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Abstract. In this brief paper, we extend the notion of multicomponent signal into multiple dimensions. A
definition for multidimensional instantaneous bandwidth is presented and used to develop criteria for determining
the multicomponent nature of a signal. We demonstrate application of the criteria by testing the validity of a
multicomponent interpretation for a complicated nonstationary texture image.
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1. Introduction

Signal descriptions that are inherently capable of capturing nonstationary structure are of
great practical interest in an increasing variety of signal processing applications. For many
signals, representation in terms of instantaneously varying quantities such as amplitude
and frequency are fundamental as well as intuitively appealing. For example, a pure FM
chirp is most naturally described as a constant-modulus exponential with linearly increasing
frequency. More generally, a nonstationary signalt : R→ Cmay be modeled by the joint
amplitude-frequency modulatedAM-FM function

t (x) = a(x)ejϕ(x), (1)

wherea(x) andϕ(x) are unique;a(x) is referred to as theinstantaneous amplitude, or am-
plitude modulation functionof t (x), whereasϕ′(x) is known as theinstantaneous frequency,
or frequency modulation function. A real signals : R → R may be analyzed against the
model (1) using the unique complex extensiont (x) = s(x) + jH[s(x)], known as the
analytic signal[6,11], whereH indicates the Hilbert transform. With the analytic signal,
the amplitude and frequency of a real-valued signal are unambiguously defined in a way
that establishes attractive fundamental relationships between the instantaneous frequency
and Fourier spectrum of the signal [1,3,5,6,10,11].

The model (1) does not deliver an intuitively satisfying interpretation forall signals,
however. Consider the signalt (x) = a1ejω1x + a2ejω2x [3,10]. Intuitively, t (x) is the
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sum of two components each having constant amplitude and frequency. The interpretation
delivered by (1) is

a(x) =
√

a2
1 + a2

2 + 2a1a2 cos[(w2− w1)x] (2)

and

ϕ′(x) = 1
2(w2+ w1)+ 1

2(w2− w1)
a2

2 − a2
1

a2(x)
, (3)

both of which oscillate for all nontrivial choices of the parameters. Indeed, certain signals
areinherently multipartitein character and are better interpreted as asumof components
that each take the form (1).

Cohen and Lee have developed the notion ofmulticomponent signalin 1D [2–5]. They
introduced theinstantaneous bandwidth, which for t (x) in (1) is defined byB(x) =
|a′(x)/a(x)|. Within the context of certain quadratic time-frequency distributions,B2(x)
admits a rigorous interpretation as the conditional instantaneous spread of frequency about
ϕ′(x). Cohen and Lee consider a signal to be multicomponent if there exists a decom-
position into components of the form (1) such that the instantaneous bandwidth of each
component is smaller than the instantaneous bandwidth of the composite signal and such
that the frequency separation between components is large compared to their instantaneous
bandwidths. In this brief paper, we discuss the extension of this notion of multicomponent
signal into multiple dimensions.

2. Multicomponent Multidimensional Signals

For a multidimensional signalt : Rn → C modeled by the multicomponent AM-FM
function

t (x) =
K∑

i=1

ai (x)exp[jϕi (x)] =
K∑

i=1

ti (x), (4)

we define the instantaneous bandwidth of componentti (x) by [7,8]

Bi (x) =
∣∣∣∣∣∇ai (x)

ai (x)

∣∣∣∣∣ =
∣∣∣∣∣Im

[∇ti (x)
j ti (x)

]∣∣∣∣∣. (5)

The magnitudes of the individual components of the vector∇ai (x)/ai (x) are analogous
to the 1D instantaneous bandwidth, and describe the local spread of frequencies in each
dimension. Bi (x) in (5) quantifies the spread simultaneously inall dimensions. The
instantaneous bandwidth for the composite signalt (x) is obtained by takingK = 1 in (4)
and applying (5). A real-valued signal may be analyzed against the model (4) by applying
the directional multidimensional Hilbert transform described in [9].

We consider thatt (x) is multicomponent on a regionS ⊂ Rn if a decomposition of
the form (4) exists overS with K > 1 such that two conditions are satisfied. First,
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Figure 1. Reptiletexture image.

the instantaneous bandwidth of each component must be appreciably smaller than the
instantaneous bandwidth oft (x). Second, the frequency separation between any pair of
components in the multicomponent interpretation must be large compared to the component
instantaneous bandwidths on a pointwise basis. Thus, for eachi and eachj in [1, K ] we
require that

Bi (x), Bj (x)¿
∣∣∣∣∇ϕi (x)− ∇ϕj (x)

∣∣∣∣. (6)

Note that, as in 1D, this notion of multicomponent signal implies thatt (x) may generally
be multicomponent in certain regions and not in others.

3. Example

The nonstationary, multipartite texture imageReptileis shown in Fig. 1. A six-component
interpretation of the image is given in Fig. 2, where components one through six appear
in parts (a)–(f) respectively. These components were extracted using the multicomponent
AM-FM demodulation techniques described in [8]. In Fig. 2, each component has been
independently scaled for display. Note that all of the components exhibit significant non-
stationary structure manifest as spatially varying amplitude and frequency modulations.

The amplitude of the composite image computed using the multidimensional Hilbert
transform is given in Fig. 3(a). Fig. 3(b) gives the instantaneous bandwidth for the composite
image, which has a mean value of approximately 0.35 and lies between zero and 24.0. For
comparison, the amplitude and instantaneous bandwidth of component two are shown in
Fig. 4(a) and (b), respectively. The instantaneous bandwidth of component two lies between
zero and 15× 10−3. Its mean value is approximately 5× 10−3.

A histogram ofB(x) for the compositeReptileimage appears in Fig. 5(a), while instan-
taneous bandwidth histograms for components one through six are given in Fig. 5(b)–(g).
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Figure 2.Six-component interpretation ofReptileimage. (a) Component one. (b) Component two. (c) Component
three. (d) Component four. (e) Component five. (f) Component six.
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Figure 3. Amplitude and instantaneous bandwidth of compositeReptileimage. (a) Computed amplitude modu-
lation functiona(x). (b) Instantaneous bandwidthB(x).

Figure 4. Amplitude and instantaneous bandwidth of component two. (a) Computed amplitude modulation
functiona2(x). (b) Instantaneous bandwidthB2(x).
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Figure 5. Histograms of the instantaneous bandwidthB(x) for (a) composite image. (b) Component one.
(c) Component two. (d) Component three. (e) Component four. (f) Component five. (g) Component six.

Each histogram in Fig. 5(a)–(g) depicts the same number of data points. The areas under
the various curves appear to be different because different bin sizes were used for each
histogram in order to accurately reflect the spread of values assumed by the instantaneous
bandwidth. Note that, on average, the decomposition of this image into components has
reduced the instantaneous bandwidth by more than two orders of magnitude.

The ratio ofB2(x) to the quantity on the right side of (6) is histogrammed in Fig. 6 for
i = 2 and j = 1,3, . . . ,6. Thus, small abscissa values in these histograms indicate points
where the frequency separation between components is large compared to the instantaneous
bandwidth of component two. Collectively, the histograms in Fig. 5 and Fig. 6 strongly
indicate that theReptile image is indeed multicomponent and that the multicomponent
interpretation depicted in Fig. 2 is a valid one.
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Figure 6. Histograms of (a) the ratio of frequency separation between components one and two to instantaneous
bandwidth of component two. (b) the ratio of frequency separation between components two and three to instan-
taneous bandwidth of component two. (c) the ratio of frequency separation between components two and four to
instantaneous bandwidth of component two. (d) the ratio of frequency separation between components two and
five to instantaneous bandwidth of component two. (e) the ratio of frequency separation between components two
and six to instantaneous bandwidth of component two.

4. Discussion

The two conditions discussed in Section 2 imply that a multidimensional signal is mul-
ticomponent if it can be decomposed into a sum of components that are well delineated
in instantaneous frequency and that are tightly concentrated on a local basis in the time-
frequency or space/spatial frequency hyperplanes. Decompositions that satisfy these con-
ditions generally tend to be physically meaningful and intuitively satisfying. This notion of
multicomponent signal does not, however, suggest a procedure for decomposing a multipar-
tite multidimensional signal into components. The computation of valid multicomponent
interpretations for complicated natural images and video is extremely difficult in general
and remains an active area of research.
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