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ABSTRACT '

In this paper we study the joint time-frequency localization of
cascade connections of maximally decimated wavelet filter banks.
An M-channel bank is created by cascading a series of p;-channel
maximally decimated filter banks where M = p p3---py is the
prime factorization of M, Joint localization of the overail M-
channel filter bank is quantified in terms of the geometric mean of
certain discrete domain uncertainty measures of the analysis filters,
As examples, we obtain interesting quantilative time-frequency lo-
calization measures for several two, four, and eight channel filter-
banks.

L. INTRODUCTION

In [1]), D. Gabor defined a measure of uncertainty for finite en-
ergy continuous signal as the product of the normalized signal’s
standard deviation in time and the standard deviation of the con-
tinuous Fourier transform of the normalized signal. This measure
quantified the joint localization of a continuous signal in time and
frequency. The lower bound of this was shown to be one-half
when frequency is measured in units of Hertz. This relation is bet-

ter known as the Heisenberg-Weyl Uncertainty Principle (HWUFP) -

and the application of this principle in quantum mechanics is pub-
lished in [2,3]. For continuous, finite energy signals, the lower
uncertainty bound is uniquely attained by the family of modulated
and translated Gaussian functions, commonly referred to as the
Gabor functions.

In the finite discrete domain, it has consequently been often
assumed that sampled and truncated Gabor functions also possess
good localization properties [4]. Such sampled, truncated Gabor
functions have been used to design filter banks for applications in
which good conjoint localization is desired [5]. Although filter
banks of this type can be designed to have the perfect reconstruc-
tion property, the optimality of their joint localization in the class
of finite length discrete signals is questionable. It is necessary to
define a measure of uncertainty for finite length discrete filters ana-
loguous to HWUP. In addition, the measure should be restricted to
filters possessing a property which relates to continuous functions.
The uncertainty measure and application to wavelets are described
in [6]. As an extension of our work we propose a quantification of
joint localization, i.e. uncertainty, for filter banks.

In this paper we will construct #-channel maximally deci-
mated parallel filter banks (MDPFB’s) by cascading prime channel
MDPFB’s. Since odd channel MDPFB's which admit perfect re-
construction are not known except in the trivial case of all-pass
analysis and synthesis filters that are pure delays [7), we restrict
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our attention to0 M-channel filter banks where M is a power of
two. We obtain several interesting results using well known two-
channel orthogonal wavelet quadrature mirror filter banks and a
biorthogonal wavelet filter bank in which the scaling function ex-
hibits excellent conjoint localization.

2, FILTER BANKS

Many applications in coding and signal and image process-
ing requirc an M-channel MDPFB, An excellent description
of such an M-channel quadrature mirror MDPFB as shown in
Fig. | can be in found in [7]. This filter bank requires M
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Fig. 1. M-channel maximally decimated filter bank.

analysis filters Ho(z), Hy(2),...,Hy—1(z) and M synthesis filters
Folz), Fi{2),-. ., Fy—i(z). The output of each analysis filter is dec-
imated by a factor of M, i.e., output samples with time indices that
are not integer multiples of M are discarded. Conversely, the input
signals to the synthesis filters are interpolated (upsampled) by a
factor of M: M — | zeros are inserted between each sample prior
to filtering. Provided the filter bank has the perfect reconstruction
property, the sum of the outputs of the synthesis filters is a delayed
version of the original filter bank input signal.

"It M = p1p2--- py is the prime factorization of M, then the fil-
terbank in Fig I can be implemented by successively cascading p;-
channel MDFB s via the Noble identities [8]. Fig. 2 illustrates an
analysis g-channel filter bank cascaded with an analysis p-channel
filter bank. Similarly, Fig. 3 illustrates a synthesis p-channel filter
bank cascaded with a synthesis g-channe! filter bank. The Noble
identities state that a) decimating a signal by a factor of M and sub-
sequently convolving with filter G(z) is equivalent to convolving
with G(z*) and subsequently decimating the output by a factor of
M and &) that convolving a signal with G{z) and subsequently in-
terpolating by a factor of M is equivalent to interpelating by factor
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Fig. 2. An analysis g-channel maximally decimated filter bank
successively cascaded to an analysis p-channel maximally deci-
mated filter bank.

of M and subsequently convolving with G(z"). These identities
are illustrated pictorially in Fig. 4.

Thus the cascaded analysis filter bank can be expressed as an
M-channet parallel analysis filter bank as shown in Fig. I with

Hy(z) = Gppla) Gy ole Pt)

Hy (Z) = GFI,U(Z) . "ka,l (ZP] PRt )
Hy(z) = Gpolg) - Gpale” ™)
Hpy_y (7-) = Gp;.p—l (Z) s Gp;,m—l (ZP1"-p1_1 )

The cascaded synthesis filter bank can be expressed as a M-
channel parallel synthesis filter bank as described by:

Foe) = Gp ol ™)+ Gp, of2)

Fi(@) = Gpa(d ) Gpola)

Bfe) = Gpal@ ™)y la)
Fui(d) = Gpp 1@}y, 0(2).

When M is a power of two, the M-channel MDPFB can be
implemented by successively cascading two-channel wavelet filter
banks. A wavelet filter bank can be considered as a two-channel
MDFB in which there are two analysis filters and two synthesis fil-
iers. The two analysis (and the two synthesis) filters are half-band
filters which are quadrature mirrors of each other in the orthogonal
case.

1t is well-known that FIR digitat filters which are admissible
as orthogonal or biorthogenal wavelets correspond to a continuous

Fig. 3. A synthesis g-channel maximally decirnated filter bank
successively cascaded to a synthesis p-channel maximally deci-
mated filter bank.

Fig. 4. The Noble identities.

finitely supported function where the set of dilations and trans-
lations constitute a basis for Lz(IR) [9, 10]. In addition, infinite-
fold convolution of *regular” FIR digital wavelets with themselves
converges to a compactly supported continuous function for which
a suitable set of dilations and translations also form a basis for
(%) [11,12],

3. DEFINING DISCRETE UNCERTAINTY

In our previous paper [6] we describe an uncertainty measure for
finite impulse response (FIR) digital filters. This measure guan-
tifies the filter’s localization in both finite discrete time and fi-
nite discrete frequency domains and is invariant under translations
and modulations. The measure strongly resembles the well-known
Heisenberg-Weyl Uncertainty Principle for finite energy continu-
ous signals as defined by Gabor in [1]. For a unit £3([0,N — 1])-
norm, length N filter g[n], the uncertainty is defined by

% = %%y %l M

where
O} [g) = Min {07‘..:- ‘ fe [g]} , 2
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N-1 o
o2e= Y, (n—p?| )P, @
#=0
N-1
=Y nlfin, )
n=0
0% =min{odg | fe ig}} : (5)
Opg= ): (n-v)? |F[K], ()
Flk = ): flre~iF, 6]
v lN}i n|FIRI, ®)
N k=0
= {fln] | £ln] ~ gln)}, (9)
and f[n] ~ g[n} if and only if
fln) = T4+ £{(n — p) mod N] (10)

for some p,q,r € Z. It is easy 1o show that the relation “~™ is -

an equivalence relation and that the equivalence class [g] is well-
defined. In addition the following theorem holds:

Theorem 1 f[n] ~ g[n] <= F[k] ~ G[k].

The lower bound for the uncertainty in equation (1) when ap-

plied to the set of length-N orthegonal or biorthogonal wavelets
where N is even was shown in [6] to be non-trivial for N > 2, i.e.,

N? +8)

for N not divisible by 4 an
for ¥ divisible by 4.
The inequality in equation (11) i strict, and thus non-attainable.
We use the geometric mean of the uncertainties (1} of the anal-
ysis filters in an M-channel MDPFB (o define an aggregate mea-
sure of joint localization for the overall MDPFB structure. Let
hiln] = “h%“h;[n] be the £,([0,N — 1]) normalized real valued anal-
ysis filter of an M-channel MDPFB and denote the set of analysis
filters by {H) = {h; |0 <i <M —1 }. We quantify the localization
of the overall M-channel MDPFB by

Ty ({H}) = dﬁ 7 ot 5! 3 (12)

where

€fo.§

ai,[ﬁ,, = mi“}{;i(k—vl)le;[kVI]P

N
and v, = 3 T2 o kIHG[(k— 1) mod ¥

i

4. RESULTS

This secticn presents some results for four and eight channel
MDPFB’s created by cascading a two channel MDPFEB at two and
three levels, resp. Let G o(z) and Gz,(z) be the z-transforms of
the analysis filters of a two channel perfect reconstruction MDPFB
and let 52,0(2) and Gy 1(z) be the two synthesis filters. Then the
eight analysis filters of an eight channel MDPFB are

Holz) = Gap(2)G20(z))Ga0(2*)
Hi(z) = Gyo(d}Gro(z)G21(z")
H(z) = Gap(2)Ga()Gaolh)
Hi(z) = Gao(G21(Z)Ga1(2Y
Hi(z) = G (2)G2e()Gap(eh)
Hs(z) = Goi{2)Gao(2")Gaa(z)
Hy(z) = G21{2)Ga1{e")Goplc)
Hi(z) = Goi(2)Ge1{e)Gaa(d).
The eight synthesis filters are
Fo(z) = Gag(h)Ga0(2)Gapl2)
Fi(z) = Gu(')G20(2")Gapl2)
B = Gio()G()020(2)
A = G(621(2)Ga0l(2)
Rlz) = Gyple")G20(2)G21 (2)
Fi(z) = Ga1(2)Gap(z)G21(2)
Fs(z) = Gap(e")G2i(7)Gn, (2)
R = Gay(HGri()Gai().

Table 1 lists the time samples of the length 8 scaling functions
corresponding {0 two well-known orthogonal wavelet quadra-
ture mirror filter banks. The maximally flat scaling function of
Daubechies will be referred to as D;g(z). The Daubechies least
asymmetric scaling function will be denoted by 5; g{z). It is well-
known {13] that the other filters which make up a perfect recon-
struction two channel quadrature mirror filter bank satisfy

D) = Dzl ")
Drg{z) = Dapfz™")
Difz) = Dao(—2)

and likewise for $21{z), 520(z), and $21(z).

Let Trg(z) be the scaling function corresponding to the
biorthogonal, linear phase FIR digital analysis filter that was
shown in [6] to minimize the uncertainty measure (1). A tech-
nique by M, Vetterli and D, Le Gall, which can be found in [11],
provided a method to determine 7> 1{z), Tro(z), and Tz 1{z) so that
perfect reconstruction is possible. This requires solving

P ——Tg(z) = 1oz ooy oo+ o)z
+ (oo + & oo +(31.2)21_3
+ (oo 40 0+ ep)z !
+  logos oo+ oz ozt
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n | Dao(2) | S20(z) | Bolz) | Bale) |
0 | -0.0106 | -0.0758 | -0.0132 | -0.0161
1 0.0329 | -0.0296 | -0.0284 | -0.0348
2 | 0.0308 0.4976 0.0436 | -0.0189
3 | -0.1870 | 0.8037 | 0.7031 | 0.7058
4 | -0.0280 | 0.2979 0.7051 -0.7058
51 06309 | -0.0992 [ 0.0436 0.0189
6 | 0.7148 | -0.0126 | -0.0284 | 0.0348
71 02304 0.0322 | -0.0132 | 00161

Table 1. Length 8 analysis filters. fZ,l (2) is T2,1 {z} normalized.

[ M ] Tw(D)) [ Tw{(S)) [ Tu (T) ]

2 09117 0.6529 0.5050
4 93774 6.9180 7.2165
8 | 58.9643 | 43.7670 [ 73.2164

Table 2. Uncertainty measures Ipr({H)) for M = 2,4 and 8.

for &y, 0, and &3. T3 1 (z) may then be determined by

-2

Tz = l+(132_l+(012(13+0:1(127(x|)z

(—ay o + 0 00 + @)z

+
+ (oo — a0 — o)z !
+

(—op0z — oo+ otz —osr 0~z

Letting To0(z) = 1T,1(—27") and Bo(z) = tho(-27"),
where 5 = (1 — o3}(1 — af){1 — &), we amive at & two channel
MDPFB with the perfect reconstruction property.

When M =2, let (D) = {D3,,(z} | m=1,2}, and likewise
for (S) and (T). When M =4, let (D) = {D;,(2)D2 (%) |
m.n= 1,2}, and likewise for (S} and {T}). When M = 8, let
(D) = (D2 (2D al2?)Da (") | mym k= 1,2}, and likewise
for (S) and (T). Table 2 lists the uncertainty measure Tyr{ (H))
for (H) = {D),{S),(T) and for M = 2,4,8. When M = 2, we
have I ({T)) < T2 ({8}) < I'2((D}}. With M = 4, we obtain
g ({8)) < Iy ((TY) < T'g ({D)). With M = 8, we obtain the result
Fs ((8)) < I3 ((D)) < Lo ({T)).

5. CONCLUSION

In this paper we defined an uncertainty measure for M-channei
MDPFB’s. This measure quantifies the joint localization of a fil-
ter bank implemented as a cascade connection of FIR filters. The
proposed measure is based on a previous formulation of uncer-
tainty for FIR digital filters that is analogous to the well-known
uncertainty measure of D. Gabor. Our proposed measure is the
geometric mean of the uncertainties of the analysis filters.

Since the two channel MDPFB has recently been well studied
and since nontrivial odd channel filter banks which have the pertect
reconstruction property are not known, we restricted our attention
to constructing filter banks where the number of channels is a pos-
itive integer power of two. In particular, the M-channe! filter bank
where M = 2" for some positive integer # was implemented by
cascading a two channel filter bank at » levels.

In the results section, we reported the uncertainty of several
two, four, and eight channel MDPFB’s, The filter banks were
constructed using two well-know Daubechies’ wavelet quadrature
mirror filter banks. They were compared with a lesser known two
channel biorthogonal perfect reconstruction filter bank in which
the scaling function minimizes the joint uncertainty measure (1).
The results are indeed unexpected. The two channel filter bank
which attained smallest uncentainty for M = 2 and when cascaded
at two levels to M = 4 channels or at three levels to M = 8 channels
does not exhibit the minimum uncertainty.
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