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ABSTRACT

The quantification of signal localization simultaneously in time
and in frequency is fundamental to a variety of signal process-
ing applications where time-frequency analysis is to be performed
on nonstationary signals. In this paper, we develop novel joint lo-
calization measures defined on equivalence classes of finitely sup-
ported discrete-time signals. These measures bear strong analogies
to the well-known continuous-time Heisenberg-Weyl inequality.
In particular, they are invariant to signal translations and modula-
tions and admit an intuitive interpretation in terms of the temporal
and spectral variance of the signal energy. The new measures are
used to design optimal wavelet quadrature mirror filter banks that
exhibit improved localization relative to the Haar and Daubechies
analysis filters.

1. INTRODUCTION

Quantifying the localization of a signal simultaneously in time and
in frequency is of great interest in a growing array of nonstation-
ary signal processing applications. For example, jointly localized
signals can be used to perform time frequency analysis upon or to
efficiently represent a nonstationary signal. Joint time-frequency
localization has traditionally been characterized using the well-
known Heisenberg-Weyl inequality. Let z : R — C be con-
tinuous with lim; 4+ o0 £(t) = 0 and denote the Fourier transform
by X(f) = fge(tle ™™  dt. With (&) = [y tlo(t)|? dt/||z][2
the mean time and (f) = fg fIX(F))* df/||X||} the mean fre-
quency, the Heisenberg-Weyl tuncertainty relation (HUP) states
that
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quantifies the localization or duration of z(t) in time and
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quantifies the localization or bandwidth of X(f) in frequency.
Equality in (1) is achieved uniquely by the Gabor elementary func-
tions ¢ (t) = e=0%(t=t0)? o2mfot+4 \where a,to, fo, € R[1].
Due to their good joint localization properties, these functions have
been widely used in signal and image processing applications re-
quiring :time-frequency analysis [2]. Moreover, their popularity
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extends even into the discrete domain where sampled Gaussians
have been widely applied.

In this paper, we study the problem of quantifying time and
frequency localization for finitely supported discrete-time sig-
nals with respect to the discrete Fourier transform (DFT). Since
these signals are discrete in both time and frequency, we refer to
the associated measures as discrete-discrete uncertainty measures.
Whereas the uncertainty measures (2) and (3) are invariant un-
der both translation [z(Z) — z(t — to)] and the dual operation
of modulation [z(t) ~+ e/2™fotz(t)], their obvious discrete ana-
logues are not. This has the unfortunate consequence that shifting
a finitely supported discrete signal in time or in frequency gen-
erally changes its localization in both domains. We introduce a
new discrete-discrete measure that bears desirable analogies to the
HUP (1), but also achieves both translation and modulation invari-
ance, The new measure is used to design an optimally localized
wavelet quadrature mirror filterbank (QMF) in Section 4.

2. DISCRETE-DISCRETE MEASURES

The measures (1)-(3) are intuitively appealing because they admit
an interpretation of localization in terms of variance. Specifically,
we consider |z(t)|?/||z||%2 and | X (£)[2/||X {22 respectively as
probability density functions (pdf’s) characterizing the distribution
of signal energy in time and in frequency. The measures A; and
Ay then admit formal interpretations as statistical variance with
respect to these pdf’s. In this section, we review several discrete-
discrete uncertainty measures that have been proposed previously

in the literature. Let z[n] be a finite length sequence mapping
[0, N — 1] to C with DFT X[k] = SV} z[n]le " ¥"*, 0 <
k < N. Time translation of z[n] is defined by the circular shift
operation y[n] = z[(n — no)n], where (n — ng)n is given by
(n — no) mod N € [0, N — 1]. Similarly, modulation of z[n] is

defined by y[n] = e/ ¥ ¥o"z[n] ¢+ X[(k — ko)n].

2.1. The Measure of Donoho and Stark

The following theorem gives a novel discrete-discrete uncertainty
measure proposed by Donoho and Stark {3] that quantifies the joint
localization of z[n] in terms of counting measure on the support
of z[n] and of X[k].

Theorem 1 Let N; be the cardinal number of the set
{z|n] | z[n] # 0} and N. be the cardinal number of the set
{X[K] | X[k] # 0}. Then

NN, 2 N “
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and
N: +N, >2VN. )]

The Kronecker delta attains equality in (4) but not in (5). If N =
p? is a perfect square, then the picket fence sequence

HI2n] = { N

attains the lower bounds in both (4) and (5).

Intuitive interpretation of (4) and (5) is straightforward: the
more points at which z[n] (X [k]) is nonzero, the less localized is
the sequence in time (frequency). These measures are invariant un-
der both translation and modulation. Compared to the continuous
domain measures (1)-(3), what has been lost in (4) and (5) is the
analogy with statistical variance. While these measures lead to an
elegant theory, IV; quantifies time localization without regard for
the specific values of z[n] or their distribution in time. With N =
8, for example, the sequences z1[n] = d[n} + dfn — 1] + 8[n — 2},
z2[n] = é[n] + 8[n — 2] + &[n — 3], and z3[n] = [n] + 26[n —
2] + 8[n — 4] all have the same time localization.

n=ip, 0<i<p,
otherwise, ©)

2.2. Discrete Hirschman Uncertainty

DeBrunner, Ozaydin, and Przebinda [4] defined discrete-discrete
uncertainty measures in terms of the entropy of z[n} and of X[k,
where it was assumed without loss of generality that [{z|[,z = 1.
The time localization of z[n] was quantified by

N-1
H(z) == |z[n]]’ In |z[n]|?, )
n=0
while the frequency localization was quantified by
N-1 2 2
- _ 5 XEE O IXTE]
HOX)==3 Sy-i=g ®

For 0 < A < 1, the joint A-uncertainty of the sequence was then
defined by

Hx(z) = AH(z) + (1 — \)H(X). ©

In the special case A = 1/2, (9) is known as Hirschman uncer-
tainty and the following theorem is obtained.

Theorem 2 Let A = L. Then
Hy () > %m N. (10)

For N = p?, the sequences of any discrete cosine transform
(DCT) basis, d{n] or %I 11f[n], minimize H and attain equality
in (10), where II15[n] was defined in (6). In fact forany 0 < A <
1, the A-uncertainty H) of the picket fence sequence 1117 [n] is
; In N. This leads to a rich emerging theory that casts doubt on the
idea that sampled Gabor functions possess optimal time-frequency
localization if the sampling is done “fast enough” [5).

The measures (7)-(10) are invariant under both translation and
modulation. They may be interpreted with regards to entropy as
follows: a perfectly flat sequence z[n] has maximum entropy and
minimum temporal localization, whereas the sequence z[n] =
&8[n] has minimal entropy and maximum time localization. In view
of the fact that the logarithm transforms multiplication into addi-
tion, there is an intuitive connection between (10) and (1). How-
ever, like (4) and (5), (7)-(10) fail to consider temporal relation-
ships between the values z[k]; arbitrary permutations of the signal
have no effect on the time localization.

2.3. Balanced Uncertainty

Monro, et. al., computed both time dispersion A#? and bandwidth
Aw? for alength N sequence z[n] according to [6, 7]

x? N-2 N-1
Aw® = 3+ z:[m]:c[n] (11)
n=0 m=n+1
N-1
At? = Z(n - 7)%2%n], (12)
n=0

where 7 = ( "_0 ! na[n})/ (Eﬂ_o z[n]). Let za[n] be the low-
pass analysis filter in an orthogonal wavelet QMF structure and let
At? and Aw? be the time dispersion and bandwidth of z4[n}. The
joint uncertainty of the associated QMF is quantified by {6]

M(k) = Aw? + K2AL2, 13)

where k is a parameter that balances the relative importance of
time and frequency resolution. A similar measure

M(k2, k3, ka) = Aw? + k2 A2 + ksAw? + kaAt2 (14)
was defined for biorthogonal wavelet QMF’s, where subscripts a
and s denote the analysis and synthesis filters [7]. Discrete wavelet
transform image compression algorithms were designed by opti-
mizing (13) and (14) and the reconstructed images were judged
favorably in psychovisual experiments.

The measures (11) and (12) are difficult to interpret mtultwely
and are neither translation nor modulation invariant (in fact, for
a low-pass analysis filter z[n], (12) fails to converge under the
important modulation (—1)™ which defines the corresponding hi-
pass filter). Inequalities analogous to (1), (4), (5), and (10) have
not been published for the measures (13) and (14).

3. DEFINING UNCERTAINTY ON EQUIVALENCE
CLASSES

We begin by summarizing the desirable properties of the HUP (1)-
(3): A) it is invariant to translations and modulations: intuitively,
simple shifts in time and frequency should not affect localization;
B) it admits an intuitively satisfying interpretation in terms of vari-
ance in time and frequency; C) the inequality (1) provides a mean-
ingful lower bound on joint localization that is uniquely realized
by a nontrivial family of functions.

For a sequence z[n] mapping [0, N — 1] — C, naive dis-
cretization of (2) produces

1 N-1
o= 3 (n— p)’lefn]?, (15)

llzllfz =

where = (SV=) nlz{n][?)/||o]2%, while (3) yields
1 & 2 2
= — k-v)'| X[k 16

where v = (XN k| X[n]|?)/|[X||%. Although the localization
measures (15) and (16) admit an interpretation in terms of statis-
tical variance, they are not invariant under translations and modu-
lations. This difficulty can be overcome by defining the measures
not on sequences, but rather on equivalence classes of sequences.
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Define a relation between two length N sequences f[n] and
g[n]by f ~ gif3 p,q,r € Z such that

gln] = & ¥ @+ f[(n —p)y]. an

It is trivial to show that the relation ~ is reflexive, symmetric, and
transitive and therefore defines an equivalence relation on the set of
length N sequences. Therefore, for the sequence f[n], we define
the equivalence class [f] = {g[nl]lg ~ f}.

Theorem 3 Let f[n] and g[n] be two length N sequences. Then
f~gifandonlyif F ~ G.

The preceding theorem, proof of which is omitted for brevity, sug-
gests that, for a sequence z([n], localization in time and frequency
may be quantified by the measures

[62] = 11[1;]11%, (18)
[05] = rflﬁ[]naf,. 19)

Note that the measures (18) and (19) are both translation and mod-
ulation invariant. However, they also satisfy the somewhat disap-
pointing inequality [03] [62] > 0. A few of the sequences which
achieve equality are the Kronecker delta, the constant sequence,
and the sequence obtained by cos [wn]. In the next section, we il-
lustrate the useful application of related localization measures over
a more restricted class of real-valued signals.

4. EXAMPLE

In this section we apply discrete-discrete uncertainty measures de-
fined on equivalence classes to design an optimally localized low-
pass analysis filter f[n] for a wavelet QMF. Let f : [0, N —
1] — R. In addition, we require that N be even, ||f|l,2 = 1,
S V1 fIn] = v/2, and F[N/2] = 0, all of which are well-known
conditions [8]. Note that these conditions exclude the Kronecker
delta and the constant sequence from consideration. We have that

N-1 1 N-1
Yo fl=1=5 Y IFKP (20)
n=0 k=0

and also, since |F[k}| = |F[-kmod N]|Vk € [0,N — 1],
that (16) may be simplified to

oz

K\ F (K] Q@1

2
g, =

2
N &

=]

A numerical optimization was implemented to determine a
low-pass scaling function f[n] minimizing the product [o7] [crw]
For the cases N = 2 and N = 4, the Haar scaling function is the
only admissible choice for f[n]. Note that this is the only known
low-pass FIR analysis filter which possesses linear phase, exact
reconstruction, and orthogonality. Optimizing the phase of F'[k]
over a wide variety of fixed magnitude responses, we observed that
the minimum uncertainty filter with respect to the measures (18)
and (19) always had a linear phase given by

fork=0,1,..., %,

Ik
sa[k]‘={__,,k fork_% LN, (22)

| Uncertainty
Filter Optimal | Optimal Length | Length N’ Dau-
Length | Lenght N N — 2Filter, Haar bech
N- Filter Padded Filter ies
2 0.00000 0.0000 0.0000 0.00000
4 0.12500 - 0.1250 0.1250 0.15180
6 0.27590 0.2917 0.2917 0.39580
8 0.48430 0.4921 0.5214 0.99230

Table 1. Uncertainty measure for even filter lengths 2 < N < 8. The
second column gives the uncertainty [02] [02] for the optimal filter de-
signed by the technique described in Section 4. The third column gives the
uncertainty of the initial filter for each length N, which was obtained by
zero padding the optimal filter found for length N — 2. For comparison, the
last two columns give uncertainty measures for the Haar and Daubechies
low-pass analysis filters of corresponding length.

which coincides with the spectral phase of the Haar scaling func-
tion. Note that linear phase assures that the wavelet quadrature
mirror filter bank can be cascaded to achieve different resolutlons
without the need for phase compensation.

For each N > 4, the search was initialized by zero padding
the optimal solution from the length N — 2 case. In the interest
of computational tractability, the form (22) was assumed for the
phase so that

Fk] = Mlk]e™7*! (23)

which implies a symmetric impulse response f[n]. The numer-
ical procedure then used a variational approach to determine the
optimal magnitude response.

The optimal length IV = 6 filter may be interpreted as a gener-
alization of the Haar function that relaxes the conditions of perfect
reconstruction and orthogonality to achieve improved joint local-
ization. The low-pass analysis filter coefficients are given by

f[0] = —0.0308556756313 =  f[5]
f{11 = 0.03226648753395 = f[4
fl2] = 0.70569596928391 = f[3]

For this filter, the joint uncertainty is
[02] [¢2] = 0.27598499451912.

The experimental results are summarized in Table 1, which,
for each even filter length IV, gives the uncertainty of the optimal
filter, the uncertainty of the zero padded optimal length N — 2
filter (used to initialize the numerical optimization), and the uncer-
tainties of the corresponding length Haar and Daubechies low-pass
analysis filters. As can be seen from the table, the optimal filters
designed by the procedure described in this section exhibit signifi-
cantly better joint localization than the corresponding length Haar
and Daubechies filters for lengths 4 < N < 8.

5. CONCLUSION

The Heisenberg-Weyl inequality is appealing because it defines for
continuous-time signals uncertainty measures that are translation
and modulation invariant and also admit an intuitive interpretation
in terms of statistical variance of the signal energy in time and in
frequency. In this paper we developed novel analogous measures
for finitely supported discrete-time signals. The key to obtaining
these discrete-discrete measures was to define them on equivalence
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classes of signals rather than on the signals themselves. The new
measures were used to design optimally localized wavelet quadra-
ture mirror filter banks where the low-pass analysis filters exhib-
ited significantly improved joint localization as compared to the
low-pass Haar and Daubechies analysis filters. Our future research
will focus on determining meaningful uncertainty bounds for these
measures over restricted signal classes and on the development of
improved numerical techniques for obtaining the optimal filters.
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