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(ABSTRACT) 

Detection of point targets and blurred point targets in midwave infrared imagery is 

difficult because few assumptions can be made concerning the characteristics of the 

background. In this thesis, real time spatial prefiltering algorithms that facilitate the 

detection of such targets in an airborne threat warning system are investigated. The 

objective of prefiltering is to pass target signals unattenuated while rejecting background 

and noise. The use of unsharp masking with median filter masking operators is 

recommended. Experiments involving simulated imagery are described, and the 

performance of median filter unsharp masking is found to be superior to that of the 

Laplacian filter, the linear point detection filter, and unsharp masking with a mean filter 

mask. 

A primary difficulty in implementing real time median filters is the design of a 

mechanism for extracting local order statistics from the input. By performing a 

space-time transformation on a standard selection network, a practical sorting 

architecture for this purpose is developed. A complete hardware median filter unsharp 

masking design with a throughput of 25.6 million bits per second is presented and 

recommended for use in the airborne threat warning system. 
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1 Introduction 

An automatic target recognition system can be defined as a machine that is capable of 

forming images, and detecting and classifying tactical targets within those images. Any 

such system must include some type of sensor subsystem which converts scene 

information to a representation suitable for machine processing. For tactical target 

detection, scene information is generally collected in the form of midwave infrared 

radiation. A snapshot of the scene is represented by a matrix, the elements of which are 

called pixels. The term pixel is an abbreviation for picture element, where a pixel 

represents the smallest uniquely definable scene element. The value of each pixel is an 

integer representing the amount of infrared flux incident on a particular area of the 

sensor at a particular time. The entire matrix is referred to as a frame. In this thesis, 

the subscript notation x1,1 will generally be employed to reference the pixel located in the 

)'" column of the ;m row of the frame X. In some cases where the subscript notation 

becomes too difficult to read, the alternate notation x(i,j) will be used. 

Tactical targets are unfriendly military vehicles, manned or unmanned. The automatic 

target recognition problem is concerned with the specification of machine algorithms to 
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analyze frames with the objective of correctly identifying tactical targets. The steps by 

which this is accomplished are preprocessing, detection, segmentation, feature 

extraction, classification, tracking, and prioritization [2,4]. In preprocessing, target 

detectability is improved by enhancing the contrast in frames: target information is 

amplified or passed, while background and noise information is attenuated or rejected. 

Detection is the process of identifying those parts of a frame that may contain tactical 

targets [2,4]. After detection, candidate targets are removed from their surrounding 

background in a process known as image segmentation [4]. 

Taken together, preprocessing, detection, and segmentation constitute low level 

processing in which scene information is represented by pixel magnitudes organized as 

frames. This representation does not always facilitate target classification, and hence the 

process of feature extraction is used to map the segmented targets into a more abstract 

space where representation schemes based upon texture or features may be utilized [2]. 

Whatever representation is used in higher level processing, classification is the process 

by which potential targets are identified as specific tactical objects. Determining and 

monitoring the position of classified targets with relation to the position of the sensor 

is referred to as tracking, and based on tracking information targets can be prioritized. 

Once targets are prioritized, specific actions in response to their presence can be 

initiated. 
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1.1 Problem Impetus 

Sophisticated automatic target recognition systems with excellent performance have 

been reported. Bhanu, Politopoulos, and Parvin developed a system for recognizing 

tanks, trucks, and other military vehicles [3 ]. In a data base of infrared scenes for which 

truth information was known, the system detected 85 percent of all targets and correctly 

classified 80 percent of the detected targets. Running on a Vax 11/780, the system 

required approximately two minutes of execution time per frame. With the advent of 

VLSI and VHSIC technologies, as well as recent advances in infrared sensor technology, 

much research is being devoted to the development of real time automatic target 

recognition systems [2,3,4,9]. 

One such system under development at the United States Naval Research Laboratory 

is an airborne threat warning system for high performance aircraft [9]. The system 

incorporates a wide-field-of-view staring mode infrared focal plane array sensor. The 

frame size is 128 by 128 pixels, and the data rate is 120 frames per second. With the 

sensor mounted on an aircraft, the system recognizes potentially threatening air-to-air 

and ground-to-air missiles. Henceforth, these missiles will be referred to simply as 

targets. In the scenes observed by the airborne threat warning system, and other similar 

systems as well, the best known instantaneous characterization of targets is as bright 

point sources [5,10,11,12]. For investigative purposes, targets are usually simulated by 

introducing extra impulsive energy into a given background scene by increasing the 

amplitudes of pixels at the location of the simulated target. The amount by which the 

amplitudes are increased is generally a function of the scene standard deviation. 
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This thesis investigates real time preprocessing for the airborne threat warning system, 

which will hereafter be referred to as the A TWS. The preprocessing must ultimately 

operate on frames which are representations of scenes observed by the system. Section 

1.2 provides a discussion of the elements that make up the scenes and the image 

formation process by which scene information is assimilated into frames. 

1.2 Image Elements and Image Fo111mation 

A frame of infrared imagery comprises target information, background information, and 

noise. Imaging infrared focal plane array sensors such as the one used in the A TWS are 

charge integrating devices. Typically, an array of mercury cadmium telluride detectors 

is used to convert incident infrared radiation into electrical charge. The charge is 

transferred to an underlying array of silicon storage devices. Charge packets collected 

in the storage devices are read out sequentially, amplified, and converted to digital data 

[9]. Among other factors, focal plane array nonlinearity, nonuniformity, and crosstalk 

will result in the corruption of scene information by noise regardless of the scene under 

observation [4,5,9,10). The characterization of this noise is currently an active research 

area [9,10). In the ATWS sensor subsystem, signal processing has been implemented to 

partially correct for sensor nonlinearity and nonunif ormity. The effects of focal plane 

array noise have been modelled in the computer generated imagery used for the 

experiments of Chapter Three. The imagery was kindly provided by Dr. M.P. Satyshur 

of the Naval Research Laboratory. 
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Background refers to the information in a scene that does not arise from a target 

Takken, et al., have suggested that target detection is particularly difficult when highly 

structured background is present [7]. Background and noise features that impede target 

detection are generally referred to as clutter. No unified quantitative definition of clutter 

exists. Bhanu has defined it as something that looks like a target but is not a target [4]. 

Hetzler, et al., prefer a broader definition of clutter which embodies all attributes of the 

background that make the detection of targets more difficult [ 6]. Their study of clutter 

in infrared backgrounds suggests that the level of clutter in a scene is strongly related to 

the global standard deviation of pixel values within the scene. An important assumption 

made by Takken, et al., and adopted in this thesis is that the spatial extent of the clutter 

in a scene is strictly greater than the spatial extent of the targets [7]. This assumption 

involves no loss of generality, since targets are characterized as point sources. The 

consideration of clutter in the ATWS is extremely important; clutter, rather than image 

formation noise, has historically been the performance limiting factor in point target 

detection systems [ 1,2]. 

Optical blur is a factor in the image formation process which arises as a consequence 

of the ATWS sensor's fill factor. The fill factor of a focal plane array sensor is the 

percentage of the array surface area that is covered by active detectors: an array with 

unity fill factor has no dead spots. All practical imaging array sensors have fill factors 

less than unity. Inactive bands on the array typically have widths as great as 20 percent 

of the detector-to-detector spacing [11]. Were the fill factor unity, the location of a 

target image on the focal plane would not be an issue. Since the fill factor is less than 

one, a danger exists that targets may be lost in the inactive regions between detectors. 

To ensure that targets are not lost, the scene must be blurred before imaging. In the 

A TWS sensor subsystem, the size of the optical blur is the same as the detector spacing 
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[10,11]. Due to the optical blur, a target centered on a given detector may give rise to 

excess input energy on adjacent detectors as well. Pauli, Longmire, and Takk.en [11] 

have studied the implications of optical blur for automatic target detection and 

concluded that no single optimal matched linear filter can be defined for the detection 

of blurred point targets. In this thesis, the optical blurring of targets has been modelled 

by equally distributing target energy between one, two, or four adjacent pixels. The 

geometries for the three blurred target models are shown in Figure 1, where each square 

represents one pixel. The background data used for the experiments of Chapter Three 

also account for optical blur effects. 

To recapitulate the image formation process, frames in the A TWS are quantized 

representations of the scenes observed by the sensor subsystem. Each frame is an array 

of integer valued pixels. To a reasonable approximation, the magnitude of each pixel is 

the sum of a noise term and a term that is linearly related to the amount of infrared flux 

incident on the corresponding detector in the sensor array. The incident flux arises from 

background and target information in the scene, which has been perturbed by the optical 

blur. Highly structured background information and noise may constitute clutter, 

making the extraction of target information difficult. The objective of preprocessing is 

to improve target detectability by discriminating against background, noise, and clutter 

while passing target information. 
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(a) (b) (c) 

Figure 1. Geometry of target models: (a) !-pixel target; (b) 2-pixel target smear; (c) 4-pixel 
target smear. 
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1.3 Preprocessing Algoritluns 

A major difficulty in developing preprocessing algorithms, or prefilters, for automatic 

target recognition systems is that few assumptions can be made concerning the character 

of background, clutter, and targets in infrared imagery. Takken, et al., have described 

the background characteristics as variable and unknown, and commented that except in 

the context of specific images, the spatial frequency spectrum of the clutter is also 

unknown [7]. Hetzler, et al., tried unsuccessfully to formulate quantitative models for 

backgrounds and clutter [6]. Bhanu has noted a general absence of both analytical scene 

models and experimental databases [4]. He also noted an absence of target models, and 

pointed out that recorded signatures are often not repeatable. 

Otazo and Parenti have noted that infrared backgrounds are neither stationary nor 

Gaussian, but have reported some success modelling scenes with first order Markov 

processes [13]. In their work, matched linear filters were designed for known target 

signatures. These filters were compared to statistically matched filters designed with a 

priori knowledge of the clutter and target characteristics. They found the two methods 

to be nearly equal for improving target detectability. Tao, et al., designed nonrecursive 

Weiner filters and Kalman filters to maximize the target to clutter ratio for extended 

targets (extended targets are not modelled as point sources and may span several pixels) 

[12]. They found that the filters performed well against white noise, but were not robust 

in the presence of varying background clutter. They concluded that the extensive 

calculations required to estimate background characteristics in real time were not 

justified. 
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Due to the unknown and varying characteristics of background and clutter, the general 

absence of verified target models, and target signature perturbations introduced by 

optical blur, standard signal detection theory cannot generally be applied to the design 

of optimum prefilters for point target detection [7,11,13]. Several ad hoc methods, as 

well as linear filters matched for point targets and blurred point targets have been 

investigated, however. These algorithms are generally categorized as spatial or temporal. 

Spatial filters map a single input frame into a single output frame by convolving a filter 

window with the input frame. Given a filter window H, the general formula for an 

n x n spatial filter (n odd) with input frame X and output frame Y is: 

n n 

y(p,q) = L Lh(i,j) x(p + i - (n + 1)/2, q + j- (n + 1)/2) (1.3.1) 
l=l }=I 

For a 3 x 3 filter, 

(1.3.2) 

Various modifications to Equation 1.3.1 have been proposed for use at the edges of 

frames. For example, ambiguity arises if the equation is applied for the calculation of 

Y1.1· 

The Laplacian and point detection filters have been used extensively for background and 

clutter suppression because they respond particularly well to point targets [5,7,8,11). 

The mask for the Laplacian filter is: 
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The point detection filter mask is: 

[ 
1 -2 1 ] ! -2 4 -2 
1 -2 1 

l [-1 -1 -1 ] 
- -1 8 -1 8 -1 -1 -1 

( 1.3.3) 

(1.3.4) 

From a practical standpoint, spatial filters are attractive because they do not require the 

storage of an entire frame. Also, the repetitive and regular nature of linear spatial 

filtering algorithms makes them particularly well suited to implementation in parallel 

pipelined hardware. 

While spatial filtering algorithms operate on single frames, temporal algorithms make 

use of the fact that successive frames represent successive snapshots of the scene. If the 

sensor were not moving, then a simple subtraction of two successive frames would 

remove all stationary background information. Fast moving targets and random noise 

would be passed by the differencing operation. The output frame of a temporal 

differencing filter is a linear combination of the past and present input frames. 

Employing the euclidean inner product notation used by Bergen and Mazaika [8], the 

equation for a first order temporal differencing filter is: 

. < [ l] [ x(t, i,JJ J > 
y(t, l,J) = -1 I x(t-l, i,J) (1.3.5) 

= x(t, i,j) -x(t-l, i,J) 

One realization of second order temporal differencing is: 
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< [-.5] [ x(t, i,JJ J > y(t, i,j) = I , x(t-l, ~·!J 
-.5 x(t-2, l,J) 

( 1.3.6) 

Applications such as the A TWS require that the sensor be in motion. This results in 

some clutter leaking, or being passed through, a temporal differencing filter. Clutter 

leakage becomes more pronounced as the order of the temporal differencing filter is 

increased. Excellent clutter reduction has been achieved through the use of low order 

temporal differencing filters in conjunction with high frame rate sensors. In a study by 

Fraedrich, low order temporal differencing was found to reduce clutter standard 

deviation by factors of 30 to 70 [I]. Also using low order temporal differencing, Pauli, 

Longmire, and Takken reported a forty-fold clutter reduction [11]. In general, the 

primary drawback of temporal differencing is that a number of frames equal to the order 

of the algorithm must be stored by the filter. In real time implementations, this would 

necessitate the use of large, ultra high speed random access memories and creative 

addressing schemes. 

Spatial filters having clutter reduction capabilities equal to those of temporal filters have 

not been reported. In fact, Pauli, Longmire, and Takken found that when spatial and 

temporal algorithms were used together, the performance of the temporal algorithms 

was frequently degraded. Only in rare cases did the addition of a spatial algorithm 

improve the performance of a temporal filter [11]. One should bear in mind that the 

dramatic results cited in the preceding paragraph pertain to the clutter reduction 

capabilities of temporal differencing algorithms. The ability of these algorithms to 

discriminate against clutter while passing targets was not addressed. 
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1.4 Overview 

In this thesis, nonlinear spatial algorithms for prefiltering in the A TWS are developed 

and investigated. The algorithms are collectively called median filter unsharp masking. 

They are based on order statistics, and involve subtraction of running local medians 

from the input frames. Median filter unsharp masking was suggested to the author by 

researchers at the U.S. Naval Research Laboratory. During the period of September 

1987 to June 1988, the author devoted considerable effort to a theoretical investigation 

of median filter unsharp masking. Arguments supporting its use for prefiltering in the 

A TWS were formulated. The investigation is summarized in Chapter Two, where the 

author also recommends three specific median filter unsharp masking algorithm variants 

for use in the A TWS. During the period of December 1987 to July 1988, the author 

conducted computer simulation experiments to quantitatively evaluate median filter 

unsharp masking for automatic target detection prefiltering applications. Several other 

algorithms were also experimentally investigated. Results from two experiments are 

presented in Chapter Three. Design considerations for the implementation of real time 

median filters are discussed in Chapter Four. While working at the United States Naval 

Research Laboratory during summer 1987, the author designed a complete real time 

prefilter based on median filter unsharp masking. Under the supervision of the author 

and Dr. J.C. McKeeman, a Virginia Tech team validated the design during the fall of 

1987. The design is presented in Chapter Five. 

The following list summarizes the specific contributions of this thesis: 

I Introduction 12 



I. Three median filter unsharp masking prefilter algorithms are evaluated on their 

ability to enhance detectability of point targets and blurred point targets in typical 

ATWS imagery. For the scenes that are investigated, two of these algorithms are 

shown superior to three commonly used linear algorithms. 

2. A new algorithm evaluation criterion called the beta factor is proposed in Section 

3.1. For certain applications, the beta factor may be more informative than 

previously proposed algorithm evaluation criteria. 

3. A compensated median filter masking operator is introduced. For the scenes that 

are investigated, the compensation is shown to offer no tangible advantage over an 

uncompensated median filter. 

4. A special hardware sorting architecture for real time median filtering is presented in 

Section 4.4. 

5. Through the presentation of a complete design, median filter unsharp masking is 

demonstrated to be a practical algorithm for use in real time automatic target 

detection systems. 

Chapter Six is devoted to conclusions and recommendations for further research. 
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2 Median Filter Unsharp Masking 

In Section 1.2 the image formation process for the A TWS was discussed. The resulting 

image model can be summarized as: 

frame = targets + background + noise (2.0. l) 

The objective of prefiltering is to facilitate detection of the targets. In this respect, both 

the background and noise constitute clutter. The image model can be simplified to: 

frame = targets + clutter (2.0.2) 

To improve target detectability, we seek a prefiltering algorithm that will attenuate the 

clutter while passing the target information. We define the ideal algorithm as an 

imaginary filter whose output is zero for all non-target pixels. The ideal algorithm also 

passes all targets without attenuation. Unfortunately, the ideal algorithm cannot be 

realized because it requires a priori knowledge of the target locations and amplitudes. 

In this chapter, we will attempt to define a realizable algorithm which closely 

approximates the ideal algorithm. 
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In Section 1.1 we noted that targets in the A TWS are characterized as bright point 

sources. They are impulsive in nature, and consequently an input frame will contain 

relatively high spatial frequencies in the neighborhood of a target. The separation of an 

input signal into a high frequency noise component and a relatively lower frequency 

information bearing component is a common problem in signal processing. For 

example, a coded voice signal might be corrupted by high frequency noise during 

transmission through a channel. Attenuation of noise has been the object of extensive 

investigation, and a class of filters known as smoothers has been established to remove 

high frequency noise from input signals. 

Since targets are characterized by high spatial frequencies, it would seem that an 

appropriate smoother could remove targets from a frame. If the targets were smoothed 

away and the smoothed frame were subsequently subtracted from the original input 

frame, then the clutter would be removed without attenuating the targets. We would 

then have an approximation to the ideal algorithm. Such subtraction of a modified, or 

masked version of an image from the original is the basis for an image enhancement 

technique known as unsharp masking. In Section 2.1 the use of unsharp masking to 

approximate the ideal algorithm is proposed, and incorporation of a nonlinear masking 

operator known as the median filter is suggested. The properties of median filters are 

discussed in Section 2.2. In Section 2.3, three specific median filter unsharp masking 

algorithms are defined to approximate the ideal algorithm. In some of these discussions, 

frames are treated as data sequences in a theoretical sense. Hence, the term sample is 

used interchangeably with the term pixel. 
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2.1 Pre.filtering by Unsliarp Masking 

The general equation for unsharp masking is: 

where 

Y = G(l - a)[X - H(X)] + aX 

X = the original input image 
H(.) =the masking operator 
G(.) =an arbitrary gain function 

a= a mixing parameter, 0 ~a~ 1 
Y = the enhanced output image 

(2.1.1) 

An unsharp masking system block diagram is shown in Figure 2. Choice of the 

smoothing operator H(.) is extremely important in the application of unsharp masking 

to any particular problem. Lo has used unsharp masking to compress the global 

dynamic range of images while increasing local area contrast by using a 7 x 7 linear 

low-pass filter for H(.) [14]. His objective was to improve the quality of the images on 

a CRT display having limited luminance sensitivity. In his study, 21 observers evaluated 

filtered images on the basis of psychophysical criteria. Of the six algorithms evaluated, 

unsharp masking was ranked third best. 

If a smoother H(.) can be found to remove targets from a frame without significantly 

distorting the clutter, then an approximation to the ideal algorithm can be realized by 

setting G(.) = 1 and a= 0 in Equation 2.1.1. A block diagram of the resulting system is 

shown in Figure 3. The ATWS prefilter problem is then reduced to that of finding a 

suitable smoother that is capable of removing targets without distorting the clutter. 
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Figure 2. Unsharp masking block diagram 
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Figure 3. Block diagram of unsharp masking for the A TIVS prcfilter 
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In most smoothing applications, the information bearing signal components are 

spectrally disjoint from the noise, and hence a linear filtering operation can be used to 

separate them [29]. However, as was noted in Section 1.3, no assumptions can be made 

regarding the spectral content of the clutter in the A TWS. In particular, sharp edges in 

the background may contain the same spatial frequencies that are characteristic of 

targets. As was pointed out by Garibotto and Lambarelli in their study of noise removal 

in biomedical images, linear filtering is often useless for the removal of noise (or targets 

in the ATWS) when the signal components are not spectrally disjoint [19]. They noted 

that the application of linear smoothers resulted in distortion of sharp discontinuities in 

the data (or clutter in the A TWS). For an unsharp masking algorithm to be effective 

as a prefilter for the A TWS, the smoother must preserve sharp, discontinuous 

background features. For example, if a corner were significantly distorted by the 

smoother, then it might appear as a target upon subtraction of the masked image from 

the original. 

Beaton and Tukey faced a similar problem in fitting polynomials to band-spectroscopic 

data [18]. They searched for a smoother whose output would not be affected by the 

presence of localized maxima and minima in the input. The likeness of this problem to 

the A TWS prefilter is striking. Targets represent local maxima, and we seek a smoother 

that will pass all clutter features undistorted. For effective subtraction in the unsharp 

masking algorithm, the ability of the smoother output to locally track clutter features 

must not be affected by the presence of a target in the input. Beaton and Tukey 

concluded that the robustness offered by nonlinear smoothing operators was required for 

their application. In particular, they recommended the use of a median filter. Gray, 

Mccaughey, and Hunt have used unsharp masking with a median filter mask for edge 

enhancement and noise cleaning of digital images [15]. They compared the performance 
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of a linear mean filter mask to that of the median filter mask and found that the median 

filter was superior when the noise contained many sharp edges. Garibotto and 

Lambarelli described the median filter as a smoother that is capable of removing isolated 

features by replacing them with the local background [ 19]. Since that is precisely the 

capability we desire in a masking operator for the ATWS prefilter, use of a median filter 

masking operator is strongly recommended by the author. Henceforth, we will refer to 

Equation 2.1.1 with G(.) = 1 and a = 0 as the recommended algorithm when a median 

filter is used for H(.). In Section 2.2, the the properties of median filters are discussed. 

2.2 Median Filtering 

Median filters were first described by Tukey, who initially used them for smoothing 

economic time series [16,17,18]. He modelled data sequences according to: 

data = fit + residuals (2.2.1) 

He referred to the fit as the smooth, and the residuals as the rough. With respect to the 

A TWS prefilter, the clutter represents the smooth, while the targets represent the rough. 

Tukey observed the ability of median filters to remove the rough without distorting 

sharp features in the smooth, and noted their ability to do this without precise statistical 

models of either data component. Median filters are members of a general class of 

nonlinear systems called order statistic filters. The output of these filters is at each point 

a linear combination of the local order statistics of the input. Bovik, Huang, and 

Munson have studied order statistic filters and proven that the optimum order statistic 

filter tends toward a median filter as the signal components to be removed become more 
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impulsive in nature [47]. They also commented that the nonlinearity inherent in the 

ranking of order statistics causes the analysis and design of such filters to be extremely 

difficult. 

Since their introduction, median filters have been applied primarily to speech processing 

and image processing. Steele and Goodman used them to smooth out transmission 

errors in linear PCM [23]. Jayant used them to correct flipped bits in PCM digital 

speech signals [21]. He found that the median filter was superior to a linear mean filter, 

provided that the random variables used to model error occurrences were independent. 

This result seems reasonable since, in a neighborhood of three objects two of which are 

erroneous, the likelihood is high that the median of the three will itself be in error. 

J ayant specifically noted the ability of the median filter to correct transmission errors 

without smearing the speech waveform. 

In a widely cited study, Rabiner, Sambur, and Schmidt investigated the removal oflocal 

rough from speech signals (20]. They found that the median filter performed well, and 

that linear smoothers were inadequate because of their tendency to smear the 

waveforms. Additionally, the combination of a median filter followed by a linear 

smoother was found to be even more effective than the median filter alone. Bovik, 

Huang, and Munson have contended that the excellent performance of the combination 

smoother was a consequence of the specific applications investigated by Rabiner, 

Sambur, and Schmidt, and that there is no evidence to support the use of such a 

configuration in general [47]. 

Pratt was among the first to apply two-dimensional median filters to image processing 

(24,25]. Proceeding qualitatively, he used them to clean both impulsive and 

salt-and-pepper noise from digital images while preserving edges. Salt-and-pepper refers 
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to noise which contains both positive and negative impulses. In another early study, 

Frieden used median filters to remove spurious overshoot and undershoot from digital 

images after the application of an edge enhancement operator [26]. Median filtering will 

be precisely defined in the next section. 

2.2.1 Definition of Median Filtering 

Among an odd number of samples, the median is the one with the middle value. For 

an even number of samples the median is generally defined as the average of the two 

samples that are middle in value [43]. Suppose that we have a set of n samples 

X = {x, 3 1 ~ i ~ n} . The sequence R = {r, 3 1 ~ i ~ n} of order statistics· of X is 

defined by 

R = sort[X] (2.2.2) 

where sort[.] is an operator whose output samples are the input samples arranged in 

ascending order by value. For example, in Equation 2.2.2 , r 1 is the smallest element of 

X, while r,. is the largest element of X. If n is odd, then the median v of X is defined by: 

where 

If n is even, then: 
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v= 

where 

n k=-2 

To simplify this notation, we define the median operator MF[.] and write: 

v = MF[X] 

(2.2.4) 

(2.2.5) 

An important point is that insofar as the operator M F[X] is concerned, the 

dimensionality of Xis irrelevant: the sequence R is always one-dimensional. Median 

filtering involves the computation of running medians on the input. In response to the 

input sequence X = {x,} (of arbitrary length), the output Y = {y;} of a one-dimensional 

median filter of length N (N odd) is defined as: 

(2.2.6) 

where 

W = {x(i- (N - 1)/2), ... , x(i + (N - 1)/2)} 

W in Equation 2.2.6 is called the window of the filter, and one can imagine the window 

sliding along the input sequence as successive samples of Y are computed. The extension 

of Equation 2.2.6 to even values of N is straightforward. In this case, however, the 

window cannot be symmetrically centered about x, during the computation of Y;· The 

definition of a two-dimensional median filter simply involves the specification of a 

two-dimensional window. For example, Y;,1 might be computed from a 3 x 3 square 

2 Median Filter Unsharp Masking 23 



window with x;,1 at its center. Normally, reference to an M x M median filter implies a 

square two-dimensional window of size M x M, where M is understood to be odd. 

When finite sequences are considered, a problem arises m usmg Equation 2.2.6 to 

compute the filter outputs near the ends of a one-dimensional sequence or at the edges 

ot a two-dimensional sequence. A complete neighborhood of input samples does not 

exist at these points, and hence samples are missing from W. Several conventions have 

been proposed for dealing with the problem by appending extra samples to the input 

sequence. In this thesis, the output at such points will be considered indeterminate and 

meaningless. 

Henceforth, when no danger of ambiguity exists, we shall relax the definition of the 

symbol MF[.] by allowing a sequence to appear on the left of the equals mark, and write 

Y = MF[X] to mean that the sequence Y results from the application of a median filter 

to the sequence X. The sequences X and Y will always be assumed to have identical 

dimensions. The notationy, = MF[{xu x2, x3}], in which a single sample appears on the 

left of the equals mark, will still be used to mean that y, is the median value of the 

samples {x1' x2, x3}. As an example of median filtering, consider the finite length step 

sequence X = {6, 6, 6, 6, 12, 12, 12, 12}. If we apply a one-dimensional median filter of 

length three to X and use the symbol 0 to represent an indeterminate value, then the 

output sequence A= MF[X] = {0, 6, 6, 6, 12, 12, 12, 0} . This filter is often referred to 

as a three-point median filter, and the sequence X is invariant to it. The term invariant 

means that the features of X have been preserved undistorted in A. If a three-point 

linear mean filter is applied to X, then the step discontinuity is transformed into a ramp 

in the resulting sequence B = {0, 6, 6, 8, 10, 12, 12, 0}. The true utility of median filtering 

is demonstrated if we introduce an impul~ve perturbation into X and consider the input 
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sequence X = {6, 6, 6, 6, 12, 102, 12, 12}. Upon application of the three-point median 

filter we note that A= MF[XJ =A: the output of the median filter is not perturbed by 

the presence of x6 = I 02. The output of the three-point linear mean filter 

B = {0, 6, 6, 8, 40, 42, 42, 0} contains extensive perturbations, however. To conclude this 

example, we observe that the difference sequence X - A= {0, 0, 0, 0, 0, 90, 0, 0}. The 

significance of this result for the recommended algorithm is obvious, and it is also clear 

that the linear mean filter mask did not perform as well for this input. Because the 

median filter rejected the impulsive signal component while passing the step sequence, 

only the impulse remained in the difference sequence. 

Because median filters are highly nonlinear, the determination of which output effects 

arise from which input components is extremely difficult. Due to the superposition 

principle, such analysis is relatively simple for linear systems. In the preceding example, 

the median filter seemed to preserve the monotonic features of the input, whereas the 

linear mean filter smeared them. The median filter also seemed to be capable of rejecting 

a "spiky" signal component better than the linear mean filter. In an effort to attach 

some quantitative meaning to the term "spiky,H we consider the application of a median 

filter to a sequence of independent identically distributed random variables {x;} with 

distributionj(x) and density F(x) = f'(x) . The median of these variables is that value v 

for which F(v) = \12. The ability to eliminate low probability high power impulses from 

the input is a well known property of median filters. Furthermore, such impulses cannot 

be removed by linear systems [48]. The presence of these impulses is characteristic of 

inputs whose probability density functions exhibit large tails. The usefulness of the 

median filter in smoothing applications is primarily due to the insensitivity of the median 

to the tails of heavily-tailed density functions [22,45]. Further discussion of the 

statistical properties of median filters will be deferred until Section 2.2.3. 
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Median filters with even sized windows have not been treated in the open literature. The 

analysis of such filters is considerably more difficult than that of median filters with odd 

sized windows for two reasons. First, a connected window containing an even number 

of samples cannot be symmetric. Secondly, the averaging operation inherent in 

computing the median of an even number of samples introduces pseudo-linear effects in 

the filtered output. Unless specifically stated otherwise, we consider only median filters 

with odd sized windows in the remainder of this chapter. 

A virtually limitless variety of window sizes and shapes could theoretically be used for 

two-dimensional median filtering. For the remainder of this thesis, we consider only 

symmetric square windows. Since we are assuming that the number of samples in the 

window is odd, this implies that the two-dimensional windows will be of odd length in 

both the horizontal and vertical directions. The deterministic properties of median filters 

will be examined in Section 2.2.2. 

2.2.2 Deterministic Properties 

As was stated in Section 2.2.1, the set R of local order statistics is one-dimensional for 

any median filter, irrespective of the dimension of the filter. Consequently, one- and 

two-dimensional median filters can be treated together in many respects. In the 

following discussions, we let the symbol N denote the size of the filter window in samples 

and assume that N is odd. For a one-dimensional filter, N is the length of the window, 

while for a two-dimensional filter with an M x M window, N = MJ. A unit impulse 

frame is shown in Figure 4(a). Ignoring ambiguities at the edges of the frame, the 

impulse response of any two-dimensional median filter with N ~ 3 is an all zero frame. 
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The impulse response of all one-dimensional median filters with N ~ 3 is also zero. 

Figure 4(b) shows a unit edge frame. This input is invariant to the M x M median filter, 

as the output is also a unit edge frame. Likewise, the unit step sequence is invariant to 

all one-dimensional median filters with symmetric windows. Since the unit step and unit 

edge are sums of appropriately shifted unit impulses, these examples illustrate the fact 

that the principle of superposition does not hold for median filters. Hence, median filters 

are nonlinear. 

Two fundamental properties of median filters have been noted by many authors. First, 

the scaling property states that for any monotonic function g(.), MF[g(.)] = g(MF[.]) 

[29,40,45]. Secondly, the median of a monotonic subsequence is the middle element in 

both value and position. Consequently, monotonic sequences are invariant to 

two-dimensional M x M median filters and one-dimensional N-point median filters. 

Before examining other properties, we present several definitions. The term 

neighborhood is used to mean any contiguous group of samples. 

We define a constant neighborhood as a contiguous group of samples, all of which have 

the same value. In one dimension, we require that the extent of the neighborhood be 

at least [(N + 1)/2] samples. In the two-dimensional case, we require that the extent of 

the neighborhood be everywhere at least [(M + 1)/2] samples in each dimension. 

In one dimension, we define a sequence {xn} to be locally monotonic with length k if and 

only if the neighborhood {x11 ... , x,+A:-i} is monotonic for all i. Such a sequence is also 

locally monotonic with all lengths less than k. The definition is somewhat more 

cumbersome in two dimensions, and is dependent on the particular filter window under 

consideration. Hence, two-dimensional neighborhood monotonicity is always defined 

with respect to a particular filter window. First, we center the window on the origin of 
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0.0 0.0 0.0 o.o o.o o.o o.o o.o 0.0 0.0 o.o 
0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 o.o o.o o.o o.o 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 o.o o.o o.o 0.0 0.0 0.0 0.0 0.0 
o.o o.o o.o 0.0 0.0 l. 0 0.0 0.0 0.0 0.0 0.0 
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0.0 0.0 0.0 0.0 o.o 0.0 o.o 0.0 0.0 o.o 0.0 
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0.0 0.0 0.0 o.o 0.0 o.o o.o 0.0 0.0 0.0 0.0 
o.o o.o 0.0 0.0 0.0 0.0 o.o o.o o.o o.o o.o 

(/J) 

Figure 4. Simple frames: (a) unit impulse frame; (b) unit edge frame. 
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the real plane IR x !R, and consider the set of all line segments which are completely 

contained by the window and also pass through the origin. We denote this set of line 

segments with the symbol L. Letting Z denote the integers, we restrict L to 

IR x IR n Z x Z. The two-dimensional neighborhood contained by the window is 

monotonic with respect to the window if and only if, for each element t in the restriction 

of L, t is monotonic. If all neighborhoods in a frame are monotonic with respect to a 

particular window, then we say that the frame is locally monotonic with respect to that 

window. 

We formally define an impulse as the occurrence of fewer than [(N + 1)/2] contiguous 

extreme samples in the interior of a neighborhood that would otherwise be constant or 

monotonic. By extreme, we mean that the impulsive samples must have greater 

amplitudes than all other samples in the neighborhood. In one dimension, we take 

interior to mean that any two impulses must be separated from one another by at least 

[(N + 1)/2] samples. In two-dimensions, we require impulses to be separated from one 

another on all sides by at least [(M + 1)/2] samples. 

We define an edge as any boundary between constant or monotonic neighborhoods. 

We define an oscillation as two or more contiguous samples that are not part of a 

constant neighborhood, a monotonic neighborhood, an edge, or an impulse. Finally, 

we refer to any sequence that is invariant to a specific median filter as a root of that 

filter. 

To investigate what types of signals are roots of median filters, we observe that by our 

definition any sequence which is locally monotonic must be composed entirely of 

monotonic and constant neighborhoods. Furthermore, in a locally monotonic sequence 

any two monotonic neighborhoods that are opposite in trend must be separated by a 
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constant neighborhood. That a sequence which is everywhere locally monotonic is 

invariant to median filters has been proven by Tyan, who called such roots type I [45]. 

In one dimension, a sequence that is locally monotonic with length k is a type I root of 

a median filter of length N, N :s: 2k - 3. In two dimensions, a sequence that is locally 

monotonic with respect to a given window is a type I root of any median filter that 

employs that window, or a connected subset of that window. Tyan also observed the 

existence of type II roots which are nowhere locally monotonic [45]. He found the 

theoretical treatment of type II roots difficult (especially so in two dimensions), but was 

able to prove that any such root must be composed of oscillatory neighborhoods. He 

also showed that each sample of a type I I root must assume one of exactly two distinct 

values. As an example, consider the infinite one-dimensional sequence 

{ ... , -1, + 1, - 1, + 1, ... }. This sequence is not locally monotonic with any length 

greater than one, yet it is a root of a median filter with N = 5 or N = 9. It is recurrent 

to a three-point median filter, since it is invariant to any even number of repeated 

applications of the filter. Note, however, that it is not a root of the three-point median 

filter. 

Another proof that locally monotonic inputs are invariant to median filtering was given 

by Gallagher and Wise [42]. They circumvented the perplexities associated with type II 

roots by considering only finite inputs, and adopting a convention of appending constant 

samples to the input at points where a complete neighborhood did not exist. 

Consequently, in their proofs they were always able to deduce the first filtered output 

and proceed using inductive arguments. Gallagher and Wise also formalized the concept 

of a passband for median filters [42]. Input features consisting of constant and 

monotonic neighborhoods are not attenuated by a median filter, and hence are in the 

2 Median Filter Unsharp Masking 30 



filter passband. In this respect, every neighborhood in a root sequence must either be 

in the filter passband or posses type I I characteristics. 

2.2.3 Statistical Properties 

First we will consider median filtering the input sequence X where the X; e X in the 

one-dimensional case, or the x,,1 e X in the two-dimensional case, are stationary 

independent identically distributed random variables with mean µ, variance u2, 

distribution Fx{x) and density fx{x). Since the inputs are independent and the set R of 

order statistics is always one-dimensional, the density of Y = {v,}, the running medians 

output by a median filter of size N, does not depend on the dimension of the input. 

Ataman, Aatre, and Wong [41] have stated that for N = 2k + 1, the density of v; e Y is: 

N! k k fy(v) = k!k! fx(v)[Fx(v)] [l - Fx(v)] (2.2.7) 

Equation 2.2.7 was also stated by Justusson, who used a slightly different expression for 

the leading coefficient [43]. A proof due to Papoulis is given on page 175 of reference 

[49]. Kuhlmann and Wise obtained a closed form expression for the density function 

Fy(v) of the medians by integrating Equation 2.2.7 [40]. For large N and fx{x) 

symmetrically distributed aboutµ, Justusson [43] gave an expression for u:, the variance 

of the medians, as: 

2 1 
(1 = 

u 4Nf}(v) 
(2.2.8) 

In reference [43], he also gave an approximation to Equation 2.2.8 which provides an 

improved estimate of u: when N is small. Narendra pointed out that if a linear mean 
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filter were employed, then the variance of the running means, a!, would not depend on 

the parent density fx(x) [35). From Equation 2.2.8, it is clear that a~ is a function of the 

parent density. This fact has significance for the recommended algorithm. In particular, 

Justusson showed that when Fx(,x) was a relatively "spiky" double exponential 

distribution, the variance of v, was 50 percent smaller than the variance of the running 

means [43). Hence, the median filter is more effective than a mean filter for removing 

target-like impulses from the input. Narendra obtained a similar result when the input 

variables assumed a heavily-tailed log-normal distribution [35). A different situation 

arises, however, when the inputs are allowed to assume a smoother distribution more 

typical of the clutter in the A TWS. Justusson showed a~ to be 57 percent larger than 

a! when the parent distribution is normal [43). This important result hints that in 

addition to being better at attenuating targets, the median filter also passes clutter more 

effectively than the linear mean filter. 

Kuhlmann and Wise studied the output autocorrelation and power spectrum of median 

filtered sequences of independent identically distributed stationary random variables [40). 

They found that pairs of output samples exhibited a nonzero covariance which was 

strongly dependent on the number of common samples in the windows used to compute 

them. Their results corroborate the assertion that median filters tend to greatly 

attenuate small, high spatial frequency features in the input. Justusson presented a 

similar result, and also studied the responses of median and mean filters to 

nonindependent normally distributed inputs [43). He found that when the inputs 

exhibited nonnegative correlations, the output variances of median and mean filters were 

related by: 

(2.2.9) 
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This result once again hints at the ability of median filters to preserve non-impulsive 

input features better than linear averaging filters. 

Next we consider median filtering sequences of independent stationary random variables 

that are not identically distributed. Ataman, Aatre, and Wong investigated the output 

of three- and five-point median filters when some input samples had Gaussian 

distributions, while others had heavily-tailed "spiky" distributions [41]. They found that 

the presence of Gaussian inputs somewhat impaired the ability of the median filter to 

completely remove impulses from the input, but that the median filter was still superior 

to a linear Hanning filter for this purpose. 

By examining the output variance, we have suggested in the previous discussions that 

the median filter is better able to pass clutter features undistorted than comparable linear 

smoothers. That this is indeed the case will now be demonstrated. In Section 1.2 we 

stated that the clutter in the A TWS is assumed to be strictly greater in extent than the 

targets. Although the clutter may contain many high spatial frequencies in the form of 

sharp edges, it can not contain impulses in the sense that they were defined in Section 

2.2.2. The occurrence of such an impulse in an input frame is always assumed to arise 

from a target. Consider as input the one-dimensional step sequence {xi} or 

two-dimensional edge frame {x,,1} with height h and size n samples that has been 

corrupted by uncorrelated noise. The input samples on the low side of the step or edge 

are independent stationary random variables normally distributed with zero mean and 

variance a2• On the high side, they are normally distributed with mean h and variance 

a2• In one dimension, we denote the uncorrupted step sequence by {s;} and define the 

mean-squared-error in the filtered output sequence {yJ by: 
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(2.2.10) 

where E[.] is the expectation operator. The mean-squared-error is similarly defined in 

two dimensions. Justusson has numerically solved for the mean-squared-error in the 

output of both one- and two-dimensional median and mean filters (43]. He found that 

for h > 3a the MSE of the median filter output was significantly lower than that of the 

linear filter. A graph of his result for the M SE of one-dimensional three-point filters as 

a function of h is shown in Figure 5, where both axes are in units of standard deviations. 

In a similar experiment where the step was further corrupted by impulsive noise, 

Ataman, Aatre, and Wong found that not only was the median filter MSE lower than 

that of a linear Hanning filter, but that the median filter was also far better able to 

remove the impulses despite the presence of the normally distributed noise [41]. We 

conclude this section by noting that in a one-dimensional analysis Nodes and Gallagher 

derived an expression for the output distribution of a median filter in response to any 

general stochastic signal (48]. They found that the MSE of the median filter was orders 

of magnitude smaller than that of a linear averaging filter when the input contained 

additive impulses. 

2.2.4 Frequency Domain Characterization 

Because median filters are highly nonlinear, their frequency domain analysis is difficult 

(29]. Although frequency domain analysis is extremely important in the study of linear 
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Figure 5. Mean-squared-error in median and mean filtered noisy step (from reference (43)) 
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systems, it is of less utility in the analysis of median filters because the superposition 

principle does not hold for the latter. Nevertheless, a few researchers have studied the 

response of median filters to sinusoidal inputs. Justusson derived the power spectrum 

distribution of median filtered cosine waves in both one and two dimensions [43]. 

Velleman studied the power transfer characteristics of median filters in response to 

sinusoidal inputs, and found that they often contain significant sidelobes [44]. He 

suggested that the sidelobes are strongly related to the roots and recurrent sequences of 

the filter. In reference [43], Justusson stated some results of Heygster, who constructed 

empirical transfer functions for median filters by taking quotients of the Fourier 

transforms of specific two-dimensional input and output sequences. The only general 

result obtained from these analyses was that the spectral responses of running medians 

are similar to those of running means for frequencies w0 ~ 2n/5 [43]. 

2.2.5 Threshold Decomposition 

The purpose of this section is to conclude our discussion of median filter properties by 

citing the existence of a theory for median filters that is in many respects analogous to 

the superposition principle of linear systems. Although the theory is not applicable to 

the A TWS prefilter problem, it is presented for completeness. The theory was developed 

by Fitch, Coyle, and Gallagher, and is called threshold decomposition [38]. It has only 

been developed for one-dimensional filters. Several researchers have concerned 

themselves with the convergence of arbitrary inputs to roots upon repeated applications 

of a nonrecursive median filter, or upon the single application of a recursive median filter 

[3 7 ,38,39 ,42,45,46]. 
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A recursive median filter is one for which each output sample is used in the computation 

of subsequent output samples. For example, consider median filtering the sequence 

{x1, x2, x3, x4} with a three-point filter. By our endpoint convention, y 1 and y4 are 

indeterminate. For both a recursive and a nonrecursive median filter, 

y2 = MF[{xu x2, x3}]. With a nonrecursive filter, y3 = MF[{x2, x3, x4}]. However, for the 

recursive filter y3 = MF[{y2, X3, X4}]. 

A well known result is that successive applications of a nonrecursive median filter will 

reduce any arbitrary input sequence to a root. Gallagher and Wise proved that any 

finite one-dimensional input sequence of length L samples will be reduced to a root of 

any one-dimensional median filter after at most Yi (L-2) applications of the filter [42]. 

Another well known result is that any one-dimensional input sequence will be reduced 

to a root after one application of a recursive median filter. Although this result is often 

true in two dimensions as well, Nodes and Gallagher have constructed two-dimensional 

inputs for which it does not hold [46]. 

Frequency domain analysis of linear systems is based on the fact that any input can be 

decomposed into a linear combination of some set of basis signals. An orthonormal set 

of complex exponentials is often chosen as the basis. The system response is then 

determined as a linear combination of the responses to the individual basis signals. For 

median filters, any input with k quantization levels can be decomposed into a sum of 

binary sequences. Suppose that repeated application of a specific median filter would 

reduce the input sequence X to the root sequence Y,. The threshold decomposition 

theory states that if the binary sequences composing X were independently reduced to 

roots by repeated applications of the specified filter, then those roots could be 

recombined via a mapping from the space of binary sequences to the space of k-valued 
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sequences in such a way as to yield Y, [38]. This theory is useful for describing the 

convergence of input sequences to root sequences, and Arce has extended it to include 

recursive median filters [39]. 

2.3 For1nalization of the Recommended Algorithm 

In this section, three specific variants of the recommended algorithm will be presented. 

They will be evaluated in Chapter Three. Before presenting them, we note that the 

general form of the recommended algorithm has appeared previously in the open 

literature. Justusson described the technique of residual smoothing for recovering the 

signal {s,} from the noise-corrupted input {x,} = {s,} + {n,} [43]. In using residual 

smoothing, one constructs a noise estimate {n,} = {xi} - MF[{xJ] and a correction 

factor {z,} = MF[{n,}]. The signal is then estimated by {s,} = MF[{x,}] + {z;}. Of 

interest is the fact that the noise estimate {n,} is computed with the recommended 

algorithm. J ustusson also made a brief specific reference to the use of the recommended 

algorithm for object extraction [43). He gave an example comparing a 3 x 3 mean filter 

mask to a 3 x 3 median filter mask. 

Tyan investigated smoothing algorithms of the form 

(2.3.1) 

2 Median Filter Unsharp Masking 38 



where flk[X] denotes k repeated applications of the smoothing operator H to the input 

X [45]. In particular, Tyan used median filters as smoothing operators and required that 

ao-::/= 1. However, the recommended algorithm can be derived from Equation 2.3.1 by 

letting n = ao = 1 and a1 = -1. 

2.3.1 Variant I: 3 x 3 Median Filter Mask 

Based on the theoretical arguments presented in Section 2.2, we expect that some 

two-dimensional median filter should be well suited for use as the masking operator in 

the recommended algorithm. The geometries of the three target models used in this 

thesis were shown in Figure 1. We must choose a median filter for which these target 

smears fall outside the passband. To pass clutter features with minimum distortion, we 

would also like the median filter to have as many roots as possible, provided that the 

target smears are not roots. 

Since input features less than [(N + 1)/2] pixels in extent are eradicated by a median filter 

with N pixels in its window, the number of roots decreases monotonically with the 

window size (all possible input sequences are roots of a one-point median filter). Since 

the largest target smear is four pixels in extent, we require that N > 8. The smallest 

square symmetric window satisfying this constraint is of size 3 x 3, giving N = 9. Stated 

another way, this is the smallest two-dimensional median filter to which the targets will 

appear impulsive. We refer to the recommended algorithm with a 3 x 3 median filter 

masking operator as RA1, which stands for variant one of the recommended algorithm. 
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2.3.2 Variant II: Compensated Median Filter Mask 

We now propose another variant of the median filter unsharp masking algorithm by 

making a modification to RA1• Reasoning qualitatively, we observe that the amplitude 

of a neighborhood median might be biased upwards by either the simultaneous presence 

of several target pixels in the window, or by the simultaneous presence of heavily-tailed 

noise and one or more target pixels. This line of reasoning is somewhat corroborated 

by the fact that, as was alluded to in Section 2.2.3, the expected value of an input 

impulse at the output of a median filter is nonzero when uncorrelated noise is present. 

Such upward biasing of the neighborhood median away from the true value of the local 

clutter median is a detrimental effect in the A TWS prefilter, since we wish to subtract 

as small a value as possible from target pixels. To compensate for this upward bias, we 

will not include the center pixel of the window when computing the neighborhood 

median. This compensation method was suggested to the author by researchers in the 

Optical Sciences Division of the United States Naval Research Laboratory. 

Incorporating a 3 x 3 compensated median filter masking operator into the 

recommended algorithm, the filtered outputs are computed as: 

y(i,J) = x(i,J) - MF[{x(i- 1,j- 1), x(i- l,J), x(i- 1,j + I), x(i,j- I), 
x(i,j + I), x(i + l,j- 1), x(i + l,J), x(i + l,j + I)}] 

We refer to this variant of the recommended algorithm as RA11 • 
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2.3.3 Variant III: One-Dimensional Median Filter Mask 

In a widely cited study, Narendra investigated the use of separable median filters for 

noise removal in infrared imagery [35]. Since one-dimensional filters are much easier to 

implement than two-dimensional filters, he applied a one-dimensional median filter first 

to the columns of an image, and then to the rows. He found that the noise cleaning 

capability of the separable filter was quite comparable to that of the two-dimensional 

filter, and that the output variance of the separable filter was always a little greater than 

that of its two-dimensional counterpart. With reference to the recommended algorithm, 

a slightly greater output variance is desirable since it is indicative of improved clutter 

tracking ability. Furthermore, we do not expect clutter to leak through a 

one-dimensional median filter mask near the junctions of edges. For example, the 

corners of a square of any size do not appear locally monotonic to a two-dimensional 

median filter. To a one-dimensional filter, however, they appear perfectly monotonic 

provided that the square extends for at least [(N + 1)/2] pixels along each edge and is not 

rotated with respect to the edges of the frame. 

As a third variant of the recommended algorithm, we consider a masking operator which 

involves the application of a one-dimensional median filter to only the rows of the input 

frame. We reason that this mask should perfectly preserve vertical clutter features, and 

that horizontal features should not be distorted any more than they would be by a 

comparable two-dimensional median filter. Although these arguments are true, the 

disadvantage of using a one-dimensional filter mask is that it must be of length N ~ 5 

to prevent the two- and four-pixel target smears from being roots. Hence, horizontal 

clutter features wiU be distorted more by the one-dimensional filter mask than by the 
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two-dimensional masks used for RA1 and RAu. In mathematical form, the output of this 

variant to the recommended algorithm is: 

y(i,J) = x(i,J) - MF[{x(i,j- 2), x(i,j- 1), x(i,J), x(i,j + 1), x(i,j + 2)}] (2.3.3) 

We refer to this prefilter as RAm· 
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3 Algorithm Evaluation 

In this chapter, the spatial prefiltering algorithms presented in Chapters One and Two 

are quantitatively evaluated. Section 3.1 provides an explanation of the criteria against 

which the algorithms are measured. A simple computer experiment is described in 

Section 3.2. The frames used for this experiment are small enough to be presented as 

figures in this thesis. Finally, in Section 3.3 the variants of the recommended algorithm 

are pitted against the linear point detection filter in an experiment involving realistic 

input imagery for the A TWS. 

3.1 Measure1nent Criteria 

Generally accepted methods of evaluating automatic target detection systems do not 

exist [4]. Consequently, attempts to compare algorithms based on results cited in the 

open literature are difficult and often fruitless. One metric that appears to be fairly 

common is the enhancement of the signal to clutter ratio. Signal to clutter ratio is 
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usually defined as the target energy (amplitude) present in a frame divided by the 

standard deviation of the clutter. The enhancement of this ratio due to a specific 

filtering operation is computed by dividing the signal to clutter ratio after filtering by the 

signal clutter ratio before filtering. In this thesis, the enhancement of the signal to 

clutter ratio will be represented with the symbol SCE defined according to: 

where 

s,= target energy in filtered frame 
<11= filtered clutter standard deviation 
Su = target energy in unfiltered frame 
<1u =unfiltered clutter standard deviation 

(3.1.1) 

s. is computed by summing the amplitudes of all targets in the input frame, while S1 is 

computed by summing target amplitudes in the output frame. As was mentioned in 

Section 2.2.1, it is often impossible to separate precisely median filtered output into 

those components that arise from targets in the input and those components that arise 

from the clutter. Since the simulated targets in this thesis are created by adding excess 

amplitude to certain pixels of a frame, only the added amplitude is included in the 

summation whens. is calculated. To a rough approximation, we expect the amplitude 

of output components arising from clutter to be nearly zero. Consequently, we will 

include the total amplitude present at all target pixels in the summation when calculating 

S1 • The ratio S1 / s. is a relative measure of how much of the target energy at the prefilter 

input is preserved in the prefilter output. This ratio increases monotonically as more 

target energy is passed by the prefilter, and it equals one if and only if all target energy 

is passed unattenuated. 

3 Algorithm Evaluation 44 



Irrespective of whether an input frame or an output frame is under consideration, the 

clutter standard deviation is always calculated as the square root of the clutter variance, 

which is computed from only those pixels that do not contain a target and are not in 

positions that will be indeterminate in the filter output. Formally, the clutter mean of 

the frame X is defined by: 

(3.1.2) 

where the sums are taken over all pixels that are not targets and do not assume 

indeterminate values in the filter output. The integer k is the number of such pixels in 

the frame. The clutter variance of the frame X is then defined as 

(3.1.3) 

where once again the sums are taken over only those pixels that are not targets and do 

not assume indeterminate values in the filter output. It is a well known fact from 

statistics that when an entire population is not available, an improved estimate of the 

variance is obtained by taking the denominator of the leading coefficient equal to one 

less than the number of samples in the sample population. Since we do not include those 

clutter pixels at the edges of frames or at targets in the summations of Equation 3.1.3, 

the denominator of the leading coefficient is taken equal to k - 1 to provide as accurate 

an estimate as possible of the true clutter variance. Note that the ideal algorithm has 

SCE = oo, since the clutter variance is reduced to zero at the filter output. As an 

algorithm evaluation metric, SCE favors clutter rejection capability more than it favors 
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target passing ability. This is true because the ratio S1 Is. has a maximum value of one, 

which is realized with the ideal algorithm. The ratio a./a1 can become quite large, 

however. This ratio is unbounded when the ideal algorithm is evaluated. Consequently, 

we seek a second evaluation metric that is a stronger function of target passing ability. 

For use in this thesis, an algorithm measurement criterion that we shall call the beta 

factor is proposed. It is defined by: 

where 

s1 = target energy in filtered frame 
Su = target energy in unfiltered frame 

MSEc = clutter mean-squared-error, see below 

a~ = unfiltered clutter variance 

(3.1.4) 

We want a prefilter that, like the ideal algorithm, rejects all clutter. Hence the desired 

output at all non-target pixels is zero. We consider any nonzero output at such pixels 

to be an error in the sense that the prefilter was not able to perfectly track the clutter 

features. In Equation 3.1.4, the clutter mean-squared-error, MSE., is computed by 

summing the squares of all nonzero amplitudes among the non-target pixels in the 

output frame and dividing this sum by the number of non-target pixels in the input 

frame. It is a positive definite monotonically increasing function of the total amount 

of clutter amplitude that leaks through the filter. MSE. is zero if and only if all clutter 

features are perfectly suppressed. To allow comparison between frames with widely 

different clutter variances, MSE. is scaled by the unfiltered clutter variance in Equation 
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3.1.4. We observe that the ideal algorithm has P = 1. In some sense, P is a percentage 

measure of how well a given filter performs with respect to the ideal algorithm. 

3.2 A Simple Experime11t 

In this section, six prefiltering algorithms are evaluated on simple input frames. The six 

algorithms are the Laplacian filter, the point detection filter, unsharp masking with a 

3 x 3 linear averaging mean filter mask, and the three variants of the recommended 

algorithm presented in Section 2.3. For this experiment, we are more interested in 

evaluating the theoretical performance of the algorithms than in evaluating any 

particular hardware implementation. Hence, quantization and finite word length effects 

are not explicitly considered. We use floating-point numbers to represent the pixels of 

each frame, and allow the filters to perform floating-point arithmetic. Finite word length 

effects will be considered in Section 3.3. Quantization effects are of no particular interest 

in this thesis: we define targets statistically by their amplitudes in the frames coming out 

of the sensor subsystem. Targets are not defined prior to quantization in the image 

formation process. To measure the clutter rejection capabilities of these algorithms, we 

use the input frames shown in Figures 6 and 7. The input frame of Figure 6 is a unit 

edge frame with unfiltered clutter standard deviation u,, = 5.000 x 10-1 • The input frame 

of Figure 7 is all zero, except for a 5 x 5 square of unit amplitude pixels at the center. 

This frame has unfiltered clutter standard deviation <J,, = 4.648 x 10-1 • To examine the 

ability of the six algorithms to pass targets while attenuating clutter, we begin with the 

frame shown in Figure 8(a). This frame consists only of smooth, monotonic 

background. The same input is shown again in Figure 8(b) with four bright targets 
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added. The top two targets are blurred across four pixels, while the bottom two are true 

point targets. The input frame of Figure 8(b) has a11 = 1.765, Su= 90, and 

S11 /au= 51.001 . The results of prefiltering the input frames of Figures 6, 7, and 8(b) are 

discussed in the remainder of this section, where -99.0 is used to represent an 

indeterminate filter output. For convenience, the P and SCE data obtained from Figure 

8(b) are also shown in Table 1. 

3.2.1 3 x 3 Laplacian Filter 

The 3 x 3 Laplacian filter mask was shown in Equation 1.3.3. To realize a prefilter for 

the ATWS using this mask, the mask is convolved with the input frame using Equation 

1.3.1. The Laplacian filter response to the unit edge frame of Figure 6 is shown in Figure 

9(a). As the output is an all zero frame, MSE. = 0 and au/a1 = oo. Next we apply the 

Laplacian filter to the square input frame of Figure 7. The response is shown in Figure 

9(b), and we see that 16 pixels are nonzero. This gives MSE. = 1.778 x 10-2 , and 

auf a1 = 3.465. 

The response of the Laplacian filter to the input frame of Figure 8(b) is shown in Figure 

9(c). We see that although the point targets have been passed perfectly, the blurred 

targets have been severely attenuated. This situation arises because the -2 coefficients 

in the Laplacian filter mask result in target energy being subtracted from target energy 

in the filtered output. In addition, we note significant clutter leakage around the targets. 

The beta factor of the Laplacian filter for this input is 2.255 x 10-1• SCE = 4.590 x 10-1, 

which indicates that the signal to clutter ratio in the Laplacian filter output is actually 

lower than the signal to clutter ratio in the input frame. Although it is quite adept at 
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l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 
l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 
l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 
l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 
l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 l. 0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Figure 6. Unit edge frame 
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 
0.0 0.0 0.0 1. 0 1. 0 1. 0 1. 0 1. 0 0.0 0.0 0.0 
0.0 0.0 0.0 1. 0 1. 0 1. 0 1. 0 1. 0 0.0 0.0 0.0 
0.0 0.0 0.0 1. 0 1. 0 1. 0 1. 0 1. 0 0.0 0.0 0.0 
0.0 0.0 0.0 1. 0 1. 0 1. 0 1. 0 1. 0 0.0 0.0 0.0 
0.0 0.0 0.0 1. 0 1. 0 1. 0 1. 0 1. 0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 
0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 

Figure 7. Input frame with 5 x 5 unit amplitude square 
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1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
1. 1. 0 1. 1. 0 1. 0 1. 0 1.0 1. 2. 3.0 4. 5.0 6.0 7.0 
1. 1. 0 1. 1.0 1.0 1.0 1. 0 1. 2. 3.0 4. 5.0 6.0 7.0 
1. 1.0 1. 1.0 1.0 1.0 1.0 1. 2. 3.0 4. 5.0 6.0 7.0 
1. 1.0 1. 1.0 1.0 1.0 1.0 1. 2. 3.0 4. 5.0 6.0 7.0 
1. 1.0 1. 1.0 1.0 1.0 1.0 1. 2. 3.0 4. 5.0 6.0 7.0 
1. 1. 0 1. 1.0 1.0 1.0 1.0 1. 2. 3.0 4. 5.0 6.0 7.0 
1. 1. 0 1. 1.0 1.0 1. 0 1.0 1. 2. 3.0 4. 5.0 6.0 7.0 
l. 1.0 l. 1.0 1.0 1.0 1.0 1.0 z. 3.0 4.0 s.o 6.0 7.0 
l. 1.0 1. 1.0 1.0 1. 0 1.0 1. z. 3.0 4. s.o 6.0 7.0 
l. 1.0 1.0 1.0 1.0 1.0 1.0 l. 2. 3.0 4. 5.0 6.0 7.0 
1. 1. 0 1. 1.0 1.0 1.0 1. 0 1. z. 3.0 4. s.o 6.0 7.0 
l. l. 0 l. 1.0 1.0 1.0 1.0 l. 2. 3.0 4. 5.0 6.0 7.0 
1. 1. 0 l. 1.0 1.0 1.0 1.0 1. z. 3.0 4. 5.0 6.0 7.0 

(a) 

1.0 1. 0 1.0 1. 1.0 1.0 1.0 1.0 2.0 3.0 4.0 5.0 6. 7. 
1. 0 1.0 1.0 1. 1.0 1.0 1.0 1.0 z.o 3.0 4.0 s.o 6. 7. 
1. 0 1. 0 1.0 1. 1.0 1.0 1. 0 l. 0 2.0 3.0 4.0 s.o 6. 7. 
1.0 1.0 1.0 10. 10.0 1.0 1.0 1.0 2.0 12.0 13.0 5.0 6. 7. 
1.0 1.0 1.0 10. 10.0 1.0 1.0 1.0 2.0 12.0 13.0 5.0 6. 7. 
1.0 1.0 1.0 l. 1.0 1.0 1.0 1. 0 2.0 3.0 4.0 s.o 6. 7. 
l. 0 1.0 1. 0 l. 1.0 1.0 1.0 1. 0 2.0 3.0 4.0 5.0 6. 7. 
1. 0 1. 0 1. 0 l. 1.0 1.0 1.0 1.0 2.0 3.0 4.0 5.0 6. 7. 
1. 0 1.0 1.0 1. 1.0 1.0 1.0 1.0 2.0 3.0 4.0 s.o 6. 7. 
1. 0 1.0 1.0 10. 1.0 1.0 1.0 1.0 2.0 12.0 4.0 5.0 6. 7. 
1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1. 0 2.0 3.0 4.0 5.0 6. 7. 
1.0 1.0 1.0 1. 1.0 1.0 1. 0 1.0 2.0 3.0 4.0 5.0 6. 7. 
1. 0 1.0 1. 0 1. 1. 0 1.0 1. 0 1.0 2.0 3.0 4.0 s.o 6. 7.0 
1.0 1. 0 1.0 1. 1. 0 1.0 1.0 1.0 2.0 3.0 4.0 5.0 6. 7. 

(b) 

Figure 8. Smooth monotonic background frame: (a) without targets; (b) with four bright 
targets added. 
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Table 1. SCE and Beta for the input of Figure S(b) 

Beta SCE ------- -------
Laplacian 
Filter ............ 0.225 0.459 

Point Detection 
Filter ............ 0.546 1.577 

Mean Filter 
Unsharp Masking ... 0.513 l.601 

RA I .............. 0.946 9.872 

RA II ............. 0.952 8.232 

RA III ............ 0.867 4.763 
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-99.0 -99.0 -99.0 -99.0 
-99.0 0.0 0.0 0.0 
-99.0 0.0 0.0 0.0 
-99.0 0.0 0.0 0.0 
-99.0 0.0 0.0 0.0 
-99.0 0.0 0.0 0.0 
-99.0 0.0 o.o o.o 
-99.0 0.0 0.0 0.0 
-99.0 0.0 o.o 0.0 
-99.0 0.0 0.0 0.0 
-99.0 -99.0 -99.0 -99.0 

-99.0 -99.0 -99.0 -99.0 
-99.0 0.0 0.0 o.o 
-99.0 0.0 0.3 -0.3 
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Figure 9. Laplacian filter responses: (a) unit edge response; (b) response to square input; 
(c) response to the input of figure 8(b). 
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rejecting clutter, we see that the Laplacian filter is not able to pass multi-pixel target 

smears effectively. Consequently, it will not be considered in the experiments of Section 

3.3. 

3.2.2 3 x 3 Point Detection Filter 

The point detection filter mask was shown in Equation 1.3.4, and it is applied using 

Equation 1.3.1. Figure lO(a) shows the point detection filter response to the unit edge 

frame of Figure 6. The output is nonzero for 18 pixels, yielding MSEc = 3.556 x 10-2, 

and <1,,/<11 = 2.635. When the point detection filter is applied to the square input of 

Figure 7, the result shown in Figure IO(b) is obtained. The number of nonzero output 

pixels is 40, MSEc = 7.457 x 10-2, and <1,,/<11= 1.692. Hence, the point detection filter 

does not reject clutter as well as the Laplacian filter. However, it passes targets much 

better than the Laplacian filter. 

The point detection filter response to the input frame of Figure 8(b) is shown in Figure 

lO(c). Due to the symmetric configuration of -1 coefficients in the filter mask, the 

blurred targets are attenuated less than they were by the Laplacian filter. We also note 

that the point detection filter output contains less clutter leakage around the targets than 

did the Laplacian filter output. The beta factor of the point detection filter for this input 

is 5.464 x l0-1, and SCE = 1.577. Although these results are not particularly 

noteworthy, the point detection filter will be further investigated for comparative 

purposes in Section 3.3. 
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Figure 10. Point detection filter responses: (a) unit edge response; (b) response to square 
input; (c) response to the input of figure 8(b). 
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3.2.3 U nsharp Masking with Mean Filter Mask 

This algorithm is a realization of Equation 2.2.1 with G(.) = 1 and a: = 0. A 3 x 3 mean 

filter is used for the masking operator. Each output pixel y1,1 is computed by subtracting 

from x1•1 the mean of the 3 x 3 neighborhood centered about x1•1 • The response of this 

prefilter to the unit edge frame of Figure 6 is shown in Figure l l(a). The output 

contains 18 nonzero pixels, giving MSE. = 2.000 x 10-2 and a.fa1 = 3.514. The response 

to the square input of Figure 7 is shown in Figure ll(b). In this case, the output 

contains 37 nonzero pixels, MSE. = 4.889 x 10-2, and a.fa1 = 2.090 . 

The mean filter unsharp masking response to the input of Figure 8(b) is shown in Figure 

l l(c). For this input, SCE = 1.601 and P = 5.128 x 10-1 • Although these results are 

comparable to those obtained with the point detection filter, mean filter unsharp 

masking will not be considered in Section 3.3 for reasons of economy. As with the 

Laplacian filter, the primary drawback of this algorithm is that target energy is 

subtracted from target energy when the input contains a multi-pixel target smear. 

3.2.4 Recommended Algorithm, Variant I 

The response of RA1 to the unit edge frame of Figure 6 is shown in Figure 12(a). The 

clutter is perfectly rejected, yielding MSE. = 0 and a.f a1 = oo. The response of RA1 to 

the square input of Figure 7 is shown in Figure 12(b). There are four nonzero output 

pixels, MSE. = 4.938 x 10-2, and a./a1 = 2.132. The nonzero output pixels arise from the 

fact that the corners of the square are not monotonic in all directions, and hence this 

input frame is not locally monotonic with respect to the 3 x 3 median filter mask 
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Figure 11. Responses using a mean filter mask: (a) unit edge response; (b) response to 
square input; (c) response to the input of figure 8(b). 
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employed by RA 1 (two-dimensional local monotonicity was defined in Section 2.2.2). 

When RA1 is applied to the input frame of Figure 8(b ), the output frame shown in Figure 

12(c) is obtained. Three of the four targets are perfectly extracted, since they have 

unattenuated amplitudes and are immediately surrounded by zero clutter leakage in the 

filtered output. For this input, SCE = 9.872 and. /3 = 9.465 x 10-1• Based on this 

experiment, RA 1 appears to be an extremely good approximation to the ideal algorithm. 

3.2.5 Recommended Algorithm, Variant II 

In response to the unit edge frame of Figure 6, the output of RA 11 is shown in Figure 

13(a). We see that MSE. = 0 and <1w/<11 = oo. The response of RA11 to the square input 

of Figure 7 is shown in Figure l 3(b ). As with the uncompensated median filter mask 

of RA1, the comers of the square leak through to give MSE. = 4.938 x IO-l and 

<1w/<11 = 2.132. Figure 13(c) shows the output of RA 11 in response to the input frame of 

Figure 8(b). We see that /3 = 9.524 x 10-1 and SCE = 8.232. For this input, the 

compensation has provided a slight improvement in the beta factor due to one extra 

amplitude unit of target energy being passed for the blurred target at the upper right 

corner of the input frame. Some additional clutter leakage has also been introduced 

around this target due to the averaging operation inherent in computing the median of 

an even number of samples (for RAm N = 8 ). Consequently, RA11 has a slightly smaller 

SCE than RA1 for this input. Based on this experiment, RA11 appears also to be an 

extremely good approximation to the ideal algorithm. 
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(c) 

Figure 12. Responses of recommended algorithm variant I: (a) unit edge response; (b) 
response to square input; (c) response to the input of figure 8(b). 
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-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 -99.0 
-99.0 0.0 o.o 0.0 0.0 0.0 o.o 0.0 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o -99.0 
-99.0 0.0 o.o o.o 0.0 0.0 0.0 o.o 0.0 0.0 -99.0 
-99.0 o.o 0.0 o.o 0.0 0.0 0.0 o.o 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0 -99.0 
-99.0 o.o o.o 0.0 0.0 0.0 o.o 0.0 o.o 0.0 -99.0 
-99.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 

(a) 

-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 
-99.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 -99.0 
-99.0 0.0 0.0 1. 0 0.0 0.0 0.0 1. 0 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 0.0 0.0 1. 0 0.0 0.0 0.0 1. 0 0.0 o.o -99.0 
-99.0 o.o 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 

(I>) 

-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 
-99.0 0.0 o.o o.o 0.0 o.o 0.0 0.0 0.0 o.o 0.0 0.0 0.0 -99.0 
-99.0 o.o 0.0 0.0 o.o o.o 0.0 0.0 0.0 -0.5 -1.0 -0.5 0.0 -99.0 
-99.0 0.0 o.o 9.0 9.0 0.0 o.o 0.0 o.o 8.5 8.0 -1.0 0.0 -99.0 
-99.0 0.0 o.o 9.0 9.0 o.o 0.0 0.0 0.0 8.5 8.0 -1.0 0.0 -99.0 
-99.0 0.0 0.0 0.0 0.0 o.o o.o o.o 0.0 -0.5 -1.0 -0.5 0.0 -99.0 
-99.0 o.o 0.0 0.0 o.o o.o o.o 0.0 0.0 o.o 0.0 0.0 0.0 -99.0 
-9·9. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -99. 0 
-99.0 0.0 o.o o.o 0.0 o.o o.o 0.0 o.o -0.5 -0.5 0.0 o.o -99.0 
-99.0 o.o o.o 9.0 o.o o.o o.o 0.0 o.o 9.0 -0.5 0.0 0.0 -99.0 
-99.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0 0.0 -0.5 -0.5 0.0 0.0 -99.0 
-99.0 o.o o.o 0.0 o.o o.o 0.0 0.0 0.0 0.0 0.0 o.o 0.0 -99.0 
-99.0 0.0 o.o o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 
-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 

(c) 

Figure 13. Responses of recommended algorithm variant II: (a) unit edge response; (b) 
response to square input; (c) response to the input of figure 8(b). 
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3.2.6 Recommended Algorithm, Variant III 

Since RA111 utilizes a one-dimensional five-point median filter masking operator, the 

positions of the indeterminate pixels in the output frames of this filter are different from 

those in the output frames produced by the two-dimensional masking operators used for 

RA, and RA11• As a result, a slightly different set of pixels is used to estimate the clutter 

variance when RA111 is evaluated. In particular, with respect to RA111 the input of Figure 

6 has <Ju= 5.012 x 10-1• The input of Figure 7 has <Ju= 4.713 x 10-1, while the input of 

Figure 8(b) has <Ju= 1.433, Su= 90, and Su /<Ju= 62.822. 

The output of RA111 in response to the unit edge frame of Figure 6 is shown in Figure 

14(a). We observe that since N = 5, there are two columns of indeterminate values on 

each side of the frame, and that since the filter is one-dimensional there are no 

indeterminate values along the top and bottom edges. For this input MSEc = 0 and 

Gu/<11= oo . The response of RA111 to the square input of Figure 7 is shown in Figure 

14(b). As expected, the one-dimensional median filter mask is able to perfectly track the 

corners of the square, giving MSEc = 0 and Gu/G1 = oo. Figure 14(c) shows the output 

of RA111 in response to the input frame of Figure 8(b). 

We observe that the two targets appearing over the constant background in the left half 

of the input frame are passed perfectly, while the targets in the right half of the input 

frame are somewhat attenuated. There is also some significant clutter leakage around 

the latter. These effects are due to the fact that, for the monotonically increasing 

background in the right half of the input frame, the presence of a target in a window 

with a horizontal extent of five pixels biases the median upward more than in a window 

with a horizontal extent of three pixels. Stated another way, the five-point median filter 
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-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 o.o o.o 0.0 -99.0 -99.0 

(a) 

-99.0 -99.0 0.0 0.0 o.o o.o 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 

(b) 

-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 9.0 9.0 0.0 0.0 0.0 0.0 7.0 7.0 -2.0 -99.0 -99.0 
-99.0 -99.0 0.0 9.0 9.0 0.0 0.0 0.0 0.0 7.0 7.0 -2.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 8.0 -1.0 -1. 0 -99.0 -99.0 
-99.0 -99.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 -99.0 
-99.0 -99.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0. 0 0.0 -99.0 -99.0 

(c) 

Figure 14. Responses of recon:imended algorithm variant III: (a) unit edge response; (b) 
response to square mput; (c) response to the input of figure 8(b). 
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mask has "oversmoothed" the input in the horizontal direction, with the result that the 

targets in the smoothed image are smeared over several more pixels than they were in 

the original image. Upon subtraction of the smoothed image from the original, this 

causes significant clutter leakage around the targets. For this input, RAw has 

p = 8.675 x 10-1 and SCE = 4.763. As a final point, we note that the results of this 

experiment are not sufficient to permit any conjecture as to the effectiveness of RAw. 

This algorithm employs an unsymmetrical window, and the clutter features in the input 

of Figure 8(b) are all of horizontal orientation. Had we rotated the input frame by 

90°, RAw would have produced the same output as the ideal algorithm. 

3.3 Evaluation on Realistic Inputs 

In this section, an experiment comparing the linear point detection filter, 

RA1, RAm and RAm is described. A total of 120 input frames were prefiltered. The 

United States Naval Research Laboratory provided the author with a tape containing 

computer generated clutter frames representative of actual imagery in the A TWS. The 

simulated imagery contained no targets. The author extracted 10 128 x 64 frames from 

the tape, added one-pixel targets and two- and four-pixel target smears to these frames, 

and prefiltered them with each of the four algorithms. We refer to the 10 frames 

obtained from the tape simply as the tape frames. The experimental procedure is 

described in Section 3.3.1. 
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3.3.1 Experimental Procedure 

Three experimental input frames were generated from each tape frame. An array of 72 

one-pixel targets was created in the first of these. An array of72 two-pixel target smears 

was created in the second, while an array of 72 four-pixel target smears was created in 

the third. Hence, 10 frames were created for each type of target, and a total of 30 unique 

experimental input frames were generated. The targets were arranged such that at most 

one target fell within any prefilter window at any given time. One-pixel targets were 

constructed by adding excess amplitude to each pixel located at a simulated target. 

Likewise, two- and four-pixel target smears were constructed by adding excess amplitude 

to each pixel of the smears. In all cases, the amount of excess amplitude added to each 

target pixel was equal to 3u., where u. was calculated using Equations 3.1.2 and 3.1.3. 

Each of the four prefilter algorithms was invoked upon each of the 30 input frames. 

Hence, 120 frames were prefiltered in all. To account for finite word length effects, all 

prefiltering calculations were carried out using integer arithmetic with 13-bit two's 

complement integers. After each prefiltering operation, Equation 3.1.1 was used to 

calculate SCE, and Equation 3.1.4 was used to calculate p. These calculations were 

carried out using floating-point arithmetic. For each algorithm, P and SCE were 

averaged over the 10 input frames containing one-pixel targets, over the 10 input frames 

containing two-pixel target smears, and over the 10 input frames containing four-pixel 

target smears. The results are discussed in Section 3.3.2. For each type of target, the 

average SCE of each algorithm is shown in Table 2. The beta factors are shown in Table 

3. 
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Table 2. Average SCE data for the experiment of Section 3.3 

Target Smear Size 

1-Pixel 2-Pixel 4-Pixel ------- ------- -------
Point Detection 
Filter ............ 1. 7547 1.6668 1.5472 

RA I .............. 1.9777 1.9453 1.8809 

RA I I ............. 1. 7855 1.7503 1.6947 

RA I I I ............ 1.4532 1. 3621 1. 3476 
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Table 3. Average beta factors for the experiment of Section 3.3 

Target Smear Size 

1-Pixel 2-Pixel 4-Pixel ------- ------- -------
Point Detection 
Filter ............ 0.7580 0.7262 0.6810 
RA I .............. 0. 7811 0. 7700 0.7526 
RA I I ............. 0.7621 0.7500 0.7321 
RA I I I ............ 0.6557 0.6162 0.6117 
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3.3.2 Experimental Results 

The average unfiltered clutter standard deviation of the 10 frames containing one-pixel 

targets was 1297.720 units. For the 10 frames containing two-pixel target smears, the 

average was 1298.560 units. Finally, the average for the 10 frames containing four-pixel 

target smears was 1298.483 units. 

The point detection filter had an average beta factor of 7.580 x l0-1 and an average SCE 

of 1.755 for the one-pixel targets. For the two-pixel target smears, the average beta 

factor was 7.262 x 10-1 and the average SCE was 1.667. Finally, for the four-pixel target 

smears, the point detection filter had an average beta factor of 6.810 x 10-1 and an 

average SCE of 1.545. As expected, this filter did not perform as well with multi-pixel 

target smears as it did with true point targets. Averaging the point detection filter beta 

factors for each target type yields a result approximately equal to the beta factor that 

was observed for this filter in Section 3.2, where both one-pixel targets and four-pixel 

target smears were simultaneously present in the input. This is also true for the signal 

to clutter ratio enhancement. Apparently, realistic clutter was no more difficult for the 

point detection filter to discriminate against than was the monotonic clutter used for the 

experiments of Section 3.2. 

For one-pixel targets, RA1 had an average beta factor of 7.811 x 10-1 and an average 

SCE of 1.978. For two-pixel targets smears, the average beta factor was 7. 700 x 10-1 and 

the average SCE was 1.945. Finally, RA1 had an average beta factor of 7.526 x I0-1 and 

an average SCE of 1.888 for the four-pixel target smears. The signal to clutter 

enhancement was approximately five times greater when this filter was run against 

monotonic clutter in the experiment of Section 3.2. The beta factors for the realistic 
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imagery were only about 20 percent lower than the beta factor observed for RA1 in 

Section 3.2, however. These results were expected, as the realistic imagery contained 

random noise and irregular clutter features. Consequently, the output clutter variance 

was substantially greater for the realistic input imagery than for the monotonic imagery 

used in Section 3.2. As was pointed out in Section 3.1, signal to clutter enhancement is 

a stronger function of clutter rejection than is the beta factor. The performance of RA1 

was better than that of the point detection filter, significantly so for blurred targets. The 

presence of multi-pixel target smears in the input did not degrade the performance of 

RA1 as much as it did the performance of the point detection filter. 

RAil had an average beta factor of 7.621 x 10-1 and an average SCE of 1.786 for the 

one-pixel targets. For the two-pixel target smears, the average beta factor was 

7.498 x 10-1 and the average SCE was 1.750. For the four-pixel target smears, RAil had 

an average beta factor of 7.321 x 10-1 and an average SCE of 1.695. The performance 

of RAu was quite similar to that of RA1, with RAil being evaluated slightly lower by both 

criteria. The superiority of RA1 was more marked in the signal to clutter enhancement 

than in the beta factor. From this result we conclude that the output clutter variance 

of RA11 is more sensitive to random noise in the input than is the output clutter variance 

of RA1• Due to the compensation in the RA11 masking operator, the beta factor of this 

algorithm was slightly less sensitive to the number of pixels in the targets than was the 

beta factor of RA1• 

The average beta factor of RAm was 6.557 x 10-1 for the one-pixel targets, while the 

average SCE was 1.453. For the two-pixel target smears, RAm had an average beta 

factor of 6.162 x 10-1 and an average SCE of 1.362. Finally, for the four-pixel target 

smears RAm had an average beta factor of 6.117 x 10-1 and an average SCE of 1.348. 
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Of the four algorithms evaluated on realistic imagery, RAm rated poorest in all respects. 

The output of the five-point median filter mask \Vas too smooth in the horizontal 

direction, and consequently this algorithm suffered from substantial clutter leakage. 
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4 Real Time Sorting for Algorithm Variant II 

The most difficult problem in median filter implementation is the design of a mechanism 

for sorting the pixels in the filter window. Since RA1 and RAm employ conventional 

median filters as masking operators, this chapter will concentrate on the development 

of an architecture to perform the sorting operation required for the implementation of 

the compensated median filter used in RAu. This median filter is unique in that the 

number of pixels to be sorted is even. Fast software sorting algorithms, such as the 

quicksort which has time complexity O(N), are generally used to extract the medians for 

low data rate median filtering. Even the fastest software algorithms are too slow for use 

in high data rate applications such as the A TWS prefilter, however. For this system one 

filtered output must be produced every 509 nanoseconds, which is about equal to the 

time required to execute one or two instructions on most general purpose 

microcomputers. In the open literature, three methods have been proposed for the 

implementation of real time sorting for median filters. Each is briefly described in this 

chapter. A sorting architecture for RAu is presented in Section 4.4. 
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4.1 Selection Networks 

The most obvious hardware approach to sorting the pixels in the filter window is to 

employ an array of comparators called a selection network. The icon that will be used 

to represent hardware comparators in this thesis is shown in Figure 15(a). The samples 

a and b at the top of the comparator are input pixels. The bottom left output is the 

smaller of a and b, while the bottom right output is the larger of the two. A simple 

selection network to find the median of three inputs is shown in Figure 15(b). Note that 

this network sorts the three inputs in a single machine cycle, and that extraction of the 

median does not in general imply that the samples in the window must be fully sorted. 

Selection networks are attractive because they have constant time complexity. Due to 

the propagation delay of hardware comparators, the sorting delay associated with a 

digital selection network is in practice a strong function of the number of bits, or word 

length, used to represent pixels. Provided that the comparator propagation delays are 

short enough for a comparison operation to be considered as a single operation, the time 

complexity of the selection network method is not a function of the number of pixels in 

the filter window. The disadvantage of selection networks is that they generally have a 

greater hardware complexity than other methods. 

Adhering to the convention established in Chapter Two, we let N denote the number 

of pixels in the filter window. We let f(N) denote the minimum number of comparators 

required in a selection network that extracts the median of N inputs. f(N) is not known 

for large values of N, and N is usually large for image processing applications [34]. 

Using a proof of Alekseyev [31], Knuth [30] has shown that f(N) is bounded by: 
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Figure 15. Selection networks: (a) single comparator; (b) network to extract the median of 
three pixels. 
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[ N-1 J N+3 N+l r(N) ~ 2 log2 2 + log2 2 (4.1.1) 

Ataman, Aatre, and Wong have concluded that selection networks become too complex 

for practical implementation when N > 5 [34]. Narendra asserted that r(9) = 29 and 

r(25) = 94 [35]. In an effort to reduce the hardware complexity, Shamas [27] and 

Eversole, et al. [28], have implemented approximate median filters using digital selection 

networks. The approximation involves partitioning the pixels in the window into k small 

groups. The median of each group is found, yielding Y = {u1, ... , uk}. The true median 

is then estimated by u = MF[Y] [32]. This method is advantageous because the 

hardware complexity of selection networks is a steeper-than-linear function of the 

number of inputs. Hence, k + 1 small networks are less complex than a single network, 

even though the total number of inputs is the same in either case. As was mentioned in 

Section 2.3.3, Narendra has suggested the implementation of separable two-dimensional 

median filters by applying one-dimensional median filters independently to the rows and 

columns of frames. To achieve real time video rates, he specifically recommended use 

of the analog diode selection networks proposed by Morgan [33]. The advantage of this 

method is that two N-point median filters are less complex than a single N x N median 

filter. 

4.2 Histogram Metliod 

Huang, Yang, and Tang [22], and Garibotto and Lambarelli [19] independently 

developed a fast method for extracting the median that is based on the histogram of the 
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pixels in the filter window. We define the histogram as the function h(.), where h(a) is 

equal to the number of pixels with amplitude a that are present in the window. We then 

define a cumulative frequency function by: 

k 

1(k) = Ih(a) (4.2.1) 
a=O 

The median is the smallest value v with h(v) =I= 0 that satisfies the condition: 

(4.2.2) 

The sequence Y = {v,) of running medians required for median filtering can be 

computed quickly using this method. Suppose that an M x M square window is being 

used, and that v,,1 is known. When the window is displaced by one pixel for the 

computation of v,,1+11 the histogram h(.) is updated. In the worst case, all of the M pixels 

entering the window have different values from the M pixels leaving the window. 

Consequently, updating the histogram may require as many as M subtractions and M 

additions. Computing 1(.) from the updated histogram, if l(v;) > [(N + 1)/2], then 

v;,1+1 is found by decrementing v,,j to the smallest value for which Equation 4.2.2 is 

satisfied and h(o,,1+1) =I= 0. If 1(01.) < [(N + 1)/2], then o,,1+ 1 is found by incrementing D;,1 

until the same conditions are satisfied. 

There are two disadvantages to using the histogram method. First, the hardware 

decision logic required to update the histogram and compute the median is quite 

complex, especially at the beginnings and ends of rows. Secondly, the number of "bins" 

required for the histogram is an exponential function of the word length. Consequently, 

the worst case time complexity also depends exponentially on the word length. 
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4.3 Radix Metlzod 

Ataman, Aatre, and Wong proposed the radix method as a fast algorithm for extracting 

the median of the elements in the filter window [34). In this method, the k1" bit of the 

median is deduced from the k most significant bits of the pixels in the window. Once 

again employing the notation of Chapter Two, we let W represent the set of pixels in the 

window and N represent the cardinality of this set. The first bit of the median is found 

by examining the first bits of all pixels in W. If a majority of these are ones, then the 

first bit of the median is a one. If a majority are zeros, then the first bit of the median 

must be a zero. Wis then partitioned into the set S of pixels whose first bit is equal to 

that of the median, and the set D of pixels whose first bit is different from that of the 

median. The median is obviously a member of S, and if D is non-empty then it is not 

the median of S. However, which order statistic of S is the median of W can be 

determined from the cardinalities of S and D. The second bit of the median is 

determined from the second bits of the elements of S, and Sis subsequently divided into 

those elements whose seconds bits equal that of the median and those elements whose 

second bits differ from that of the median. The procedure continues recursively until all 

bits of the median have been determined. The cardinality of each partition is saved 

through the construction of a tree-like data structure in a dedicated register set, or in a 

random access memory if N is large. Provided that dedicated parallel hardware is 

constructed to determine the majority function of the k1" bits among the elements of S, 

the time complexity of the radix method is a linear function of the word length and does 

not depend on N. 
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The disadvantages of using the radix method are that extremely complex hardware 

decision logic must be implemented to partition the window elements, and that in 

practice the time complexity may be degraded by the significant number of operations 

required to maintain the tree structures and deduce the medians. If the word length is 

less than [(N + I )/2] bits, then the radix method can be modified to make the 

computation of running medians slightly faster than the computation of individual 

medians by retaining some of the partitions when the window is moved [34]. 

Delman implemented a 5 x 5 median filter with a throughput of 10 million eight-bit 

pixels per second by simplifying the decision logic required for the radix method [36]. 

His method, which we will call the modified radix method, eliminates the need for 

computing and saving the cardinality of each partition by recoding the bits of the 

elements of W. Delman's example of using the modified radix method to find the 

median of five three-bit pixels is shown in Figure 16 [36]. In the original data, the first 

bit of each pixel is examined. Since a majority of these are zero, the first bit of the 

median is zero. All bits to the right of the first are then changed to ones for all pixels 

whose first bit is not a zero. In the second step, the second bits of the recoded pixels 

are examined. Since a majority of these are ones, the second bit of the median must be 

a one. The third bit is then changed to zero for all pixels whose second bit is zero (ie., 

not equal to that of the median). Finally, since a majority of the third bits of the recoded 

pixels are zeros, the third bit of the median must be zero. Assuming that the majority 

function and recoding operation can both be performed in a single operation, the time 

complexity of the modified radix method is equal to the word length used to represent 

pixels. Pipelined hardware could be designed to produce a median every machine cycle. 
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ORIGINAL FIRST SECOND 
DATA CHANGE CHANGE 

0 1 0 0 1 0 0 1 0 
0 0 0 MAJORITY 0 0 0 MAJORITY 0 0 0 MAJORITY 
0 0 1 0 0 0 1 1 0 0 0 0 
1 0 1 1 1 1 1 1 1 
1 1 0 1 1 1 1 1 1 

MEDIAN 

0 1 - 0 1 0 

Figure 16. Modified radix method (from reference (361) 
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4.4 Selection Network witlz In-Place Coniputation 

We now address the problem of developing a sorting architecture for RAw and note that 

for this algorithm variant N = 8. The word length in the ATWS is 12 bits. Although 

Equation 4.1.l tells us that f(8) ~ 11, the actual number of comparators required to 

implement a selection network for RAu is 24. The selection network is shown in Figure 

17, where a and bare the two middle values from among the inputs. As only a partial 

sort is effected by this network, a and b do not appear in any particular order. To 

emphasize the symmetry of the selection network, four additional unnecessary 

comparators are included in Figure 17. These four are each marked with the character 

X. The standard integrated circuit used to implement comparators is the 74n85, where 

n is a character representing a particular fabrication technology. This device compares 

two four-bit integers, and can be cascaded to construct larger comparators of the type 

required for the selection network of Figure 17. In total, a selection network for RAu 

would require the incorporation of 72 74n85 devices. We consider this number too large 

to be of practical interest. 

The histogram method requires maintenance of a number of histogram bins equal to the 

number of values that can be assumed by a pixel. For the ATWS, this number is 

214 = 4096. Although a contents-addressable random access memory could be used to 

compute the histogram rapidly for RAm in the worst case we might have to perform 4095 

comparison operations to find the median of W. Hence we conclude that the histogram 

method cannot be used to implement a sorting architecture for this application. 
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Figure 17. Network to extract the median of eight inputs 
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Due to the complex decision points inherent in the algorithm, the author knows of no 

case in which the radix method of Ataman, Aatre, and Wong has actually been 

implemented in hardware. The modified radix method of Delman would be an attractive 

alternative, except for the fact that it too involves complex decision logic when it is 

extended to include the case of N even. We conclude that the radix method is too 

complicated to be of practical interest for RA1" 

Returning to Figure 17, we note that if this network were implemented it would be 

extremely fast and require only one machine cycle to extract the middle two values from 

the inputs. Since the comparator array is highly symmetrical, we reason that we could 

implement only two rows of it in hardware, and then reuse these two rows four times to 

extract the middle values. Such hardware reuse is generally referred to as in-place 

computation. The possibility for such a simplification in the implementation of RA11 was 

first observed by Mr. K.A. Sarkady of Sachs/Freeman Associates Inc., Landover, MD, 

who subsequently suggested it to the author. 

Repeated use of two rows of the selection network requires the incorporation of memory 

into the comparator units. Figure 18(a) shows a comparator with a storage register to 

retain the smaller of its two inputs, while the comparator in Figure l 8(b) remembers the 

larger of its inputs. The comparator shown in Figure 18( c) has registers for storing both 

of its outputs. A practical architecture capable of performing the sort operation required 

for RA11 is shown in Figure 19. On the first iteration through the comparator network, 

the multiplexers at the top of the figure route the eight pixels of W to the first row of 

comparators. On all subsequent iterations, these multiplexers select the pixels being fed 

back from the comparator network. After four iterations, this in-place selection network 

extracts the two middle values a and b from W, just as the selection network of Figure 
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17 would do in a single machine cycle. Implementation of the architecture of Figure 19 

requires only 21 74n85 devices, however. We note that a four-fold increase in time 

complexity has been traded for a factor of 3.4 reduction in hardware complexity. In 

Chapter Five, the sorting architecture of Figure 19 will be incorporated into a complete 

real time hardware implementation of RA11• We will choose the system clock rate fast 

enough to permit the expenditure of five clock cycles in computing each neighborhood 

median. 
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(a) (b) (c) 

Figure 18. Comparators with memory: (a) comparator that remembers the smaller input; 
(b) comparator that remembers the larger input; (c) comparator that remembers 
both inputs. 
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Figure 19. Sorting architecture for algorithm variant II 
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5 A Complete Real Time Design 

In this chapter, a complete real time hardware implementation of RAu is presented for 

the A TWS. A schematic diagram of the design is included in appendix A. Individual 

drawings of the schematic are referenced by sheet number. The primary reason for 

choosing RAu for implementation in this thesis is that, because N is even for this variant 

of the recommended algorithm, implementation of the median filter masking operator 

for RA11 requires the special non-standard sorting architecture developed in Section 4.4. 

With some modification, the design could also be used to realize real time 

implementations of RA1 and RA111• In particular, since these algorithms employ median 

filters for which N is odd, one could modify the design by replacing the sorting 

architecture of Section 4.4 with an architecture based on the modified radix method of 

Delman. The design presented in this chapter was verified by a chip-level simulation 

using the HILO circuit simulation language under the Unix operating system on an HP 

9000 minicomputer. The control microcode was further independently verified by a 

minimal simulation of the design control states. The latter simulation was coded in the 

REXX language under the CMS operating system on an IBM 3090 computer system. 

We begin the presentation of the design with the problem specification. 
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5.1 Design Specification 

Figure 20 shows simplified block diagrams for two possible prototype configurations of 

the ATWS. The data rate of the focal plane array sensor may be up to 120 frames per 

second. The frame size may be 128 x 128 pixels or 64 x 64 pixels. Each pixel output 

by the sensor is represented by a 12-bit unsigned binary integer data word with an 

optional 13 111 sign bit, which is required in the system data path because some output 

pixels from the recommended algorithm may be negative. Hence the system throughput 

may be as high as 25.559 million bits per second. As they are still in a developmental 

stage, the A TWS target recognition, classification, and tracking algorithms are 

implemented in software on a VAX 11/780 computer and Numerix array processor. 

Obviously, these machines are not capable of keeping pace with the sensor data rate. 

Consequently, both of the system configurations shown in Figure 20 involve a high 

density data recorder, or HDDR. This device is capable of recording several seconds of 

imagery to tape at the sensor data rate. In the configuration of Figure 20(a), RAu is 

implemented in the box labeled MEDIAN FILTER, and consequently must operate at 

the sensor data rate. Filtered data are recorded on the HDDR, and later read back at 

a rate slow enough for processing on the VAX 11/780 and array processor. In the 

configuration of Figure 20(b), unfiltered data are recorded on the HDDR. RAu is 

installed after the HDDR, and consequently must operate at the lower data rate. We 

conclude that the implemented version of RAu must be capable of operation under at 

least two widely different data rates. Furthermore, the prefilter must be transparent in 

the sense that the signals at its output must be indistinguishable from the signals at its 

input. This requirement arises from the fact that the HDDR must be conveniently 
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interfaced to either the prefilter output or the post-sensor signal processing assembly, 

depending on which system configuration is being used at any given time. 

The timing characteristics of the system data path are shown in Figure 21. The signal 

CLOCK is a twisted-pair strobe. CLOCK is normally high, and all other signals are 

valid on its falling edge. The only constraint that applies to CLOCK is that consecutive 

falling edges must be separated by a time interval of at least 509 nanoseconds, 

corresponding to a maximum data rate of 120 128 x 128 frames per second. In 

particular, CLOCK is not required to have a regular duty cycle, and it is not required 

to be periodic. The signal FRAMESYNC is a scalar twisted-pair strobe that is stable 

at high during all falling edges of CLOCK that correspond to the first pixel of a frame. 

Any spurious number of falling edges may occur on CLOCK between the last pixel of 

one frame and the first pixel of the next frame. The beginning of the new frame is 

recognized only when FRAMESYNC is high. The signal vector DATA comprises 12 

twisted-pair lines for the pixel data and an optional l 3tA twisted-pair sign bit. The vector 

DAT A is valid on all falling edges of CLOCK, except those that occur between the end 

of one frame and the beginning of the next. 

Two peculiarities apply to the signals at the output of the RA 11 prefilter. First, the sense 

of CLOCK is reversed from the convention stated above. That is, the prefilter output 

signal corresponding to the input signal CLOCK is actually CLOCK, and all other 

signals are valid on the rising edge of CLOCK. This convention was mandated by the 

proprietors of the A TWS. With respect to the two configurations of Figure 20, this does 

not pose a system integration problem since the sense of any twisted-pair signal can 

easily be reversed by simply cross wiring a special interconnect cable. Secondly, the 

vector DATA at the prefilter output is interpreted as a 13-bit two's complement integer. 
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Figure 20. Simplified ATIVS system block diagram: (a) system for recording prefiltcred 
data; (b) system for prefiltering recorded data. 

5 A Complete Real Time Design 87 



DATA -<PIXEL 16384 )>----<( PIXEL 1 )>-----~fC-L _ _>-~_ P-1-XE_L _J-=>-

FRAMESYNC 
~---------------

CLOCK 

Figure 21. System data path timing characteristics for the A TWS 
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At the prefilter input, the sign bit has no significance and the pixels are assumed to be 

represented by non-negative 12-bit integers. As stated above, the sign bit in the prefilter 

output is necessary because, even though all input pixels are non-negative, RA11 may 

produce output pixels that are positive or negative due to the subtraction operation 

inherent in the algorithm. 

In the practical implementation of RAm several complications arise that were not 

present when the algorithm was evaluated in Chapter Three. Here, we present these 

complications by listing a set of rules for producing filtered output. This list will be 

referred to as the design specification list in Section 5.2. The rules are: 

1. The data in the first row of any input frame is header information, and does not 

represent pixels. The header row must be transmitted to the prefilter output without 

alteration. 

2. Since the first row of any frame consists header information, the frame actually 

contains only 127 or 63 rows of pixel data, with the first of these being the second 

row of the frame. As the compensated median filter window is of size 3 x 3 pixels, 

this results in the second and last rows of any output being indeterminate. 

Corresponding to these indeterminate rows, the prefilter output vector DAT A 

should be tri-stated. 

3. Due again to the size of the compensated median filter window, the first and last 

data words output on any line containing pixel values are indeterminate. 

Corresponding to such data words, the prefilter output vector DAT A should be 

tri-stated. 
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4. Detectors in the sensor array sometimes cease to function, or die. Any input pixel 

with a value of zero is assumed to come from a dead detector. Such zero values 

must be passed to the prefilter output without alteration. 

5. Detectors in the sensor array sometimes become saturated when part of a scene 

under observation by the ATWS is particularly bright. This is a consequence of the 

fact that the sensor is a charge integrating device, and only a finite amount of charge 

can be integrated on the substrate. The prefilter must provide a bank of 12 DIP 

switches for manually setting a saturation threshold. Any input pixel that is greater 

or equal in value to the saturation threshold is assumed to come from a saturated 

detector. Such values must be passed to the prefilter output without alteration. 

6. Any input data word not meeting any of the criteria in items one through five above 

is assumed to come from an active non-saturated detector, and to be interior in the 

sense that all of its nearest neighbors represent pixels. Such data words are 

interpreted as pixels. The prefilter output corresponding to these data words is 

computed using RA 11 as specified in Section 2.3.2. 

5.2 /Jesign l'resentation 

Sheet 1 of the schematic is a block diagram of the entire circuit. For convenience, it is 

reproduced as Figure 22. In the schematic, low active signals are annotated by 

postfixing the signal name with a tilde. In the thesis text, low active signals are 

annotated with an overbar. Circuit module SINGLESTEP generates the system clock, 
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and circuit module MICRO CTRL is a custom microcode sequencer which generates 

timing signals and control strobes for the rest of the circuit. Circuit module EXIN 

SYNC synchronizes the external inputs to the system clock. Pixel data enter the prefilter 

sequentially in conventional scanning order. Circuit module DELAY LINE is 

essentially a large shift buffer which holds two full scan lines plus three pixels of data 

words. The delay line has nine taps, and at any given time a particular pixel x;,1 and its 

eight nearest neighbors are available at the taps. The sorting architecture presented in 

Section 4.4 is implemented in circuit module SRT MTRX, and this module also contains 

additional hardware for the computation of prefilter outputs according to the rules in the 

design specification list of Section 5.1. 

In the present section, the operation of each circuit module will be discussed in some 

detail. First we describe the circuit data flow at a general level, once again with reference 

to the block diagram of Figure 22. Data words representing pixel values arrive on the 

vector EDA T at the top left corner of the figure. Once they are synchronized to the 

system clock, they are transferred to the delay line on the 12-bit data bus DINBUS. The 

pixel x,,1 which is at the center of the 3 x 3 filter window is output from the delay line 

on the data bus XIJBUS. The rest of the pixels in the window are available on the eight 

data busses XABUS through XHBUS. These nine busses lead to the module SRT 

MTRX. In this module, the median of the neighborhood is computed and subtracted 

from x1,r The resulting 12-bit data word is output from the prefilter on the data vector 

DOUT at the lower left of the block diagram. The sign bit is output on the scalar 

twisted-pair line UNDERFLO. Although components from several logic families appear 

in the schematic diagram, timing calculations for the circuit were carried out using 74F 

series components wherever possible. These devices have particularly short rise and fall 
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Figure 22. Circuit block diagram 
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times. We begin our discussion of the circuit modules with SINGLESTEP, which 

generates the system clock. 

5.2.1 Circuit Module SINGLESTEP 

This circuit module has only one output signal. It is called CLK and serves as the 

system clock for the entire prefilter. SINGLESTEP appears on sheet 3 of the schematic 

diagram. The input signal XTAL comes from a 12 MHz crystal. During normal 

operation, this 12 MHz square wave directly drives CLK. For diagnostic purposes, a 

bipolar rocker switch is included on the front panel of the prefilter and drives 

SINGLESTEP inputs SS and SS. If SS is; true, then the prefilter operates in single step 

mode and XTAL is isolated from CLK. In this mode the system clock is generated from 

a pushbutton switch on the front panel of the prefilter. The pushbutton drives 

SINGLESTEP input lines SSCLK and SSCLK. In single step mode, one clock pulse is 

generated each time the pushbutton is depressed. 

5.2.2 Circuit Module EXIN SYNC 

The purpose of this circuit module is to synchronize the prefilter inputs to the system 

clock. EXIN SYNC appears on sheet 2 of the schematic diagram. This module operates 

in a totally asynchronous mode, and does not make use of the signal CLK. The names 

of input signals to module EXIN SYNC are prefixed with the character E to indicate 

that they come from the external world. El28 and E64 are generated from a bipolar 

switch on the front panel of the prefilter. They drive the inputs of a differential line 
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receiver in EXIN SYNC to yield a single output signal 128. If 128 is low, then the 

prefilter assumes that the frame size is 128 x 128 pixels. If 128 is high, then the prefilter 

assumes that the frame size is 64 x 64. 

A system reset pushbutton on the front panel of the prefilter drives EXIN SYNC input 

lines ERESET and ERESET. When this button is depressed, the low active EXIN 

SYNC output signal RESET goes low and resets the entire prefilter. In addition, a 

simple RC circuit in module EXIN SYNC holds RESET low for about 300 ms when 

power is initially applied to the prefilter. Hence, the system always powers up in a reset 

state. 

The remainder of the inputs to EXIN SYNC come from the A TWS data path, which 

was illustrated in Figure 21. These twisted-pair signals enter the prefilter through a 

DB-37 connector on the back panel of the chassis. The signal CLOCK of Figure 21 is 

connected to the EXIN SYNC input bus EPCLKBUS, which stands for external pixel 

clock bus. The negative logic version of this signal is extracted, and will hereafter be 

referred to as the pixel clock. The signal FRAMESYNC of Figure 21 is connected to 

EXIN SYNC input bus SYNCBUS, while the vector DATA of Figure 22 is connected 

to EXIN SYNC input bus EDA TBUS. On each rising edge of the pixel clock, EXIN 

SYNC latches the value on SYNCBUS to produce the frame synchronization signal 

FSYN. FSYN is high for the first pixel of each frame. The value on EDA TBUS is 

latched into the data vector DINBUS, which stands for data input bus. Once these 

values are latched, EXIN SYNC output signal EDA V (which stands for external dara 

available) is set high. When the microcode sequencer detects this condition, the value 

on DINBUS is transferred to the delay line, provided that the pixel clock edge was not 

a spurious pulse between frames. The microcode sequencer then issues a negative pulse 
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on the line REDAV (which stands for reset external data available), causing EXIN 

SYNC to reset and await the arrival of the next rising edge of the pixel clock. 

5.2.3 Circuit Module DELAY LINE 

The delay line appears on sheets 8, 9, and 10 of the schematic diagram. This module 

does not make direct use of CLK, but rather is driven by control strobes derived from 

CLK in the microcode sequencer. The delay line taps are a series of nine 12-bit registers 

which at any time hold the pixels that are currently contained in the 3 x 3 compensated 

median filter window of RA11• The outputs of these nine registers drive the nine output 

busses of the delay line. On each rising edge of the microcode sequencer generated 

strobe REGCLK, pixel data are advanced one position in the delay line. 

As an example, consider that x,,1 is currently in the register which drives XIJBUS. Then 

X 1+1,1+1 is in the register which drives XABUS, X;+ 1,1 is in the register which drives XBBUS, 

and X 1+1,1_1 is in the register which drives XCBUS. A bank of six 74F413 FIFO buffer 

devices is connected to the output of the register which drives XCBUS, and all xp,q which 

fall between x,+1,1_ 1 and x,,1+1 in the scan order are stored in these buffers. The delay line 

input strobes SOA, SIA, SOB, and SIB (which respectively stand for shift out of buffer 

A, shift into buffer A, shift out of buffer B, and shift into buffer B) control the operation 

of these FIFO buffers. The input x,,1+1 is in the register which drives XDBUS, and the 

input x1•1_1 is in the register which drives XEBUS. A second bank of six 74F413 FIFO 

buffers is connected to the output of the register which drives XEBUS, and holds all 

inputs x,, 9 which fall between x,,1_1 and xi-i,;+i in the scan order. These FIFO buffers are 

controlled by the delay line input strobes SOC, SIC, SOD, and SID, which are named 
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according to the same convention as the control strobes for the first bank of buffers. 

The input x;-i,j+l is in the register which drives XFBUS, X;-i,j is in the register which 

drives XGBUS, and x,_1•1_ 1 is in the register which drives XHBUS. Hence, X;,j and its 

eight nearest neighbors are available at the taps of the delay line. On the next rising edge 

of REGCLK, the delay line shifts one position. At that time, x,,j+I enters the register 

which drives XIJBUS. This pixel and its eight nearest neighbors are then available at 

the delay line taps. The pixel X;-1,1_1 is shifted out of the delay line and discarded in order 

to make room for x 1+i,j-l to enter the delay line. 

The timing constraints applying to the control inputs of the 74F4 l 3 FIFO buffers are 

quite complex, and will not be discussed here. These devices are each four bits wide and 

64 bits deep. When the prefilter operates in 128 x 128 mode, 125 pixels must be stored 

in each buffer bank. Each bank is constructed from a square array of 74F413 buffers 

that is three devices wide by two devices deep, collectively providing storage for up to 

128 12-bit data words in each bank. In 64 x 64 mode, each bank must store only 61 

pixels. Consequently, the registers driving XDBUS and XFBUS were constructed from 

74F399 four-bit dual-ported register devices to provide the capability of realizing buffers 

of either depth. The signal 128 selects whether these registers latch the pixel at the head 

of a 61 element queue or at the head of a 125 element queue. 

As a final point concerning the delay line, we note that this circuit module must be 

primed by the microcode sequencer after any system reset. By this is meant that two 

complete scan rows plus three data words must be received at the prefilter input and 

shifted into the delay line before the first complete neighborhood becomes available at 

the delay line taps. Furthermore, since the first row of any frame contains only header 
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information, three complete rows plus three data words must be received before the first 

filtered output pixel can be produced. 

5.2.4 Circuit Module SRT MTRX 

The SR T MTRX module appears on sheets 11 through 22 of the schematic diagram. 

Returning once again to the block diagram of Figure 22, we see that the inputs to SR T 

MTRX are RESET, CLK, five control strobes, and the nine data busses output by the 

delay line. The module outputs are all wired to a DB-37 connector on the back panel 

of the prefilter, and are all twisted-pair signals. Excepting the inverted sense of the 

prefilter output clock as described in Section 5.1, the outputs from module SRT MTRX 

adhere to the ATWS timing characteristics illustrated in Figure 21. 12-bit filtered output 

pixels are produced on the output data vector DOUT of Figure 22, and correspond to 

the vector DATA in Figure 21. The scalar output signal UNDERFLO is the output sign 

bit, which was also discussed in Section 5.1. If this signal is true, then DOUT is 

interpreted as a negative pixel value. Taking UNDERFLO to be the high order bit of 

DOUT, one obtains a 13-bit two's complement integer. The output signal FSYNO 

provides the means of frame synchronization in the filtered output. This signal is true 

when the first data word of any output frame is stable on the output vector DOUT. 

Timing characteristics for the signal FSYNO in Figure 22 are the same as for the signal 

FRAMESYNC in Figure 21. The output pixel clock is PCLKO. DOUT and FSYNO 

are assumed valid on the rising edge of PCLKO. Since all prefilter outputs are 

twisted-pair signals taken from differential line drivers, the timing characteristics of 

signal PCLKO in Figure 22 are identical to those of the signal CLOCK in Figure 21. 
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Figure 23 is a block diagram illustrating the computation of prefilter outputs. It is 

functionally equivalent to the diagram on sheet 11 of the schematics. The data word 

which is currently at the center of the 3 x 3 compensated median filter mask of RA11 is 

available on XIJBUS, unless the delay line is being primed. This bus is represented by 

the center tap of the delay line in Figure 23. If the data word on XIJBUS is a header, 

then the microcode sequencer asserts the low active signal XIJ, causing the multiplexer 

at the bottom of Figure 23 to connect XIJBUS directly to the prefilter output vector 

DOUT. Hence, all headers are passed directly to the prefilter output without alteration 

as required by item one of the design specification list. 

Circuit submodule SATDETECT appears on sheet 22 of the schematic diagram. 

SATDETECT contains a bank of 12 DIP switches which are used to manually set the 

saturation threshold. SATDETECT also contains logic which compares the data word 

on XIJBUS to the saturation threshold and to zero. If the data word on XIJBUS is zero, 

or if it is greater than or equal to the current saturation threshold, then the output signal 

SEL from SATDETECT causes the multiplexer at the bottom of Figure 23 to connect 

XIJBUS directly to DOUT. Hence, as required by items four and five of the design 

specification list, zero valued pixels and saturated pixels are passed directly to the 

prefilter output without alteration. 

When XIJBUS holds a normal pixel in the sense described by item six of the design 

specification list, the hardware sorting architecture of Figure 23 operates as described in 

Section 4.4. During the first cycle of CLK for which this pixel and its eight nearest 

neighbors are stable on the delay line taps, the microcode sequencer asserts the SR T 

MTRX input control strobe DAV (which stands for data available). During any clock 

cycle for which DAV is asserted, the multiplexers at the top of the sorting array connect 

S A Complete Real Time Design 98 



DATA IN DELAY LINE 

FILTER OUT 

Figure 23. Computation of prefiltered outputs 
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the delay line taps to the top of the array, allowing a partial sort of the neighborhood 

to take place. For three subsequent cycles of CLK, the multiplexers feed back the 

sorting array outputs to the array inputs. Consequently, by the end of the fourth clock 

cycle the two middle valued pixels of the neighborhood emerge at the bottom of the 

sorting array. These middle valued pixels are added using a cascade connection of three 

74Fl81 arithmetic logic units, and the low order bit of the sum is dropped to yield the 

neighborhood median. The median is then subtracted from the pixel on XIJBUS using 

a second set of three 74Fl81 arithmetic logic units. The addition and subtraction 

operations are both performed during the fifth clock cycle after DAV is asserted, and 

thus RA11 is realized in five cycles of the 12 MHz clock. As the result is a valid filtered 

output, the multiplexer at the bottom of Figure 23 connects the outputs of the second 

set of arithmetic logic units to the vector DOUT in this case. 

Since computing a filtered output pixel requires five clock cycles, circuit module SR T 

MTRX contains a simple five phase hardwired control unit to generate internal timing 

signals. Each control phase lasts for one cycle of CLK. The control unit waits in phase 

one until DAV is asserted, and then cycles through the other phases. The filtered output 

is latched into DOUT at the end of control phase five. During the next occurrence of 

phase one, the output pixel clock PCLKO is generated, provided that the microcode 

sequencer has not asserted the control signal EDGEMASK. EDGEMASK provides a 

means of preventing spurious output pulses on PCLKO while the delay line is being 

primed. Additionally, if the microcode sequencer asserts control signal HSYN, then the 

current output data word is assumed to be the first header word of a frame. In this case, 

SRT MTRX asserts the output frame synchronization signal FSYNO. Finally, the 

control signal OE provides a means for satisfying items two and three of the design 
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specification list. When the microcode sequencer asserts OE, the data output lines 

DOUT and UNDERFLO are tri-stated by the SRT MTRX module control unit. 

5.2.5 Circuit Module MICRO CTRL 

Circuit module MICRO CTRL is the prefilter microcode sequencer, and appears on 

sheets 4 through 7 of the schematic diagram. The architecture for the microcode 

sequencer is shown in Figure 24. A three phase internal hardwired control unit is 

employed, and each control phase lasts for one cycle of CLK. During control phase one, 

the microcode sequencer waits for EXIN SYNC to assert EDAV, signifying that external 

data has arrived and has been synchronized. When this occurs, the microcode sequencer 

enters control phase two, during which strobes are asserted to advance the delay line. 

Control phase two is always followed immediately by control phase three. During phase 

three, the microcode sequencer asserts the five strobes which control module SRT 

MTRX, and also sequences to the next microinstruction. Control phase three is always 

followed immediately by control phase one. Since the microcode sequencer can stay in 

control phase one for any number of clock cycles, the requirement that the prefilter be 

able to operate at vastly divergent data rates is satisfied. The internal clock always runs 

at 12 MHz. In a low data rate application, the microcode sequencer simply spends most 

of its time in control phase one waiting for input. 

The microinstruction format is shown in Figure 25. The implementation of RA 11 requires 

191 microinstructions, and consequently the microaddress register is eight bits wide. 

This register is labeled PC in Figure 24, which stands for program counter. The 

microinstructions are 24 bits wide, and the microstore is implemented in three 
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Monolithic Memories high speed 256 x 8-bit ROMS. The first microinstruction field is 

called Pn, and it controls the delay line FIFO buffers. The signal SIA, which was 

discussed briefly in Section 5.2.3, is coded directly as the first bit of P n· The other three 

bits of Pn are called PO, Pl, and P2. The block labeled DCD in Figure 24 contains 

combinational logic to decode these bits, and from them generate the FIFO control 

strobes SIB, SIC, SID, SOA, SOB, SOC, and SOD. 

The second microinstruction field is called I, and its four bits are used to generate 

internal control signals for the microcode sequencer. The first bit of I is called 

WDAV/HSYN. If this bit is a zero, then the microcode sequencer waits in control phase 

one until EXIN SYNC receives input data with FSYN active. Stated another way, 

coding a zero in this bit forces the prefilter to wait for the first pixel of a new frame, 

irrespective of how many spurious pulses occur on the external data clock. If 

WDAV/HSYN is coded as a one, then the microcode sequencer waits in control phase 

one only until EXIN SYNC activates EDA V. The remaining three bits of I are used to 

control the two internal programmable event counters provided in the microcode 

sequencer architecture. These counters are labeled Cl and C2 in Figure 24. If the bit 

LOAD 1 is set in the current microinstruction, then C 1 is loaded with one of two 

hardwired values, depending on the value of the operation mode control signal 128. 

Likewise, if the bit LOAD2 is set, then C2 is loaded with one of two hardwired values. 

These counters are used by the microcode sequencer to keep track of which pixel of the 

input frame is currently being processed. C 1 counts columns, while C2 counts rows. 

Cl is decremented every time input is received by EXIN SYNC. If the bit C2E is coded 

as a one in the current microinstruction, then C2 is also decremented. C2E stands for 

counter two enable. 
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The third microinstruction field is called P n-1t and also contains four bits. This field is 

used to generate control strobes for module SRT MTRX. The name Pn.1 was chosen to 

emphasize the pipelining between the microcode sequencer and module SRT MTRX. 

Recall that SR T MTRX employs a five phase internal hardwired controller, and that the 

prefilter outputs are latched by the output differential line drivers at the end of phase 

five. Consequently, the prefilter outputs are not actually stable until phase one of the 

following control cycle. During phase one, however, module SRT MTRX may proceed 

to fetch a new neighborhood from the delay line and begin sorting it. Whereas the 

control signals generated from microinstruction field P n always pertain to the 

neighborhood that is currently being transferred from the delay line to module SRT 

MTRX, the control signals generated from microinstruction field Pn.1 determine the 

characteristics of the prefilter output signals. Consequently, control strobes generated 

from Pn.1 pertain to the prefilter output that was calculated during the previous control 

cycle of module SRT MTRX. 

The four bits of microinstruction field Pn.1 are called EDGEMASK, MED/XU, and 

HSYN. They directly generate the signals bearing the same names, with the exception 

that the name of the signal generated by MED/XU is shortened to XU. These signals 

were discussed in Section 5.2.4. DAV, the fifth control strobe generated by the 

microcode sequencer for use in module SRT MTRX, is always true during microcode 

sequencer control phase two. 

As shown in Figure 24, there are three ways in which the next value of the microaddress 

register may be determined. Normally, the current microaddress is simply incremented. 

The microcode sequencer architecture also provides four software branch conditions. 

The fourth microinstruction field is called CC, and it contains one bit for each of these 
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branch conditions. CC stands for condition codes. Only one bit of CC may be a one in 

any given microinstruction. During control phase three, combinational logic in the 

block labelled g in Figure 24 examines the CC field of the current microinstruction. This 

logic also examines the four corresponding hardware conditions, which are labelled 

COND in Figure 24. If a bit of CC is set and the corresponding condition is also true, 

then the logic in g outputs a high value. In this case, the address of the next 

microinstruction is constructed by replacing the low order five bits of the current 

microaddress with the five bits of the BAD DR field of the current microinstruction. The 

name BADDR stands for branch address. If the output of g is low, then the condition 

fails and the next address is formed by incrementing the current contents of the 

microaddress register. 

The first bit of the field CC is called 64/ 128. If this bit is set, then a software branch is 

taken if the current value of mode control signal 128 is a one. Recall that the signal 

128 is driven by a rocker switch on the front panel of the prefilter. The second bit of 

CC is called TRUE. If this bit is set, then the microcode sequencer branches 

unconditionally. The third and fourth bits of CC are called TCI and TC2. lfTCI is set, 

then a software branch is taken unless the terminal count has been reached by counter 

C 1. Likewise, a software branch is also taken if bit TC2 is set and counter C2 has not 

reached its terminal count. 

The microcode is arranged in two sections, each of which contain microinstructions to 

process one frame. The difference between the two sections is that the first, which 

begins at microaddress zero, contains microinstructions to prime the delay line. 

Consequently, this section is executed only during processing of the first frame received 

after the prefilter is reset. The microcode in the second section is repeatedly executed 
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for all subsequent frames. As was mentioned above, soft.ware branching is effected by 

replacing the five low order bits of the microaddress register with the BADDR field of 

the current microinstruction. This branching mechanism has the result that the 

microcode is divided into segments of 25 = 32 microinstructions each. Software branches 

can only reach destination addresses within the current segment. 

Since the second microcode section is far greater than one segment in length, it is 

impossible to use a software branch to return to the top of the section. A hardwired 

branch was designed for this purpose, and represents the third and final method by 

which the next microaddress may be determined in Figure 24. The parallel load lines 

of the microaddress register are permanently hardwired with the first address of the 

second microcode section. The last microinstruction of this section has the bit SSL TC 

coded as a one, and this bit is coded as a zero in all other microinstructions. After the 

last microinstruction is executed, the hardwired address is always loaded to the 

microaddress register. Hence, the microcode sequencer branches back to the top of the 

section for another iteration. SSL TC stands for steady state loop terminal condition. The 

two microinstruction bits labelled RESERVED in Figure 25 are reserved for use in 

future modifications. 
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6 Conclusions and Recommendations for Further 

Research 

The ATWS prefilter problem is a difficult one because little is known about the 

characteristics of backgrounds in midwave infrared imagery. In many cases, the target 

and clutter spectra may not be disjoint. Since precise models are not currently available 

for targets or clutter, qualitative design techniques must be employed. The concept of 

an ideal prefiltering algorithm for the A TWS was developed in the opening of Chapter 

Two. The ideal algorithm passes all targets in the input imagery without attenuation, 

and it also reduces the values of all non-target pixels to zero. The remainder of the thesis 

was devoted to the investigation of realizable prefiltering algorithms to approximate the 

ideal algorithm. 
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6.1 Algoritlinz Develop1nent and Evaluation 

In Section 2.1, an image enhancement technique known as unsharp masking was 

introduced. With this technique, output images are formed by subtracting masked 

versions of the input images from the originals. The properties of median filters were 

examined in Section 2.2, and it was hypothesized that a median filter masking operator 

would be capable of removing targets from the A TWS imagery without significantly 

distorting the clutter features. Consequently, a prefilter based on unsharp masking with 

a median filter masking operator would provide a realizable approximation to the ideal 

algorithm. 

Three specific median filter unsharp masking algorithm variants were recommended in 

Section 2.3. RA1 employed a 3 x 3 median filter masking operator. It was hypothesized 

that the presence of multi-pixel target smears and heavily-tailed random noise in the 

input imagery might bias the amplitudes of the medians computed by this operator 

upward from the true values of the clutter medians. Consequently, a compensated 

3 x 3 median filter masking operator was used in RA11• Each output pixel of the 

compensated median filter was computed as the median of the eight nearest neighbors 

to the corresponding input pixel. This compensation technique was proposed by 

researchers at the United States Naval Research Laboratory. Finally, RAm employed a 

one-dimensional five-point median filter masking operator applied to only the rows of 

the input frames. 

The three recommended algorithm variants were quantitatively evaluated in Chapter 

Three. For comparative purposes, three linear prefiltering algorithms were evaluated as 
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well. Algorithms were compared on the basis of signal to clutter ratio enhancement due 

to prefiltering. Since signal to clutter ratio enhancement favors those algorithms that 

are best able to reject clutter more than it favors those that are best able to pass targets, 

a second evaluation metric called the beta factor was proposed in Section 3.1. The beta 

factor may be loosely interpreted as a percentage measure of how well a given algorithm 

performs with respect to the ideal algorithm. Which criterion is more important to any 

particular automatic target recognition system depends on the specific characteristics of 

the target detection and segmentation algorithms employed by that system. 

The experimental results show RA111 to be an inferior prefiltering algorithm for the 

A TWS. RA1 and RA11 were consistently superior to RA111, and in some cases the latter 

did not perform as well as the linear point detection filter. For the input imagery that 

was considered, a better estimate of the clutter was obtained from a 3 x 3 square window 

than from a one-dimensional five-point window. As RA111 is more economically 

implemented in hardware than are RA1 and RAm implementation of RA111 might be 

considered as an alternative to a 5 x 5 two-dimensional filter for some applications. 

The clutter considered in Section 3.2 was smooth and noise free. With the exception of 

the square-containing input frame of Figure 7, it was also locally monotonic. In the 

experimental results, RA1 and RA11 were shown to perform nearly as well as the ideal 

algorithm. They were both consistently superior to the linear point detection filter. 

RA1 enhanced the signal to clutter ratio approximately 20 percent more than RA11• This 

was a consequence of slightly greater clutter leakage in the output of the latter. RAu 

passed slightly more target energy than RA1, and consequently had a slightly greater beta 

factor. The Laplacian filter and unsharp masking with a 3 x 3 mean filter mask were 

both inferior to the other algorithms. 
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Realistic input imagery was considered in Section 3.3. Due to random noise and 

irregular clutter features, the performances of the recommended algorithm variants were 

significantly degraded from that observed in Section 3.2. RA1 and RA 11 were consistently 

superior to the linear point detection filter. All three of these algorithms performed 

comparably against imagery containing true point targets. In the presence of multi-pixel 

target smears, however, the performance of the point detection filter was degraded more 

severely than that of the recommended algorithm variants. As discussed in Section 3.2, 

this result was expected. For all three target types, the signal to clutter ratio 

enhancement due to RA1 was approximately 11 percent greater than that due to RA11• 

The beta factor of RA1 was approximately 2.6 percent greater than that of RAm 

irrespective of the target type. These results indicate that RA1 and RA11 were 

approximately equal in their ability to pass the targets, while the filtered clutter variance 

was somewhat lower for RA1• Stated another way, for the experimental input imagery 

the compensation in the masking operator of RA 11 provided no tangible advantage over 

the uncompensated median filter. One explanation for this might be that the clutter 

distribution did not have large enough tails for RA11 to excel. The author recommends 

extensive further investigation of RA1 and RA 11 before either one of these is declared 

superior to the other. In particular, both algorithms should be evaluated on a large 

number of realistic frames. The input for the experiments of Section 3.3 contained only 

10 unique background scenes. 

With respect to the algorithm measurement criteria used in this thesis, it is probable that 

the performance of both RA1 and RA11 could be significantly improved if these prefilters 

were followed by a simple thresholding operation. The filtered clutter mean is expected 

to be nearly zero, and a good deal of the clutter leakage around targets is expected to 

have negative amplitude. These assertions are corroborated by the output frames shown 
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in Section 3.2. Although thresholding the output of RA1 and RAu would most certainly 

reduce the clutter standard deviation, it is questionable whether such an operation would 

actually facilitate target detection. 

6.2 Algorithm Imple1nentation 

Because the determination of local order statistics is a highly nonlinear operation, the 

design of real time median filters is difficult. The histogram and radix methods resulted 

from various authors efforts to circumvent the hardware complexity associated with full 

scale selection networks. Unfortunately, these methods both require extremely complex 

control logic. In Section 4.4, in-place computation was used to simplify the hardware 

complexity of the standard selection network. A practical real time sorting architecture 

for RAu was developed. The author recommends that this architecture be further 

investigated with the objective of applying it to the implementation of real time median 

and order statistic filters in general. That RA1 and RAu are in fact realizable 

approximations to the ideal algorithm was demonstrated by the complete design 

presented in Chapter Five. Although only RAu was implemented, with reasonable effort 

the design could be modified to realize RAr In particular, the author would recommend 

that the sorting architecture developed in Section 4.4 be replaced with an architecture 

based on the modified radix method. 
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