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ABSTRACT

Accurate estimation of the number of textured regions that are
present in an image is one of the most difficult aspects of the unsu-
pervised texture segmentation problem. In this paper we introduce
a new approach for estimating the number of regions in an im-
age without a prieri information. Using a novel discrete-discrete
uncertainty measure defined on equivalence classes of signals, we
design a localized separable 2-I) wavelet transform. By clustering
in a feature space defined by the wavelet coefficients computed
over disjoint blocks in the image, we obtain high quality estimates
for the number of textured regions present in an image. Com-
pared to a previously reported algorithm based on the eight-point
Daubechies wavelet, this new approach tends to produce clusters
with improved between-cluster separations.

1. INTRODUCTION

Numerous texture segmentation techniques have been proposed in
the literature, including, e.g., approaches based on wavelet anal-
ysis [1, 2], filter banks [3, 4], deterministic annealing [5], and
stochastic models [6-8]. Determining the number of texture re-
gions present in an image without a priori information is one of the
most challenging problems that must be addressed in developing
an unsupervised texture segmentation algorithm. We recently de-
scribed a technique where the number of regions was determined
by partitioning the image into small disjoint blocks and comput-
ing separable 2-D discrete wavelet transforms on each block {9],
where the well-known Daubechies Da wavelet was used [10]. Fea-
ture vectors were constructed from the wavelet transform coeffi-
cients and statistical clustering was performed in the resulting fea-
ture space to build a full dendrogram. Finally, a validation crite-
rion was applied to select the most likely clustering configuration
and estimate the number regions in the image. This technique can
be combined with a partially supervised approach to estimate the
number of regions and realize a fully unsupervised algorithm.

In this paper we describe a novel uncertainty measure which,
for a signal that is discrete and finitely supported in both time (or
space) :and frequency, quantifies the signal’s joint localization in
the two domains. This new measure is invariant under iranslations
and modulations. It also bears analogies to the well-known con-
tinuous.Heisenberg-Weyl uncertainty principle and admits an intu-
itively satisfying interpretation in terms of statistical variance. By
introducing several reasonable constraints, we obtain a 1-D low-
pass analysis filter with optimal joint time-frequency localization
and-use it to construct quadrature mirror filters for performing a

-separable discrete 2-D wavelet transform. Compared to the pre-
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vious work reported in [9], the new wavelet transform provides
improved localization manifest as increased between-cluster dis-
tances, which enhance the robustness of our overall strategy for
estimating the number of regions that are present. The technique
is demonstrated on juxtapositions of Brodatz-like textures.

2. A JOINTLY LOCALIZED DISCRETE WAVELET

Consider a continuous-time signal £ : R — C, x € €, with
lims 100 z{t) = 0, and also its Fourier transform X (f} =
Jpz(t)e 7™ dt. The simultaneous or joint time-frequency lo-
calization of x(t} is bounded below by the well-know Heisenberg-
Weyl uncertainty principle (HUP) A¢Af > 7, where
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and where the mean time () in (1} is defined by
Jrtlz@®? dt/||z|{32. The mean frequency (f} in (2) is
defined similarly.

We consider the unit L*-norm functions |z(¢)]*/||z]|7> and
|X ()2 /11X1|%2 as densities characterizing, respectively, the dis-
tributions of signal energy in time and in frequency. A; and Aj
then admit intuitively appealing formal interpretations as statistical
variances quantifying how well 2(t) is localized in each domain.
Additional appealing properties of the HUP include the facts that

® it is invariant under the dual operations of translation in time
(complex modulation in frequency) and translation in fre-
quency {complex modulation in time); intuitively, we do
not expect that simple translation should have an effect on
localization, and

® as is well known, the HUP lower bound on jeint localiza-
tion is realized uniquely by a nontrivial and useful family
of functions, viz., the Gabor elementary functions.

Many modern digital image processing applications are con-
cerned exclusively with signals that are discrete and finitely sup-
ported, however. It is an unfortunate fact that the HUP cannot
be applied to such signals. Moreover, the frequency representa-
tion of greatest practical interest is that delivered by the discrete
Fourier transform (DFT}. Thus practical applications depend on
signal representations that are discrete and finitely supported both
in time (or space) and in frequency. There is a critical need to
develop corresponding discrete-discrete uncertainty measures ca-
pable of quantifying joint localization for such representations.
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2.1. Discrete-Discrete Uncertainty Measures

For a finitely supported discrete signal, Denoho and Stark consid-
ered discrete-discrete uncertainty measures based on the counting
measure of the signal’s time and frequency support [11]. DeBrun-
ner. Ozaydin, and Przebinda have also developed entropy based
discrete-discrete measures related to the Hirschmann uncertainty
principle [12]. In addition to being novel and useful, all of these
measures are invariant under translations and modulations. How-
ever, with relation to the HUP, none of them admit intuitive inter-
pretation in terms of statistical variance. Moreover, these measures
are invariant under arbitrary permutations of the signal samples,
whereas the HUP is not. In this section we briefly describe a new
discrete-discrete uncertainty measure that is invariant under trans-
lation and modulation and bears strong analogy to the HUP.

Let z[n] map [0, N — 1] — C and let X[k] be the N-point
DFT of z[n]. Naive discretization of (I} and (2) ytelds
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While the localization measures {3) and (4) may be interpreted
in terms of variance and are therefore appealing, their chief short-
coming is that they are neither translation invariant nor modulation
invariant. The key to overcoming this difficulty is to define related
measures not on discrete signals, but rather on equivalence classes
of discrete signals. We define an equivalence relation  ~ y be-
tween discrete /V-point signals z]n] and y[n] if 3 p,q,7 € Z such
that

yln] = & F @) z[(n — p) mod N]. )
This leads to the important result that z[n] ~ y[n] if and only if
X[k] ~ Y[k]; we define the equivalence class of z[n] by {x] =
{yln] s y ~ =}

Note that the equivalence class [z] contains exactly those sig-
nals y[n] that are obtained from z(n] by applying translations.
modulations, and constant phase shifts - none of which should be
expected to have an effect on signal localization. Also, the mem-
bers of [x] are precisely the inverse DFT’s of the elements of {X].
For any y € {z], we define time (space} and frequency uncertainty
measures according to

Ongrl = minAa, 6)
03,[11 = fﬁgiﬂw; (7

where A, and A, were given in (3) and (4). These measures
admit an interpretation in terms of variance, are translation and
modulation invariant, and are generally affected by arbitrary per-
mutations of the signal samples. The joint localization of any
¥ € [z} =[] is then quantified by the discrete-discrete measure
T = Ta1% )

For finitley supported discrete signals taking values with fi-
nite magnitudes, one can easily establish that fﬁvyy > 0. Several
signals realize the equality in this lower bound, including the Kro-
necker delta, the constant sequence, and pure sinusoids. Therefore,
in using 'y}{;,y to chtain meaningful optimally localized signals, it

is generally necessary to restrict the class of signals under consid-
eration and exclude the signals for which 7,2\;'? = 0 by imposing
additional constraints. With regards to the HUP, it should be noted
that the analogous special cases (Dirac deha, etc.} were ruled out
by the requirements in (1) and (2) that z{¢) be continuous (€ C*}
and that limy—, 400 z(¢) = 0.

2.2. Optimal Wavelet QMF

[n this section we apply the discrete-discrete uncertainty measure
'ﬁv, » 0n a restricted class of signals to design an optimally local-
ized separable 2-D wavelet quadrature mirror filter bank (QMF).
The fundamental problem is to design the impulse response h[n]
of the corresponding 1-D low-pass analysis filter to minimize v 4
subject to the following constraints:

Cl. N even

C2. h[n] real valued
C3. [|Allez =1

C4. |H[o]| = v2
Cs. [H[¥] =0
Co. |H[k]| £ V2

-Fk fork=0,1,...,%
— N It} 173
CT. pik] { E(N-k) fok=%+1,... ,N-1,

where H[k] = | H[k]|le™7#¥] = Y- N-1 phlnle=i Fnk,
Constraints (C1}-(C6) are well-known in the wavelet litera-
ture {10] and imply that

N N hes
HE -1 = V22 ST e, ®)
while constraints (C1) and (C2) imply that

|H[k]| = (HIN — k][ fork=1,2,..., X —1. (9

The spectral phase constraint (C7) was adopted for several rea-
sons. First, it corresponds to the spectral phase of the Haar scaling
function, which is generally well localized in time (space) and is
the only admissible low-pass analysis filter of length /V = 2 under
constraints (C1)-(C6). Second, a possible minimizer for the DTFT-
based joint uncertainty measure {a discrete-continuous measure}
given by Calvez and Vilbé in [13] had linear phase. The form
given in constraint (C7) is then justified by chserving that the DFT
corresponds to uniformly spaced samples of the DTFT. Finally,
linear phase in the low-pass analysis filter assures that the result-
ing wavelet QMF’s can be cascaded to achieve different resolu-
tions without the need for phase compensatien. One unavoidable
consequence of condition (C7) is that the resulting QMF cannot
be orthogonal (unless k[n] is the Haar scaling function); we con-
sider that a low-pass analysis filter k(] satisfying constraint {C7)
sacrifices orthogonality in the interest of obtaining improved joint
localization.

A numerical optimization was implemented to minimize 7%
subject to constraints (C1)-{C7) for filter lengths NV = 2, 4, 6, and
8. The impulse response of the resulting length N = 8 low-pass
QMEF is given by

h[0] = —0.0131588203123 = h[7]
h[l] = —0.0284383229781 =h[6]
R[2] = 0.04364111877368 =h[5)
R[3]= 0.70506280570341 =h[4].
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Fig. 1. The 25 channels of the 2-D, three-level wavelet decompo-
sition.

For comparison, the joint uncertainties 2 , of the optimal fitter,
the 8-point Haar low-pass filter, and the 8-point Daubechies low-
pass filter are 0.4843, 0.5214, and 0.9923, respectively.

The 1-D QMF was completed by designing the impulse re-
sponse of the high-pass analysis filier according to g{n] =
(—1)"h[n]. We implemented a 2-D separable discrete wavelet
transform by sequentially performing 1-D convolution along im-
age rows with the appropriate filter, down sampling by a factor
of two, and subsequently performing 1-D convolution along the
resulting columns and again down sampling by a factor of two.
Edge effects were handled by symmetric reflection.

3. ESTIMATING THE NUMBER OF IMAGE REGIONS

We begin by partitioning the image into equal-sized disjoint
blocks. The block size should be chosen small enough to ensure
that typical segments are covered by several blacks and also to
limit the fraction of blocks that span multiple segments. Con-
comitantly, the blocks must be large enough to yield meaningful
wavelet transform coefficients. In the interest of clarity we hence-
forth assume 256 x 256 grayscale images partitioned into blocks
B; of 32 x 32 pixels each, where 1 < i < M and M = 64. We
index the blocks in row major order so that By and By are the first
and second leftmost blocks on the first block row, whereas Bgq is
the rightmost block on the last block row of the image.

The jointly localized 2-D wavelet transform described in Sec-
tion 2 is applied independently on each black ta obtain a three-
scale multiresolution analysis describing the block’s texture con-
tent. Since it is well established that low frequencies dominate
virtually all real images, we construct the multiresolution analy-
sis to be denser in the lower spatial frequencies. This produces a
25 channel subband decomposition of each block as depicted in
Fig. 1.

3.1. Feature Space

Since multiple disjoint segments sharing a single texture pattern
may generally be present in the image, we combine spatial infor-
mation with the wavelet transform coefficients to construct a fea-
ture vector for each image block B;. For each i € [1, M] and each
k €[1,25], let e; g denote the squared £>-norm of the wavelet co-
efficients in the k*" subband of image block B;. We describe block
B; by canstructing a wavelet domain feature vector e; according
to
ei,*zs}T-
Let 7 = {e; : i € [1, M]}. Thus, F is a 25-D feature space that
contains M vectors, each describing one block from the original
image.

Spatial information s incorporated by augmenting the feature
vectors with two additional coordinates, Let r; and ¢; denote, re-

e = [65‘1 €i2 ...

spectively, the average row coordinate and averglge column coor-
dinate for pixels in block B;. Let € = {[r; &]" : ¢ € [1,M]}.
Then € contains vectors that describe the spatial centroids of the
M image blocks By. The feature space is given by F x C. In
this feature space, image block B; is described by the vector
w; = [ef rici]”.

For each & € [1,27], the collection of the ¥** entries from
all M vectors w; € F x C defines the k** feature. To mini-
mize the possibility that one or a few features with relatively large
numerical values might dominate the segmentation procedure, we
normalize each feature independently. For feature k, the normal-
ization consists of first computing the sample standard deviation
of the feature and then dividing the &*® entry of each vector w; by
this value. We use the notation 7' x C' to denote the normalized
feature space.

3.2. Nearest Neighbor Clustering

The nearest neighbor clustering algorithm (NNC) is used to parti-
tion the normalized feature space 7 x C'. Initially, each of the M
feature vectors is considered to be a cluster. The algorithm iterates
through M — 1 passes. At each pass, we merge the two clusters
that are closest with respect to the distance metric described in (11)
below. Thus, there are M clusters prior to the first pass and only
one cluster remains after pass M — 1, Let

§(wi, w;) = M(ei,e;) + (1 — Nd(lre, e [ry,c5]7), (10)

where 0 < A £ 1 and 4(-,-) is the usual Euclidean metric. The
term A appearing in (10} weighis the relative contributions of the
wavelet coefficient energies in 7' and the spatial position informa-
tion in C'. We typically take A = 0.8,

In a given pass of the NNC algorithm, let L; denote the num-
ber of feature vectors contained in cluster C; and induce an arbi-
trary ordering on these feature vectors so that

Cj = {WJ"1 Wi ... Wj,LJ-}-

We define the distance between clusters C; and Cy by

AC G} = min  6(w; W) (11
qul‘L;l

A(C;, Ck) defines the closeness of clusters C; and Cy by the dis-
tance between their nearest elements with respect to the metric 4.

When it terminates after M — 1 iterations, the NNC algorithm
delivers M cluster configuratians Tas ... [y, where k clusters are
present in configuration T'x. We choose one of these as the final
clustering result by applying a validation criterion to quantify the
“goodness” of each configuration. Typically, for some K consid-
ered to be the maximum number of segments that might be present
in the image, validation is applied only to configurations I'x for
k € [1, K. For the examples in Section 4, we took K = 10.

The validation criterion is applied to configuration Tx. as fol-
lows. Using the distance metric (10}, we first compute the cen-
troid of each of the clusters in the configuration. Then we com-
pute Cl. the average distance between any two distinct centroids.
The average within-cluster distance Wy, is the average distance
from all the feature vectors in 7' x ' to the centroid of their re-
spective clusters. The goodness of I'; is then defined by the ratio
Ry = € /W. Ideally, we would like for the average between
cluster distance to be large and the average within-cluster distance
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Distance between feature vectors from
Wavelet typical blocks in different regions
Optimal | 702 T 989 [ 1359 ] 50.1
Dg 522193719390 12086

Table 1. Typical squared distances between feature vectors carresponding
to blocks from different textures computed using localized wavelet and L.

to be small. Hence our validation criterion selects as the final re-
sult that configuration T’ that maximizes Rx. For our estimate A/
of the number of texture segments that are present in the image,
we use the number of clusters in the final clustering result, which
is given by A" = arg max R.

kE[1,K)

4. EXAMPLES & CONCLUSIONS

Two three-texture images are given in Fig. Z(a) and (b). The ra-
tio Ry computed for these images is graphed as a function of k
in Fig. 2(c) and (d), where it can be seen that the proposed tech-
nique correctly selects the value A = 3 for the number of texture
segmenis that are present in each case.

Consider the image of Fig. 2(a}. For typical blocks B; and
B; located in different textured regions, we calculated the square
of the Euclidean distance between feature vectors e; and e; com-
puted using both the localized wavelet described in Section 2 and
the eight-point Daubechies wavelet as in [9]. Several values of
this squared distance are shown in Table 1. As we asserted in Sec-
tion 1, these results indicate that the new wavelet proposed in this
paper generally results in better separation between feature vec-
tors corresponding to blocks from differing textures, which leads
to increased between-cluster distances that enhance the robustness
of the estimates A delivered by the algorithm. These results are
typical of those that we have cbhtained over a large variety of two-
and three-texture images.

This paper has made several original contributions. First, we
introduced a new uncertainty measure quantifying the joint local-
ization of a finitely supported signal in discrete time and discrete
frequency. This measure is attractive because it bears strong analo-
gies to the continuous Heisenberg-Weyl uncertainty principle, Re-
alizing the need to define the measure on equivalence classes of
signals was the key to achieving both shift invariance and modu-
lation invariance. A new optimally localized wavelet transforem
was designed and we demonstrated its usefulness in estimating the
number of textured regions present in an image. This is important
in that it provides a means of deriving fully unsupervised texture
segmentation algorithms from a variety of partially supervised ap-
proaches that are currently available.
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