used for tracking. A total of about 500
frames were used. We computed the error in estimated target posi-
tion along the x (horizon) and z (distance from the camera), as well
as the aspect orientation. We initialized the tracking by the ground
truth data for the first frame, and the overall tracking result is shown
in Fig.7, the result is the average over 8 targets of the same range.
Our result outperforms the one proposed in [10]. We also visual-
ized some detailed tracking results of our proposed method against
eight 2000m sequences in Fig. 8, where we have overlaid the inter-
polated shapes on the target according to the estimated 3D position
and aspect angle as well as the estimated target type.

(a) (b) (c)
Fig. 7. Overall 3D tracking performance of Methods-I, II and III
(from the first to the third bars). (a) Horizontal errors (m). (b) Range
errors (m). (c) Aspect angle errors (rad).
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Fig. 8. Target tracking results showing actual SENSIAC IR frames
overlaid with interpolated shapes produced.

3.3. Target Recognition

Since the target type is estimated frame by frame during tracking, we
define the overall recognition accuracy as the percentage of frames
where the target is correctly classified in terms of the six classes. A
circle like identity manifold is used in this paper so the identity fac-
tor becomes an angular one α ∈ [0, 2π) for each target. Therefore,
tanks, APCs, SUVs, pick-ups, minivans and cars, each will be repre-
sented by an angular section along the identity manifold. The overall
recognition results of the three methods for 24 sequences are shown
in Table 1, where the accuracy of Tanks is averaged over the T72,
ZSU23, and 2S3 target types and that of the APCs is averaged over
those of BTR70, BMP2, and BRDM2 target types. Our recogni-
tion result is significantly better than Method-II and Method-III. We

also present the two best matched training targets on the right side
in Fig. 8 to demonstrate the sub-class target recognition capability,
where the best matches often include the correct sub-class.
Table 1. Overall recognition accuracies (%) of four methods
(Method-I/Method-II/Method-III) against 24 SENSIAC sequences.

Targets Tanks APCs SUV Pick-up
2000m 93/86/81 100/85/80 100/98/95 100/97/95
2500m 90/78/69 92/76/70 94/92/86 100/90/86
3000m 81/70/60 89/72/65 100/86/79 100/82/77

4. CONCLUSION

A new joint view and identity manifold (JVIM) has been proposed
for multi-view and multi-class shape modeling in the same latent
space. The LL-GPLVM algorithm used to learn JVIM where the lo-
cal approximation method is used to speed up the learning process
and shape interpolation. The experiment results on IR data show the
advantage of our method over the recent one in [10] where two man-
ifolds are assumed to be independent. Our future work will focus
on the integration of segmentation into the ATR process, making the
proposed JVIM more useful for real-word applications.
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