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ABSTRACT

For the first time, we explore the application of active
contours in the modulation domain by computing snakes
on image modulations. As we demonstrate in the
examples, such snzkes are able to utilize information
inherent in the dominant image modulations to acquire
and track visually and semantically meaningful structures
within the image. We use nonlinear AM-FM image
representations to capture regions that are homogeneous
in intensity and in texture. A geometric snake approach
utilizing a fuzzy classifier is then applied to the image
modulations. The combination of AM-FM analysis and
the active contour evolution produces an efficacious
image partition. As a preliminary demonstration of this
novel approach, we apply the modulation domain snakes
to the classical texture segmentation problem.

1. INTRODUCTION

In this paper, we propose a segmentation approach

based on active contours. The segmentation is achieved by
evolving a set of geometric active contours on the
classified results of an AM-FM dominant component
analysis. The AM-FM representation facilitates both
intensity-based and texture-based segmentation. A set of
synthetic and real image results demonstrate the potential
of the proposed approach for use in a variety of practical
applications.

2. AM-FM IMAGE MODELS

AM-FM functions are nonstationary quasi-sinusoidal
oscillations that admit simultaneous amplitude and
frequency modulations [1], [2]. A general 2-D AM-FM
function takes the form

t(x, y) = a(x, y)exp[jo(x, )], M

where a(x,y) =0 is the amplitude modulation function, or
AM function of tlx,y) and Vo(x,y) is the frequency
modulation function or FM function of #(x,y). The AM
function a(x,y) captures the local contrast of the complex -
valued image #(x,y), while the FM function Vo(x,y)
captures the local texture orientation and granularity. The
vector-valued FM function may be further decomposed
into an instantaneous horizontal frequency function U(x,y)
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= [1 0] Vo(x,y) and instantaneous vertical frequency
function V(x,y) = [0 1] Vo(x,).

Note that the model (1) is complex-valued, whereas
almost all practical image processing applications are
concerned exclusively with real-valued images. For a real-
valued image, agreement with the complex model (1) is
achieved by adding a unique imaginary part equal to the
multidimensional directional Hilbert transform of the
image [1], [2], [3]. The resulting complex image, which
admits many of the most attractive properties of the well-
known 1-D analytic signal, is known as the analytic
image. Given the analytic image #(x,y), the AM and FM
functions of the real-valued image may be obtained using
the demodulation algorithm [2]

Vo, y)=Re[M}, @
Jt(x, y)
ax, ) = 1(x, ) . 3

Discretization of the demodulation algorithm (2), (3) was
detailed in [2]. This algorithm is based on a quasi-
eigenfuntion approximation (2], [4], which assumes that,
over sufficiently small spatial neighborhoods, the image
#(x,y) is approximately sinusoidal. Such images are termed
locally coherent.

The local coherence assumption is violated for many
images of interest in important practical applications.
Therefore, it is generally necessary to consider that any
given image is not just one, but rather a sum of multiple
image components of the form (1). This gives rise to the
multicomponent AM-FM image model

X
1(x, )= D a (5, »)expljp (x, 1)) @
k=1
One popular strategy for isolating the multiple image
components in (4) is to apply a multiband Gabor
filterbank as described in [5]. Appropriate modifications
to the demodulation algorithm (2), (3) and its discrete
counterpart are discussed in [2] such that the modified
algorithm can be applied directly to the filterbank channel
responses to simultaneously estimate the multiple AM and

FM functions a, (x, y) and V@, (x, y) in (4).

It then becomes possible to extract the dominant
modulations on a pointwise basis. This approach is known
as Dominant Component Analysis, or DCA [2], [5]. At



each pixel, the dominant modulations are the AM and FM
functions that correspond to the component in (4) that
dominates the local image spectrum. They provide a
powerful characterization of the local texture structure and
have been used with great success in solutions to a wide
variety of image processing and computer vision
problems.

(®)

e . o g

S T U VG0 SN

(e

Figure 1: (a) Original "Building" image"; (b) Dominant AM
function; (c) Dominant FM U component; (d) Dominant FM V'
component; (¢) Dominant FM function shown as a needle
diagram.

The natural building image shown in Figure 1(a) is
from the MIT VisTex database. The dominant AM and
FM functions computed from Figure 1(a) are shown as
images in Figures 1(b)-(d). The dominant FM function is
also shown as a needle diagram in Figure 1(e), where the
arrow lengths are proportional to the reciprocal of the
instantaneous frequency magnitude. With this convention,
long arrows correspond to low frequencies which are
typically dominant in the neighborhood of large objects in
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the image. From Figure 1(e), it is clear that the dominant
FM function provides powerful cues for discriminating
between the two faces of the building that appear in the
left and right halves of the image.

Figure 2(a) shows the image "Grass-flowers". This
synthetic image is a juxtaposition of two Brodatz-like
textures. The computed dominant AM function is shown
in Figure 2(b) and is clearly useful for discriminating
between the two textures. In this case, the dominant FM
function (Figures 2(c)-(d)) admits a variety of orientations
and frequency magnitudes in both textured regions.

(©
Figure 2: (a) Original "Grass-flower" image"; (b) Dominant AM
function; (¢) Dominant FM U component; (d) Dominant FM V'
component.

(d)

3. CLASSIFICATION

Given the AM-FM decomposition, we essentially
have three inputs to our segmentation process: the AM
image A, the horizontal component of frequency U and
the vertical component of frequency V. We use these
three images to formulate a multicomponent segmentation
problem. The first step is to combine these three into a
single vector-valued image

§=1{A,U,V}, )
where &x, y) represents the AM and the two FM
components at location (x, y) in the image.

This three-component image can be converted into a
class map via fuzzy c-means classification [6]. Given that
the number of classes N is known a priori, we minimize
the following energy functional:

EEX)=Y 3 ()l (erf  ©

X,y i=]
where = dictates class membership, and X is the set of



cluster centers. The distance of the AM-FM components
at position (x, y) from the center ; of cluster i is given by
d, (x,y)=|§(x, y)_lui‘ .
At each point (x, y), the image has a fuzzy class

membership value wu(x, y) for the i® class that is
recomputed at each iteration of the algorithm:

) =LY e e 3 (s 5) )
x,y j=l
Concomitantly, the cluster centers are iteratively updated
according to

1= (% Y E(x, ) / xZ(ui ()Y

The results of the fuzzy c-means classification do not
provide a segmentation, however. To find closed regions,
we utilize active contours that are often referred to as
snakes.

4. ACTIVE CONTOURS AND CURVE
EVOLUTION

An active contour may be considered as the
intersection of a plane and a conical surface [7], [8]. Let
®(x,y,t) be an evolving 3-D cone, and let O(x,y,f) = 0 be
the zero level set at any instant ¢ Assume that our
evolving curve exists within the zero level set. In this
framework, we achieve a distinct advantage over
parametric snake evolution: we can enact contour splitting
and merging effortlessly. So, the level set model facilitates
topological changes [7]. The zero level set governs the
curve evolution and the corresponding differential
equation is given by [8]

od/ot + FIV®|= @)

where F(x,y) is the speed of the curve evolution in the
direction to the outward normal of the curve at (x,)). In
implementing the level set approach to curve evolution,
design of the speed variable F(x,y) is the key to success.
We formulate a speed term to accommodate multiple
snakes which will be associated with multiple image
segments.

Again, we assume that there are N region classes in
the image (I classes, but possibly more than N segments).
In the AM-FM modeling framework, these classes do not
necessarily represent regions of homogeneous graylevel;
rather, they correspond to homogeneous textures captured
by DCA. Let C; be the /™ active contour for the i class,
where each contour is capable of splitting to cover
multiple segments of the same class. For active contour
evolution, we must establish a cost functional for each
curve and then define a set of curve update functions that
minimizing the cost functionals. The cost functional for
the i™ curve is given by

BLC (006 = [l o [

ac,

®
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Here, s €[0,1] is an index identifying a specific active
contour and & > 0 is a weight that penalizes the length of
the boundary dC; of C,. In the first term, we find bix.y),
which is a function penalizing each pixel inside the
contour that does not belong to the i class. Likewise,
b(x,y) encourages encompassing pixels of the ™ class [9]:

~1if (x,y)ei”
b(x,y)=4 ,,h
+1if (x,y)ei

The energy functionals lead to a set of N decoupled
descent equations [9], [10] that allow curve evolution. For
C;, we have a speed term of

E(X,J’) =_bi(x1y)_a’(,'7
in which

x, = div(Vo, /|[ve,)). ©)
So, with (9), we can evolve the contours on the zero level
set using (7).

class

class

5. RESULTS AND DISCUSSION

We computed the dominant AM and FM components
for the "Building" image (see Figure 1) and the "Grass-
flower" image (see Figure 2). The fuzzy c-means
clustering gives the two-class maps shown in Figure 3 and
Figure 4. The classification results by themselves are
noisy and unusable for segmentation.

Figure 5 and Figure 6 show the initial geometric
snake positions for the "Building” and "Grass-flower"
examples, respectively. After evolution of the geometric
snakes based on the energy minimization technique (8),
we have obtained the final active contour positions as
shown in Figure 7 and Figure 8 respectively. For the
"Building" example we have used stiffness parameter o =
20.0, and for the "Grass-flower" example we have taken o
= 15.0. Finally we get the segmentation results as shown
in Figure 9 and Figure 10 for these two images. We
observe that minor regions and rough boundaries have
been removed, compared to the results shown in Figure 3
and Figure 4.

In the experiments, we assumed N classes of textured
regions. However, the number of textured regions present
in the image results may be estimated without a priori
information by applying the density based clustering
approach described in [11] to a scatter plot of the
computed dominant modulations. The computed dominant
modulations A, U, and V are first normalized by dividing
each one by its respective sample standard deviation. The
image pixels are then plotted in a feature space with axes
corresponding to the normalized modulations. A 3-D
Gaussian filter is applied in this feature space to estimate
the local density of feature vectors about each point.
Gradient ascent is then used to identify local maxima in
the filtered result and group the feature vectors into
clusters. By thresholding on the number of feature vectors
in each cluster, we remove minor clusters and merge them



with the larger clusters via the nearest neighbor rule,
where the squared-error or similar validation metrics can
be used as a stopping criterion. This approach was
unsupervised

demonstrated successfully for texture

segmentation in [12].

Figure 4. FCM result on the
"Grass-flower" image.

igure 3. FCM result on
"Building" image.
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Figure 5. Initial geometric Figure 6. Initial geometric

snake position for the snake position for the
"Building" image. "Grass-flower"image.
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Figure 7. Result of
geometric snake evolution
on the "Building"image.

Figure 8. Result of
geometric snake evolution
on the "Grass-flower" image.

Figure 9. Segmentatiori
result for "Building".

Figure 10. Segmentation result
for "Grass-flower".

Following table compares percentages of error (i.e.,
pixels actually belonging to i class classified as /* class)
of the classification in FCM to the proposed method.

Classification error FCM Snake Evolution
Building Image 3.53 % 2.13 %
Grass-flower Image | 5.21 % 2.96 %

Table 1. Misclassification in FCM and proposed method.
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The segmentation results from the preliminary study
of applying snakes in the modulation domain show

promise for texture analysis problems. Potential
applications include object-based image coding,
segmentation of remotely sensed imagery and

segmentation for content-based image retrieval.
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