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(ABSTRACT)

Detection of point targets and blurred point targets in midwave infrared imagery is
difficult because few assumptions can be made concerning the characteristics of the
background. In this thesis, real time spatial prefiltering algorithms that facilitate the
detection of such targets in an airborne threat warning system are investigated. The
objective of prefiltering is to pass target signals unattenuated while rejecting background
and noise. The use of unsharp masking with median filter masking operators is
recommended. Experiments involving simulated imagery are described, and the
performance of median filter unsharp masking is found to be superior to that of the
Laplacian filter, the linear point detection filter, and unsharp masking with a mean filter

mask.

A primary difficulty in implementing real time median filters is the design of a
mechanism for extracting local order statistics from the input. By performing a
space-time transformation on a standard selection network, a practical sorting
architecture for this purpose is developed. A complete hardware median filter unsharp
masking design with a throughput of 25.6 million bits per second is presented and

recommended for use in the airborne threat warning system.
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1 Introduction

An automatic target recognition system can be defined as a machine that is capable of
forming images, and detecting and classifying tactical targets within those images. Any
such system must include some type of sensor subsystem which converts scene
information to a representation suitable for machine processing. For tactical target
detection, scene information is generally collected in the form of midwave infrared
radiation. A snapshot of the scene is represented by a matrix, the elements of which are
called pixels. The term pixel is an abbreviation for picture element, where a pixel
represents the smallest uniquely definable scene element. The value of each pixel is an
integer representing the amount of infrared flux incident on a particular area of the
sensor at a particular time. The entire matrix is referred to as a frame. In this thesis,
the subscript notation x, , will generally be employed to reference the pixel located in the
J* column of the i* row of the frame X. In some cases where the subscript notation

becomes too difficult to read, the alternate notation x(i, j) will be used.

Tactical targets are unfriendly military vehicles, manned or unmanned. The automatic

target recognition problem is concerned with the specification of machine algorithms to
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analyze frames with the objective of correctly identifying tactical targets. The steps by
which this is accomplished are preprocessing, detection, segmentation, feature
extraction, classification, tracking, and prioritization [2,4]. In preprocessing, target
detectability is improved by enhancing the contrast in frames: target information is
amplified or passed, while background and noise information is attenuated or rejected.
Detection is the process of identifying those parts of a frame that may contain tactical
targets [2,4]. After detection, candidate targets are removed from their surrounding

background in a process known as image segmentation [4].

Taken together, preprocessing, detection, and segmentation constitute low level
processing in which scene information is represented by pixel magnitudes organized as
frames. This representation does not always facilitate target classification, and hence the
process of feature extraction is used to map the segmented targets into a more abstract
space where representation schemes based upon texture or features may be utilized [2].
Whatever representation is used in higher level processing, classification is the process
by which potential targets are identified as specific tactical objects. Determining and
monitoring the position of classified targets with relation to the position of the sensor
is referred to as tracking, and based on tracking information targets can be prioritized.
Once targets are prioritized, specific actions in response to their presence can be

initiated.
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1.1 Problem Impetus

Sophisticated automatic target recognition systems with excellent performance have
been reported. Bhanu, Politopoulos, and Parvin developed a system for recognizing
tanks, trucks, and other military vehicles [3]. In a data base of infrared scenes for which
truth information was known, the system detected 85 percent of all targets and correctly
classified 80 percent of the detected targets. Running on a Vax 11/780, the system
required approximately two minutes of execution time per frame. With the advent of
VLSI and VHSIC technologies, as well as recent advances in infrared sensor technology,
much research is being devoted to the development of real time automatic target

recognition systems [2,3,4,9].

One such system under development at the United States Naval Research Laboratory
is an airborne threat warning system for high performance aircraft [9]. The system
incorporates a wide-field-of-view staring mode infrared focal plane array sensor. The
frame size is 128 by 128 pixels, and the data rate is 120 frames per second. With the
sensor mounted on an aircraft, the system recognizes potentially threatening air-to-air
and ground-to-air missiles. Henceforth, these missiles will be referred to simply as
targets. In the scenes observed by the airborne threat warning system, and other similar
systems as well, the best known instantaneous characterization of targets is as bright
point sources [5,10,11,12]. For investigative purposes, targets are usually simulated by
introducing extra impulsive energy into a given background scene by increasing the
amplitudes of pixels at the location of the simulated target. The amount by which the

amplitudes are increased is generally a function of the scene standard deviation.
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This thesis investigates real time preprocessing for the airborne threat warning system,
which will hereafter be referred to as the ATWS. The preprocessing must ultimately
operate on frames which are representations of scenes observed by the system. Section
1.2 provides a discussion of the elements that make up the scenes and the image

formation process by which scene information is assimilated into frames.

1.2 Image Elements and Image Formation

A frame of infrared imagery comprises target information, background information, and
noise. Imaging infrared focal plane array sensors such as the one used in the ATWS are
charge integrating devices. Typically, an array of mercury cadmium telluride detectors
is used to convert incident infrared radiation into electrical charge. The charge is
transferred to an underlying array of silicon storage devices. Charge packets collected
in the storage devices are read out sequentially, amplified, and converted to digital data
[9]. Among other factors, focal plane array nonlinearity, nonuniformity, and crosstalk
will result in the corruption of scene information by noise regardless of the scene under
observation [4,5,9,10]. The characterization of this noise is currently an active research
area [9,10]. In the ATWS sensor subsystem, signal processing has been implemented to
partially correct for sensor nonlinearity and nonuniformity. The effects of focal plane
array noise have been modelled in the computer generated imagery used for the
experiments of Chapter Three. The imagery was kindly provided by Dr. M.P. Satyshur

of the Naval Research Laboratory.

1 Introduction 4



Background refers to the information in a scene that does not arise from a target
Takken, et al., have suggested that target detection is particularly difficult when highly
structured background is present [7]. Background and noise features that impede target
detection are generally referred to as clutter. No unified quantitative definition of clutter
exists. Bhanu has defined it as something that looks like a target but is not a target [4].
Hetzler, et al., prefer a broader definition of clutter which embodies all attributes of the
background that make the detection of targets more difficult [6]. Their study of clutter
in infrared backgrounds suggests that the level of clutter in a scene is strongly related to
the global standard deviation of pixel values within the scene. An important assumption
made by Takken, et al., and adopted in this thesis is that the spatial extent of the clutter
in a scene is strictly greater than the spatial extent of the targets [7). This assumption
involves no loss of generality, since targets are characterized as point sources. The
consideration of clutter in the ATWS is extremely important; clutter, rather than image
formation noise, has historically been the performance limiting factor in point target

detection systems [1,2].

Optical blur is a factor in the image formation process which arises as a consequence
of the ATWS sensor’s fill factor. The fill factor of a focal plane array sensor is the
percentage of the array surface area that is covered by active detectors: an array with
unity fill factor has no dead spots. All practical imaging array sensors have fill factors
less than unity. Inactive bands on the array typically have widths as great as 20 percent
of the detector-to-detector spacing [11]. Were the fill factor unity, the location of a
target image on the focal plane would not be an issue. Since the fill factor is less than
one, a danger exists that targets may be lost in the inactive regions between detectors.
To ensure that targets are not lost, the scene must be blurred before imaging. In the

ATWS sensor subsystem, the size of the optical blur is the same as the detector spacing
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[10,11]. Due to the optical blur, a target centered on a given detector may give rise to
excess input energy on adjacent detectors as well. Pauli, Longmire, and Takken [11]
have studied the implications of optical blur for automatic target detection and
concluded that no single optimal matched linear filter can be defined for the detection
of blurred point targets. In this thesis, the optical blurring of targets has been modelled
by equally distributing target energy between one, two, or four adjacent pixels. The
geometries for the three blurred target models are shown in Figure 1, where each square
represents one pixel. The background data used for the experiments of Chapter Three

also account for optical blur effects.

To recapitulate the image formation process, frames in the ATWS are quantized
representations of the scenes observed by the sensor subsystem. Each frame is an array
of integer valued pixels. To a reasonable approximation, the magnitude of each pixel is
the sum of a noise term and a term that is linearly related to the amount of infrared flux
incident on the corresponding detector in the sensor array. The incident flux arises from
background and target information in the scene, which has been perturbed by the optical
blur. Highly structured background information and noise may constitute clutter,
making the extraction of target information difficult. The objective of preprocessing is
to improve target detectability by discriminating against background, noise, and clutter

while passing target information.
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(a) (b) (c)

Figure 1. Geometry of target models: (a) 1-pixel target; (b) 2-pixel target smear; (c) 4-pixel
target smear.
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1.3 Preprocessing Algorithms

A major difficulty in developing preprocessing algorithms, or prefilters, for automatic
target recognition systems is that few assumptions can be made concerning the character
of background, clutter, and targets in infrared imagery. Takken, et al., have described
the background characteristics as variable and unknown, and commented that except in
the context of specific images, the spatial frequency spectrum of the clutter is also
unknown [7]. Hetzler, et al., tried unsuccessfully to formulate quantitative models for
backgrounds and clutter [6]. Bhanu has noted a general absence of both analytical scene
models and experimental databases [4]. He also noted an absence of target models, and

pointed out that recorded signatures are often not repeatable.

Otazo and Parenti have noted that infrared backgrounds are neither stationary nor
Gaussian, but have reported some success modelling scenes with first order Markov
processes [13]. In their work, matched linear filters were designed for known target
signatures. These filters were compared to statistically matched filters designed with a
priori knowledge of the clutter and target characteristics. They found the two methods
to be nearly equal for improving target detectability. Tao, er al., designed nonrecursive
Weiner filters and Kalman filters to maximize the target to clutter ratio for extended
targets (extended targets are not modelled as point sources and may span sev;:ral pixels)
[12]. They found that the filters performed well against white noise, but were not robust
in the presence of varying background clutter. They concluded that the extensive
calculations required to estimate background characteristics in real time were not

justified.
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Due to the unknown and varying characteristics of background and clutter, the general
absence of verified target models, and target signature perturbations introduced by
optical blur, standard signal detection theory cannot generally be applied to the design
of optimum prefilters for point target detection [7,11,13]. Several ad hoc methods, as
well as linear filters matched for point targets and blurred point targets have been
investigated, however. These algorithms are generally categorized as spatial or temporal.
Spatial filters map a single input frame into a single output frame by convolving a filter
window with the input frame. Given a filter window H, the general formula for an

n x n spatial filter (n odd) with input frame X and output frame Y is:

n n

Hod)= ) D) k) x(p+i=(n+1)2,q+j~(n+1)2) (1.3.1)

=1 j=1

For a 3 x 3 filter,

hll hl2 h]3
H= h2| h22 h23 . (1.3.2)
h3l h32 h33

Various modifications to Equation 1.3.1 have been proposed for use at the edges of

frames. For example, ambiguity arises if the equation is applied for the calculation of

e

The Laplacian and point detection filters have been used extensively for background and
clutter suppression because they respond particularly well to point targets [5,7,8,11].

The mask for the Laplacian filter is:
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% -2 4 -2 (1.3.3)
1 -2 1
The point detection filter mask is:
-1 -1 -1
—é— -1 8 -1 (1.3.4)
-1 -1 -1

From a practical standpoint, spatial filters are attractive because they do not require the
storage of an entire frame. Also, the repetitive and regular nature of linear spatial
filtering algorithms makes them particularly well suited to implementation in parallel

pipelined hardware.

While spatial filtering algorithms operate on single frames, temporal algorithms make
use of the fact that successive frames represent successive snapshots of the scene. If the
sensor were not moving, then a simple subtraction of two successive frames would
remove all stationary background information. Fast moving targets and random noise
would be passed by the differencing operation. The output frame of a temporal
differencing filter is a linear combination of the past and present input frames.
Employing the euclidean inner product notation used by Bergen and Mazaika [8], the
equation for a first order temporal differencing filter is:

i) = < [ l]« [x(” i”)] >

-1 x(t-1,4,))
= x(t’ I’j) - X([~l, i?j)

(1.3.5)

One realization of second order temporal differencing is:
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-5 x(t,1,))
Wi, j) = < l: 1:] , [x(z-l,i,ﬁ] > (1.3.6)

-5 x(t-2, i, ))

Applications such as the ATWS require that the sensor be in motion. This results in
some clutter leaking, or being passed through, a temporal differencing filter. Clutter
leakage becomes more pronounced as the order of the temporal differencing ﬁlt.er is
increased. Excellent clutter reduction has been achieved through the use of low order
temporal differencing filters in conjunction with high frame rate sensors. In a study by
Fraedrich, low order temporal differencing was found to reduce clutter standard
deviation by factors of 30 to 70 [1]. Also using low order temporal differencing, Pauli,
Longmire, and Takken reported a forty-fold clutter reduction [I1]. In general, the
prima;ry drawback of temporal differencing is that a number of frames equal to the order
of the algorithm must be stored by the filter. In real time implementations, this would
necessitate the use of large, ultra high speed random access memories and creative

addressing schemes.

Spatial filters having clutter reduction capabilities equal to those of temporal filters have
not been reported. In fact, Pauli, Longmire, and Takken found that when spatial and
temporal algorithms were used together, the performance of the temporal algorithms
was frequently degraded. Only in rare cases did the addition of a spatial algorithm
improve the performance of a temporal filter [11]. One should bear in mind that the
dramatic results cited in the preceding paragraph pertain to the clutter reduction
capabilities of temporal differencing algorithms. The ability of these algorithms to

discriminate against clutter while passing targets was not addressed.
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1.4 Overview

In this thesis, nonlinear spatial algorithms for prefiltering in the ATWS are developed
and investigated. The algorithms are collectively called median filter unsharp masking.
- They are based on order statistics, and involve subtraction of running local medians
from the input frames. Median filter unsharp masking was suggested to the author by
researchers at the U.S. Naval Research Laboratory. During the period of September
1987 to June 1988, the author devoted considerable effort to a theoretical investigation
of median filter unsharp masking. Arguments supporting its use for prefiltering in the
ATWS were formulated. The investigation is summarized in Chapter Two, where the
author also recommends three specific median filter unsharp masking algorithm variants
for use in the ATWS. During the period of December 1987 to July 1988, the author
conducted computer simulation experiments to quantitatively evaluate median filter
unsharp masking for automatic target detection prefiltering applications. Several other
algorithms were also experimentally investigated. Results from two experiments are
presented in Chapter Three. Design considerations for the implementation of real time
median filters are discussed in Chapter Four. While working at the United States Naval
Research Laboratory during summer 1987, the author designed a complete real time
prefilter based on median filter unsharp masking. Under the supervision of the author
and Dr. J.C. McKeeman, a Virginia Tech team validated the design during the fall of

1987. The design is presented in Chapter Five.

The following list summarizes the specific contributions of this thesis:
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Three median filter unsharp masking prefilter algorithms are evaluated on their
ability to enhance detectability of point targets and blurred point targets in typical
ATWS imagery. For the scenes that are investigated, two of these algorithms are

shown superior to three commonly used linear algorithms.

A new algorithm evaluation criterion called the beta factor is proposed in Section
3.1. For certain applications, the beta factor may be more informative than

previously proposed algorithm evaluation criteria.

A compensated median filter masking operator is introduced. For the scenes that
are investigated, the compensation is shown to offer no tangible advantage over an

uncompensated median filter.

A special hardware sorting architecture for real time median filtering is presented in

Section 4.4.

Through the presentation of a complete design, median filter unsharp masking is
demonstrated to be a practical algorithm for use in real time automatic target

detection systems.

Chapter Six is devoted to conclusions and recommendations for further research.
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2 Median Filter Unsharp Masking

In Section 1.2 the image formation process for the ATWS was discussed. The resulting

image model can be summarized as:

frame = targets + background + noise (2.0.1)

The objective of prefiltering is to facilitate detection of the targets. In this respect, both

the background and noise constitute clutter. The image model can be simplified to:

frame = targets + clutter (2.0.2)

To improve target detectability, we seek a prefiltering algorithm that will attenuate the
clutter while passing the target information. We define the ideal algorithm as an
imaginary filter whose output is zero for all non-target pixels. The ideal algorithm also
passes all targets without attenuation. Unfortunately, the ideal algorithm cannot be
realized because it requires a priori knowledge of the target locations and amplitudes.
In this chapter, we will attempt to define a realizable algorithm which closely

approximates the ideal algorithm.
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In Section 1.1 we noted that targets in the ATWS are characterized as bright point
sources. They are impulsive in nature, and consequently an input frame will contain
relatively high spatial frequencies in the neighborhood of a target. The separation of an
input signal into a high frequency noise component and a relatively lower frequency
information bearing component is a common problem in signal processing. For
example, a coded voice signal might be corrupted by high frequency noise during
transmission through a channel. Attenuation of noise has been the object of extensive
investigation, and a class of filters known as smoothers has been established to remove

high frequency noise from input signals.

Since targets are characterized by high spatial frequencies, it would seem that an
appropriate smoother could remove targets from a frame. If the targets were smoothed
away and the smoothed frame were subsequently subtracted from the original input
frame, then the clutter would be removed without attenuating the targets. We would
then have an approximation to the ideal algorithm. Such subtraction of a modified, or
masked version of an image from the original is the basis for an image enhancement
technique known as unsharp masking. In Section 2.1 the use of unsharp masking to
approximate the ideal algorithm is proposed, and incorporation of a nonlinear masking
operator known as the median filter is suggested. The properties of median filters are
discussed in Section 2.2. In Section 2.3, three specific median filter unsharp masking
algorithms are defined to approximate the ideal algorithm. In some of these discussions,
frames are treated as data sequences in a theoretical sense. Hence, the term sample is

used interchangeably with the term pixel.
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2.1 Prefiltering by Unsharp Masking

The general equation for unsharp masking is:
Y=0G(1 —a)[X— HX)] +aX (2.1.1)
where

X = the original input image

H(.) = the masking operator

G(.) = an arbitrary gain function
« = a mixing parameter, 0 < a < 1
Y = the enhanced output image

An unsharp masking system block diagram is shown in Figure 2. Choice of the
smoothing operator H(.) is extremely important in the application of unsharp masking
to any particular problem. Lo has used unsharp masking to compress the global
dynamic range of images while increasing local area contrast by using a 7 x 7 linear
low-pass filter for H(.) [14]. His objective was to improve the quality of the images on
a CRT display having limited luminance sensitivity. In his study, 21 observers evaluated
filtered images on the basis of psychophysical criteria. Of the six algorithms evaluated,

unsharp masking was ranked third best.

If a smoother H(.) can be found to remove targets from a frame without significantly
distorting the clutter, then an approximation to the ideal algorithm can be realized by
setting G(.) =1 and a =0 in Equation 2.1.1. A block diagram of the resulting system is
shown in Figure 3. The ATWS prefilter problem is then reduced to that of finding a

suitable smoother that is capable of removing targets without distorting the clutter.
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SMOOTHER
H(X)

Figure 2. Unsharp masking block diagram

G(1—-a)
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Figure 3. Block diagram of unsharp masking for the ATWS prefilter

SMOOTHER
H(X)
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In most smoothing applications, the information bearing signal components are
spectrally disjoint from the noise, and hence a linear filtering operation can be used to
separate them [29]. However, as was noted in Section 1.3, no assumptions can be made
regarding the spectral content of the clutter in the ATWS. In particular, sharp edges in
the background may contain the same spatial frequencies that are characteristic of
targets. As was pointed out by Garibotto and Lambarelli in their study of noise removal
in biomedical images, linear filtering is often useless for the removal of noise (or targets
in the ATWS) when the signal components are not spectrally disjoint [19]. They noted
that the application of linear smoothers resulted in distortion of sharp discontinuities in
the data (or clutter in the ATWS). For an unsharp masking algorithm to be effective
as a prefilter for the ATWS, the smoother must preserve sharp, discontinuous
background features. For example, if a corner were significantly distorted by the
smoother, then it might appear as a target upon subtraction of the masked image from

the original.

Beaton and Tukey faced a similar problem in fitting polynomials to band-spectroscopic
data [18]. They searched for a smoother whose output would not be affected by the
presence of localized maxima and minima in the input. The likeness of this problem to
the ATWS prefilter is striking. Targets represent local maxima, and we seek a smoother
that will pass all clutter features undistorted. For effective subtraction in the unsharp
masking algorithm, the ability of the smoother output to locally track clutter features
must not be affected by the presence of a target in the input. Beaton and Tukey
conclﬁded that the robustness offered by nonlinear smoothing operators was required for
their application. In particular, they recommended the use of a median filter. Gray,
McCaughey, and Hunt have used unsharp masking with a median filter mask for edge

enhancement and noise cleaning of digital images [15]. They compared the performance

2 Median Filter Unsharp Masking 19



of a linear mean filter mask to that of the median filter mask and found that the median
filter was superior when the noise contained many sharp edges. Garibotto and
Lambarelli described the median filter as a smoother that is capable of removing isolated
features by replacing them with the local background [19]. Since that is precisely the
capability we desire in a masking operator for the ATWS prefilter, use of a median filter
masking operator is strongly recommended by the author. Henceforth, we will refer to
Equation 2.1.1 with G(.)=1 and a =0 as the recommended algorithm when a median

filter is used for H(.). In Section 2.2, the the properties of median filters are discussed.

2.2 Median Filtering

Median filters were first described by Tukey, who initially used them for smoothing

economic time series [16,17,18]. He modelled data sequences according to:
data = fit + residuals (2.2.1)

He referred to the fit as the smooth, and the residuals as the rough. With respect to the
ATWS prefilter, the clutter represents the smooth, while the targets represent the rough.
Tukey observed the ability of median filters to remove the rough without distorting
sharp features in the smooth, and noted their ability to do this without precise statistical
models of either data component. Median filters are members of a general class of
nonlinear systems called order statistic filters. The output of these filters is at each point
a linear combination of the local order statistics of the input. Bovik, Huang, and
Munson have studied order statistic filters and proven that the optimum order statistic

filter tends toward a median filter as the signal components to be removed become more

2 Median Filter Unsharp Masking 20



impulsive in nature [47]. They also commented that the nonlinearity inherent in the
ranking of order statistics causes the analysis and design of such filters to be extremely

difficult.

Since their introduction, median filters have been applied primarily to speech processing
and image processing. Steele and Goodman used them to smooth out transmission
errors in linear PCM [23]. Jayant used them to correct flipped bits in PCM digital
speech signals [21]. He found that the median filter was superior to a linear mean filter,
provided that the random variables used to model error occurrences were independent.
This result seems reasonable since, in a neighborhood of three objects two of which are
erroneous, the likelihood is high that the median of the three will itself be in error.
Jayant specifically noted the ability of the median filter to correct transmission errors

without smearing the speech waveform.

In a widely cited study, Rabiner, Sambur, and Schmidt investigated the removal of local
rough from speech signals [20]. They found that the median filter performed well, and
that linear smoothers were inadequate because of their tendency to smear the
waveforms. Additionally, the combination of a median filter followed by a linear
smoother was found to be even more effective than the median filter alone. Bovik,
Huang, and Munson have contended that the excellent performance of the combination
smoother was a consequence of the specific applications investigated by Rabiner,
Sambur, and Schmidt, and that there is no evidence to support the use of such a

configuration in general [47].

Pratt was among the first to apply two-dimensional median filters to image processing
[24,25].  Proceeding qualitatively, he used them to clean both impulsive and

salt-and-pepper noise from digital images while preserving edges. Salt-and-pepper refers
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to noise which contains both positive and negative impulses. In another early study,
Frieden used median filters to remove spurious overshoot and undershoot from digital
images after the application of an edge enhancement operator [26]. Median filtering will

be precisely defined in the next section.

2.2.1 Definition of Median Filtering

Among an odd number of samples, the median is the one with the middle value. For
an even number of samples the median is generally defined as the average of the two
samples that are middle in value [43]. Suppose that we have a set of n samples
X={x, » 1<i<n}. The sequence R={r, > 1<i<n) of order statistics' of X is

defined by
R = sort[X] (2.2.2)

where sort[.] is an operator whose output samples are the input samples arranged in
ascending order by value. For example, in Equation 2.2.2 , r, is the smallest element of

X, while r, is the largest element of X. If n is odd, then the median v of X is defined by:
=17y (2.2.3)

where

If n is even, then:
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+
p = T Tt (2.2.4)

where
n
k =3

To simplify this notation, we define the median operator MF[.] and write:

v=MF[X] (2.2.5)

An important point is that insofar as the operator MF[X] is concerned, the
dimensionality of X is irrelevant: the sequence R is always one-dimensional. Median
ﬁlztering involves the computation of running medians on the input. In response to the
input sequence X = {x;} (of arbitrary length), the output Y = {y} of a one-dimensional

median filter of length N (N odd) is defined as:
yi=MF[W] (2.2.6)
where
W= {x(i—(N=1)/2),...,x(i + (N = 1)/2)}

W in Equation 2.2.6 is called the window of the filter, and one can imagine the window
sliding along the input sequence as successive samples of Y are computed. The extension
of Equation 2.2.6 to even values of N is straightforward. In this case, however, the
window cannot be symmetrically centered about x; during the computation of y,. The
definition of a two-dimensional median filter simply involves the specification of a

two-dimensional window. For example, y,; might be computed from a 3 x 3 square
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window with x, , at its center. Normally, reference to an M x M median filter implies a

square two-dimensional window of size M x M, where M is understood to be odd.

When finite sequences are considered, a problem arises in using Equation 2.2.6 to
compute the filter outputs near the ends of a one-dimensional sequence or at the edges
of a two-dimensional sequence. A complete neighborhood of input samples does not
exist at these points, and hence samples are missing from W. Several conventions have
been proposed for dealing with the problem by appending extra samples to the input
sequence. In this thesis, the output at such points will be considered indeterminate and

meaningless.

Henceforth, when no danger of ambiguity exists, we shall relax the definition of the
symbol MF[.] by allowing a sequence to appear on the left of the equals mark, and write
Y = MF[X] to mean that the sequence Y results from the application of a median filter
to the sequence X. The sequences X and Y will always be assumed to have identical
dimensions. The notation y, = MF[{x,, x;, x;}], in which a single sample appears on the
left of the equals mark, will still be used to mean that y, is the median value of the
samples {x,, x;, x;}. As an example of median filtering, consider the finite length step
sequence X = {6, 6, 6, 6, 12, 12, 12, 12}. If we apply a one-dimensional median filter of
length three to X and use the symbol @ to represent an indeterminate value, then the
output sequence 4 = MF[X] = {0, 6, 6, 6, 12,12, 12,0} . This filter is often referred to
as a three-point median filter, and the sequence X is invariant to it. The term invariant
means that the features of X have been preserved undistorted in 4. If a three-point
linear mean filter is applied to X, then the step discontinuity is transformed into a ramp
in the resulting sequence B = {0, 6, 6, 8, 10, 12, 12, @}. The true utility of median filtering

is demonstrated if we introduce an impul#ive perturbation into X and consider the input
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sequence X= {6,6,6,6,12,102,12,12}. Upon application of the three-point median
filter we note that 4 = MF[AA’_] = A: the output of the median filter is not perturbed by
the presence of x,=102. The output of the three-point linear mean filter
B= {0, 6, 6, 8, 40, 42, 42, B} contains extensive perturbations, however. To conclude this
example, we observe that the difference sequence X—A= {0,0,0,0,0,90,0,0}. The
significance of this result for the recommended algorithm is obvious, and it is also clear
that the linear mean filter mask did not perform as well for this input. Because the
median filter rejected the impulsive signal component while passing the step sequence,

only the impulse remained in the difference sequence.

Because median filters are highly nonlinear, the determination of which output effects
arise from which input components is extremely difficult. Due to the superposition
principle, such analysis is relatively simple for linear systems. In the preceding example,
the median filter seemed to preserve the monotonic features of the input, whereas the
linear mean filter smeared them. The median filter also seemed to be capable of rejecting
a “spiky” signal component better than the linear mean filter. In an effort to attach
some quantitative meaning to the term “spiky,” we consider the application of a median
filter to a sequence of independent identically distributed random variables {x;} with
distribution fix) and density F(x) =f'(x) . The median of these variables is that value v
for which F(v) = 2. The ability to eliminate low probability high power impulses from
the input is a well known property of median filters. Furthermore, such impulses cannot
be removed by linear systems [48]. The presence of these impulses is characteristic of
inputs whose probability density functions exhibit large tails. The usefulness of the
median filter in smoothing applications is primarily due to the insensitivity of the median
to the tails of heavily-tailed density functions [22,45]. Further discussion of the

statistical properties of median filters will be deferred until Section 2.2.3.
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Median filters with even sized windows have not been treated in the open literature. The
analysis of such filters is considerably more difficult than that of median filters with odd
sized windows for two reasons. First, a connected window containing an even number
of samples cannot be symmetric. Secondly, the averaging operation inherent in
computing the median of an even number of samples introduces pseudo-linear effects in
the filtered output. Unless specifically stated otherwise, we consider only median filters

with odd sized windows in the remainder of this chapter.

A virtually limitless variety of window sizes and shapes could theoretically be used for
two-dimensional median filtering. For the remainder of this thesis, we consider only
symmetric square windows. Since we are assuming that the number of samples in the
window is odd, this implies that the two-dimensional windows will be of odd length in
both the horizontal and vertical directions. The deterministic properties of median filters

will be examined in Section 2.2.2.

2.2.2 Deterministic Properties

As was stated in Section 2.2.1, the set R of local order statistics is one-dimensional for
any median filter, irrespective of the dimension of the filter. Consequently, one- and
two-dimensional median filters can be treated together in many respects. In the
following discussions, we let the symbol N denote the size of the filter window in samples
and assume that N is odd. For a one-dimensional filter, N is the length of the window,
while for a two-dimensional filter with an M x M window, N = M2 A unit impulse
frame is shown in Figure 4(a). Ignoring ambiguities at the edges of the frame, the

impulse response of any two-dimensional median filter with N > 3 is an all zero frame.
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The impulse response of all one-dimensional median filters with N >3 is also zero.
Figure 4(b) shows a unit edge frame. This input is invariant to the M x M median filter,
as the output is also a unit edge frame. Likewise, the unit step sequence is invariant to
all one-dimensional median filters with symmetric windows. Since the unit step and unit
edge are sums of appropriately shifted unit impulses, these examples illustrate the fact
that the principle of superposition does not hold for median filters. Hence, median filters

are nonlinear.

Two fundamental properties of median filters have been noted by many authors. First,
the scaling property states that for any monotonic function g(.), MF[g(.)] = g(MF[.])
[29,40,45]. Secondly, the median of a monotonic subsequence is the middle element in
both value and position. Consequently, monotonic sequences are invariant to
two-dimensional M x M median filters and one-dimensional N-point median filters.
Before examining other properties, we present several definitions. The term

neighborhood is used to mean any contiguous group of samples.

We define a constant neighborhood as a contiguous group of samples, all of which have
the same value. In one dimension, we require that the extent of the neighborhood be
at least [(N+ 1)/2] samples. In the two-dimensional case, we require that the extent of

the neighborhood be everywhere at least [(M + 1)/2] samples in each dimension.

In one dimension, we define a sequence {x,} to be locally monotonic with length k if and
only if the neighborhood {x, ..., x,,.,} is monotonic for all i. Such a sequence is also
locally monotonic with all lengths less than k. The definition is somewhat more
cumbersome in two dimensions, and is dependent on the particular filter window under
consideration. Hence, two-dimensional neighborhood monotonicity is always defined

with respect to a particular filter window. First, we center the window on the origin of
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the real plane R x R, and consider the set of all line segments which are completely
contained by the window and also pass through the origin. We denote this set of line
segments with the symbol L. Letting Z denote the integers, we restrict L to
RxR () ZxZ. The two-dimensional neighborhood contained by the window is
monotonic with respect to the window if and only if, for each element ¢ in the restriction
of L, ¢ is monotonic. If all neighborhoods in a frame are monotonic with respect to a
particular window, then we say that the frame is locally monotonic with respect to that

window.

We formally define an impuise as the occurrence of fewer than [(N+ 1)/2] contiguous
extreme samples in the interior of a neighborhood that would otherwise be constant or
monotonic. By extreme, we mean that the impulsive samples must have greater
amplitudes than all other samples in the neighborhood. In one dimension, we take
interior to mean that any two impulses must be separated from one another by at least
[(N+1)/2] samples. In two-dimensions, we require impulses to be separated from one

another on all sides by at least [(M + 1)/2] samples.

We define an edge as any boundary between constant or monotonic neighborhoods.
We define an oscillation as two or more contiguous samples that are not part of a
constant neighborhood, a monotonic neighborhood, an edge, or an impulse. Finally,
we refer to any sequence that is invariant to a specific median filter as a root of that

filter.

To investigate what types of signals are roots of median filters, we observe that by our
definition any sequence which is locally monotonic must be composed entirely of
monotonic and constant neighborhoods. Furthermore, in a locally monotonic sequence

any two monotonic neighborhoods that are opposite in trend must be separated by a
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constant neighborhood. That a sequence which is everywhere locally monotonic is
invariant to median filters has been proven by Tyan, who called such roots type I [45].
In one dimension, a sequence that is locally monotonic with length & is a type I root of
a median filter of length N, N <2k — 3. In two dimensions, a sequence that is locally
monotonic with respect to a given window is a type I root of any median filter that
employs that window, or a connected subset of that window. Tyan also observed the
existence of type II roots which are nowhere locally monotonic [45]. He found the
theoretical treatment of type II roots difficult (especially so in two dimensions), but was
able to prove that any such root must be composed of oscillatory neighborhoods. He
also showed that each sample of a type II root must assume one of exactly two distinct
values. As an example, consider the infinite one-dimensional sequence
{..,-L,+1,—-1,+1,..}. This sequence is not locally monotonic with any length
greater than one, yet it is a root of a median filter with N=35 or N=9. It is recurrent
to a three-point median filter, since it is invariant to any even number of repeated
applications of the filter. Note, however, that it is not a root of the three-point median

filter.

Another proof that locally monotonic inputs are invariant to median filtering was given
by Gallagher and Wise [42]. They circumvented the perplexities associated with type 11
roots by considering only finite inputs, and adopting a convention of appending constant
samples to the input at points where a complete neighborhood did not exist.
Consequently, in their proofs they were always able to deduce the first filtered output
and proceed using inductive arguments. Gallagher and Wise also formalized the concept
of a passband for median filters [42]. Input features consisting of constant and

monotonic neighborhoods are not attenuated by a median filter, and hence are in the
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filter passband. In this respect, every neighborhood in a root sequence must either be

in the filter passband or posses type II characteristics.

2.2.3 Statistical Properties

First we will consider median filtering the input sequence X where the x; € X in the
one-dimensional case, or the x,;€.X in the two-dimensional case, are stationary
independent identically distributed random variables with mean u, variance o3,
distribution Fi{(x) and density f(x). Since the inputs are independent and the set R of
order statistics is always one-dimensional, the density of Y = {v}, the running medians
output by a median filter of size N, does not depend on the dimension of the input.

Ataman, Aatre, and Wong [41] have stated that for N=2k + 1, the density of v, € Y is:
N! k k
A0) = 7 SlOTFW)T L = Fyo)] (22.7)

Equation 2.2.7 was also stated by Justusson, who used a slightly different expression for
the leading coefficient [43]. A proof due to Papoulis is given on page 175 of reference
[49]. Kuhlmann and Wise obtained a closed form expression for the density function
F((v) of the medians by integrating Equation 2.2.7 [40]. For large N and f{x)
symmetrically distributed about u, Justusson [43] gave an expression for o2, the variance

of the medians, as:

2 1

o, = M (2.2.8)

In reference [43], he also gave an approximation to Equation 2.2.8 which provides an

improved estimate of ¢2 when N is small. Narendra pointed out that if a linear mean
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filter were employed, then the variance of the running means, o2, would not depend on
the parent density f,(x) [35]. From Equation 2.2.8, it is clear that o2 is a function of the
parent density. This fact has significance for the recommended algorithm. In particular,
Justusson showed that when F,(x) was a relatively “spiky” double exponential
distribution, the variance of v, was 50 percent smaller than the variance of the running
means [43]. Hence, the median filter is more effective than a mean filter for removing
target-like impulses from the input. Narendra obtained a similar result when the input
variables assumed a heavily-tailed log-normal distribution [35]. A different situation
arises, however, when the inputs are allowed to assume a smoother distribution more
typical of the clutter in the ATWS. Justusson showed o2 to be 57 percent larger than
o? when the parent distribution is normal [43]. This important result hints that in
addition to being better at attenuating targets, the median filter also passes clutter more

effectively than the linear mean filter.

Kuhlmann and Wise studied the output autocorrelation and power spectrum of median
filtered sequences of independent identically distributed stationary random variables [40].
They found that pairs of output samples exhibited a nonzero covariance which was
strongly dependent on the number of common samples in the windows used to compute
them. Their results corroborate the assertion that median filters tend to greatly
attenuate small, high spatial frequency features in the input. Justusson presented a
similar result, and also studied the responses of median and mean filters to
nonindependent normally distributed inputs [43]. He found that when the inputs
exhibited nonnegative correlations, the output variances of median and mean filters were

related by:

(2.2.9)
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This result once again hints at the ability of median filters to preserve non-impulsive

input features better than linear averaging filters.

Next we consider median filtering sequences of independent stationary random variables
that are not identically distributed. Ataman, Aatre, and Wong investigated the output
of three- and five-point median filters when some input samples had Gaussian
distributions, while others had heavily-tailed “spiky” distributions [41]. They found that
the presence of Gaussian inputs somewhat impaired the ability of the median filter to
completely remove impulses from the input, but that the median filter was still superior

to a linear Hanning filter for this purpose.

By examining the output variance, we have suggested in the previous discussions that
the median filter is better able to pass clutter features undistorted than comparable linear
smoothers. That this is indeed the case will now be demonstrated. In Section 1.2 we
stated that the clutter in the ATWS is assumed to be strictly greater in extent than the
targets. Although the clutter may contain many high spatial frequencies in the form of
sharp edges, it can not contain impulses in the sense that they were defined in Section
2.2.2. 'fhe occurrence of such an impulse in an input frame is always assumed to arise
from a target. Consider as input the one-dimensional step sequence {x]} or
two-dimensional edge frame {x,,} with height A and size n samples that has been
corrupted by uncorrelated noise. The input samples on the low side of the step or edge
are independent stationary random variables normally distributed with zero mean and
variance ¢2. On the high side, they are normally distributed with mean & and variance
a®. In one dimension, we denote the uncorrupted step sequence by {s;} and define the

mean-squared-error in the filtered output sequence {y;} by:
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MSE =~ ZE[(V, — )1 (2.2.10)
i=1

where ET.] is the expectation operator. The mean-squared-error is similarly defined in
two dimensions. Justusson has numerically solved for the mean-squared-error in the
output of both one- and two-dimensional median and mean filters [43]. He found that
for h > 30 the MSE of the median filter output was significantly lower than that of the
linear filter. A graph of his result for the MSE of one-dimensional three-point filters as
a function of 4 is shown in Figure 5, where both axes are in units of standard deviations.
In a similar experiment where the step was further corrupted by impqlsive noise,
Ataman, Aatre, and Wong found that not only was the median filter MSEf lower than
that of a linear Hanning filter, but that the median filter was also far better able to
remove the impulses despite the presence of the normally distributed noise [41]. We
conclude this section by noting that in a one-dimensional analysis Nodes and Gallagher
derived an expression for the output distribution of a median filter in response to any
general stochastic signal [48]. They found that the MSE of the median filter was orders
of magnitude smaller than that of a linear averaging filter when the input contained

additive impulses.

2.2.4 Frequency Domain Characterization

Because median filters are highly nonlinear, their frequency domain analysis is difficult

[29]. Although frequency domain analysis is extremely important in the study of linear
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systems, it is of less utility in the analysis of median filters because the superposition
principle does not hold for the latter. Nevertheless, a few researchers have studied the
response of median filters to sinusoidal inputs. Justusson derived the power spectrum
distribution of median filtered cosine waves in both one and two dimensions [43].
Velleman studied the power transfer characteristics of median filters in response to
sinusoidal inputs, and found that they often contain significant sidelobes [44]. He
suggested that the sidelobes are strongly related to the roots and recurrent sequences of
the filter. In reference [43], Justusson stated some results of Heygster, who constructed
empirical transfer functions for median filters by taking quotients of the Fourier
transforms of specific two-dimensional input and output sequences. The only general
result obtained from these analyses was that the spectral responses of running medians

are similar to those of running means for frequencies w, < 2z/5 [43].

2.2.5 Threshold Decomposition

The purpose of this section is to conclude our discussion of median filter properties by
citing the existence of a theory for median filters that is in many respects analogous to
the superposition principle of linear systems. Although the theory is not applicable to
the ATWS prefilter problem, it is presented for completeness. The theory was de§eloped
by Fitch, Coyle, and Gallagher, and is called threshold decomposition [38]. It has only
been developed for one-dimensional filters. Several researchers have concerned
themselves with the convergence of arbitrary inputs to roots upon repeated applications
of a nonrecursive median filter, or upon the single application of a recursive median filter

[37,38,39,42,45,46].
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A recursive median filter is one for which each output sample is used in the computation
of subsequent output samples. For example, consider median filtering the sequence
{x,, X5, X3, x,} with a three-point filter. By our endpoint convention, y, and y, are
indeterminate. For both a recursive and a nonrecursive median filter,
y2= MF[{x,, x;, x;}]. With a nonrecursive filter, y, = MF[{x,, x;, x,}]. However, for the

recursive filter y; = MF[{y;, x5, x4} ]

A well known result is that successive applications of a nonrecursive median filter will
reduce any arbitrary input sequence to a root. Gallagher and Wise proved that any
finite one-dimensional input sequence of length L samples will be reduced to a root of
any one-dimensional median filter after at most %2 (L-2) applications of the filter [42].
Another well known result is that any one-dimensional input sequence will be reduced
to a root after one application of a recursive median filter. Although this result is often
true in two dimensions as well, Nodes and Gallagher have constructed two-dimensional

inputs for which it does not hold [46].

Frequency domain analysis of linear systems is based on the fact that any input can be
decomposed into a linear combination of some set of basis signals. An orthonormal set
of complex exponentials is often chosen as the basis. The system response is then
determined as a linear combination of the responses to the individual basis signals. For
median filters, any input with k quantization levels can be decomposed into a surh of
binary sequences. Suppose that repeated application of a specific median filter would
reduce the input sequence X to the root sequence Y,. The threshold decomposition
theory states that if the binary sequences composing X were independently reduced to
roots by repeated applications of the specified filter, then those roots could be

recombined via a mapping from the space of binary sequences to the space of k-valued
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sequences in such a way as to yield Y, [38]. This theory is useful for describing the
convergence of input sequences to root sequences, and Arce has extended it to include

recursive median filters [39].

2.3 Formalization of the Recommended Algorithm

In this section, three specific variants of the recommended algorithm will be presented.
They will be evaluated in Chapter Three. Before presenting them, we note that the
general form of the recommended algorithm has appeared previously in the open
literature. Justusson described the technique of residual smoothing for recovering the
signal {s} from the noise-corrupted input {x;}={s} + {n} [43]. In using residual
smoothing, one constructs a noise estimate {n} = {x} — MF[{x}] and a correction
factor {z} = MF[{n}]. The signal is then estimated by {5} =MF[{x}]+ {z}. Of
interest is the fact that the noise estimate {n;} is computed with the recommended
algorithm. Justusson also made a brief specific reference to the use of the recommended
algorithm for object extraction [43]. He gave an example comparing a 3 x 3 mean filter

mask to a 3 x 3 median filter mask.

Tyan investigated smoothing algorithms of the form

Y= Zaka[ﬂ 2.3.1)
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where H[X] denotes k repeated applications of the smoothing operator H to the input
X [45]. In particular, Tyan used median filters as smoothing operators and required that
a,# 1. However, the recommended algorithm can be derived from Equation 2.3.1 by

letting n=¢a,=1 and aq, = —1.

2.3.1 Variant I: 3 x 3 Median Filter Mask

Based on the theoretical arguments presented in Section 2.2, we expect that some
two-dimensional median filter should be well suited for use as the masking operator in
the recommended algorithm. The geometries of the three target models used in this
thesis were shown in Figure 1. We must choose a median filter for which these target
smears fall outside the passband. To pass clutter features with minimum distortion, we
would also like the median filter to have as many roots as possible, provided that the

target smears are not roots.

Since input features less than [(N+ 1)/2] pixels in extent are eradicated by a median filter
with N pixels in its window, the number of roots decreases monotonically with the
window size (all possible input sequences are roots of a one-point median filter). Since
the largest target smear is four pixels in extent, we require that N > 8. The smallest
square symmetric window satisfying this constraint is of size 3 x 3, giving N=9. Stated
another way, this is the smallest two-dimensional median filter to which the targets will
appear impulsive. We refer to the recommended algorithm with a 3 x 3 median filter

masking operator as RA,, which stands for variant one of the recommended algorithm.
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2.3.2 Variant II: Compensated Median Filter Mask

We now propose another variant of the median filter unsharp masking algorithm by
making a modification to R4, Reasoning qualitatively, we observe that the amplitude
of a neighborhood median might be biased upwards by either the simultaneous presence
of several target pixels in the window, or by the simultaneous presence of heavily-tailed
noise and one or more target pixels. This line of reasoning is somewhat corroborated
by the fact that, as was alluded to in Section 2.2.3, the expected value of an input
impulse at the output of a median filter is nonzero when uncorrelated noise is present.
Such upward biasing of the neighborhood median away from the true value of the local
clutter median is a detrimental effect in the ATWS prefilter, since we wish to subtract
as small a value as possible from target pixels. To compensate for this upward bias, we
will not include the center pixel of the window when computing the neighborhood
median. This compensation method was suggested to the author by researchers in the
Optical Sciences Division of the United States Naval Research Laboratory.
Incorporating a 3 x 3 compensated median filter masking operator into the

recommended algorithm, the filtered outputs are computed as:

y(l’j) =X(I,j) - MF[{X(I— 19.]_ l)’ X(l— l,j),X(i— l’./+ 1)9 x(i’j_ l)v

x(ij+ Dy x(i+ 1j— 1), x+ 1,0, < + 1,j+ 1] &3

We refer to this variant of the recommended algorithm as R4, .
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2.3.3 Variant III: One-Dimensional Median Filter Mask

In a widely cited study, Narendra investigated the use of separable median filters for
noise removal in infrared imagery [35]. Since one-dimensional filters are much easier to
implement than two-dimensional filters, he applied a one-dimensional median filter first
to the columns of an image, and then to the rows. He found that the noise cleaning
capability of the separable filter was quite comparable to that of the two-dimensional
filter, and that the output variance of the separable filter was always a little greater than
that of its two-dimensional counterpart. With reference to the recommended algorithm,
a slightly greater output variance is desirable since it is indicative of improved clutter
tracking ability.  Furthermore, we do not expect clutter to leak through a
one-dimensional median filter mask near the junctions of edges. For example, the
corners of a square of any size do not appear locally monotonic to a two-dimensional
median filter. To a one-dimensional filter, however, they appear perfectly monotonic
provided that the square extends for at least [(N + 1)/2] pixels along each edge and is not

rotated with respect to the edges of the frame.

As a third variant of the recommended algorithm, we consider a masking operator which
involves the application of a one-dimensional median filter to only the rows of the input
frame. We reason that this mask should perfectly preserve vertical clutter features, and
that horizontal features should not be distorted any more than they would be by a
comparable two-dimensional median filter. Although these arguments are true, the
disadvantage of using a one-dimensional filter mask is that it must be of length N> 5
to prevent the two- and four-pixel target smears from being roots. Hence, horizontal

clutter features will be distorted more by the one-dimensional filter mask than by the
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two-dimensional masks used for R4; and R4, In mathematical form, the output of this

variant to the recommended algorithm is:

y(‘vj) = X(i,j) - MF[{X(!,J - 2)’ x(i’j_ l)’ X(i,j), X(i,j + 1)’ x(i’j + 2)}] (233)

We refer to this prefilter as RA,,.
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3 Algorithm Evaluation

In this chapter, the spatial prefiltering algorithms presented in Chapters One and Two
are quantitatively evaluated. Section 3.1 provides an explanation of the criteria against
which the algorithms are measured. A simple computer experiment is described in
Section 3.2. The frames used for this experiment are small enough to be presented as
figures in this thesis. Finally, in Section 3.3 the variants of the recommended algorithm
are pitted against the linear point detection filter in an experiment involving realistic

input imagery for the ATWS.

3.1 Measurement Criteria

Generally accepted methods of evaluating automatic target detection systems do not
exist [4]. Consequently, attempts to compare algorithms based on results cited in the
open literature are difficult and often fruitless. One metric that appears to be fairly

common is the enhancement of the signal to clutter ratio. Signal to clutter ratio is
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usually defined as the target energy (amplitude) present in a frame divided by the
standard deviation of the clutter. The enhancement of this ratio due to a specific
filtering operation is computed by dividing the signal to clutter ratio after filtering by the
signal clutter ratio before filtering. In this thesis, the enhancement of the signal to

clutter ratio will be represented with the symbol SCE defined according to:

SCE=—— (3.1.1)

where

Sy=target energy in filtered frame
or= filtered clutter standard deviation

S, = target energy in unfiltered frame
g, = unfiltered clutter standard deviation

S, is computed by summing the amplitudes of all targets in the input frame, while S, is
computed by summing target amplitudes in the output frame. As was mentioned in
Section 2.2.1, it is often impossible to separate precisely median filtered output into
those components that arise from targets in the input and those components that arise
from the clutter. Since the simulated targets in this thesis are created by adding excess
amplitude to certain pixels of a frame, only the added amplitude is included in the
summation when S, is calculated. To a rough approximation, we expect the amplitude
of output components arising from clutter to be nearly zero. Consequently, we will
include the total amplitude present at all target pixels in the summation when calculating
S;. The ratio S;/S, is a relative measure of how much of the target energy at the prefilter
input is preserved in the prefilter output. This ratio increases monotonically as more
target energy is passed by the prefilter, and it equals one if and only if all target energy

is passed unattenuated.
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Irrespective of whether an input frame or an output frame is under consideration, the
clutter standard deviation is always calculated as the square root of the clutter variance,
which is computed from only those pixels that do not contain a target and are not in
positions that will be indeterminate in the filter output. Formally, the clutter mean of

the frame X is defined by:

fc=%z Zx,' ; (3.1.2)

where the sums are taken over all pixels that are not targets and do not assume
indeterminate values in the filter output. The integer & is the number of such pixels in

the frame. The clutter variance of the frame X is then defined as

C -1 2 Z(x - X J) (3.1.3)

where once again the sums are taken over only those pixels that are not targets and do
not assume indeterminate values in the filter output. It is a well known fact from
statistics that when an entire population is not available, an improved estimate of the
variance is obtained by taking the denominator of the leading coefficient equal to one
less than the number of samples in the sample population. Since we do not include those
clutter pixels at the edges of frames or at targets in the summations of Equation 3.1.3,
the denominator of the leading coefficient is taken equal to & — 1 to provide as accurate
an estimate as possible of the true clutter variance. Note that the ideal algorithm has
SCE = oo, since the clutter variance is reduced to zero at the filter output. As an

algorithm evaluation metric, SCE favors clutter rejection capability more than it favors
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target passing ability. This is true because the ratio S, /S, has a maximum value of one,
which is realized with the ideal algorithm. The ratio ¢,/0, can become quite large,
however. This ratio is unbounded when the ideal algorithm is evaluated. Consequently,

we seek a second evaluation metric that is a stronger function of target passing ability.

For use in this thesis, an algorithm measurement criterion that we shall call the bera

factor is proposed. It is defined by:

S/ /S
R L S
B =—315E] (3.1.4)

2
oy

where

Sy = target energy in filtered frame

S, = target energy in unfiltered frame
MSE, = clutter mean-squared-error, see below

03 = unfiltered clutter variance

We want a prefilter that, like the ideal algorithm, rejects all clutter. Hence the desired
output at all non-target pixels is zero. We consider any nonzero output at such pixels
to be an error in the sense that the prefilter was not able to perfectly track the clutter
features. In Equation 3.1.4, the clutter mean-squared-error, MSE,, is computed by
summing the squares of all nonzero amplitudes among the non-target pixels in the
output frame and dividing this sum by the number of non-target pixels in the input
frame. It is a positive definite monotonically increasing function of the total amount
of clutter amplitude that leaks through the filter. MSE, is zero if and only if all clutter
features are perfectly suppressed. To allow comparison between frames with widely

different clutter variances, MSE, is scaled by the unfiltered clutter variance in Equation
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3.1.4. We observe that the ideal algorithm has § =1. In some sense, § is a percentage

measure of how well a given filter performs with respect to the ideal algorithm.

3.2 A Simple Experiment

In this section, six prefiltering algorithms are evaluated on simple input frames. The six
algorithms are the Laplacian filter, the point detection filter, unsharp masking with a
3 x 3 linear averaging mean filter mask, and the three variants of the recommended
algorithm presented in Section 2.3. For this experiment, we are more interested in
evaluating the theoretical performance of the algorithms than in evaluating any
particular hardware implementation. Hence, quantization and finite word length effects
are not explicitly considered. We use floating-point numbers to represent the pixels of
each frame, and allow the filters to perform floating-point arithmetic. Finite word length
effects will be con§idered in Section 3.3. Quantization effects are of no particular interest
in this thesis: we define targets statistically by their amplitudes in the frames coming out
of the sensor subsystem. Targets are not defined prior to quantization in the image
formation process. To measure the clutter rejection capabilities of these algorithms, we
use the input frames shown in Figures 6 and 7. The input frame of Figure 6 is a unit
edge frame with unfiltered clutter standard deviation o, = 5.000 x 10-! . The input frame
of Figure 7 is all zero, except for a 5§ x 5 square of unit amplitude pixels at the center.
This frame has unfiltered clutter standard deviation o, = 4.648 x 10-! . To examine the
ability of the six algorithms to pass targets while attenuating clutter, we begin with the
frame shown in Figure 8(a). This frame consists only of smooth, monotonic

background. The same input is shown again in Figure 8(b) with four bright targets
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added. The top two targets are blurred across four pixels, while the bottom two are true
point targets. The input frame of Figure 8(b) has o,=1765, S,=90, and
S, o, =51.001 . The results of prefiltering the input frames of Figures 6, 7, and 8(b) are
discussed in the remainder of this section, where -99.0 is used to represent an
indeterminate filter output. For convenience, the # and SCE data obtained from Figure

8(b) are also shown in Table 1.

3.2.1 3 x 3 Laplacian Filter

The 3 x 3 Laplacian filter mask was shown in Equation 1.3.3. To realize a prefilter for
the ATWS using this mask, the mask is convolved with the input frame using Equation
1.3.1. The Laplacian filter response to the unit edge frame of Figure 6 is shown in Figure
9(a). As the output is an all zero frame, MSE, =0 and o,/0,= oo . Next we apply the
Laplacian filter to the square input frame of Figure 7. The response is shown in Figure
9(b), and we see that 16 pixels are nonzero. This gives MSE, = 1.778 x 10-? , and
o,/o, = 3.465.

The response of the Laplacian filter to the input frame of Figure 8(b) is shown in Figure
9(c). We see that although the point targets have been passed perfectly, the blurred
targets have been severely attenuated. This situation arises because the -2 coefficients
in the Laplacian filter mask result in target energy being subtracted from target energy
in the filtered output. In addition, we note significant clutter leakage around the targets.
The beta factor of the Laplacian filter for this input is 2.255 x 10-!. SCE =4.590 x 10-!,
which indicates that the signal to clutter ratio in the Laplacian filter output is actually

lower than the signal to clutter ratio in the input frame. Although it is quite adept at
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Table 1. SCE and Beta for the input of Figure 8(b)

Laplacian
Filter......voe...

Point Detection
Filter............

Mean Filter
Unsharp Masking...

0.513
0.946
0.952
0.867

1.577

1.601
9.872
8.232
6.763
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(a) unit edge response; (b) response to square input;

(c) response to the input of figure 8(b).
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rejecting clutter, we see that the Laplacian filter is not able to pass multi-pixel target

smears effectively. Consequently, it will not be considered in the experiments of Section

3.3.

3.2.2 3 x 3 Point Detection Filter

The point detection filter mask was shown in Equation 1.3.4, and it is applied using
Equation 1.3.1. Figure 10(a) shows the point detection filter response to the unit edge
frame of Figure 6. The output is nonzero for 18 pixels, yielding MSE, = 3.556 x 10-?,
and o,/a,=2.635. When the point detection filter is applied to the square input of
Figure 7, the result shown in Figure 10(b) is obtained. The number of nonzero output
pixels is 40, MSE, = 7.457 x 103, and o,/0,= 1.692. Hence, the point detection filter
does not reject clutter as well as the Laplacian filter. However, it passes targets much

better than the Laplacian filter.

The point detection filter response to the input frame of Figure 8(b) is shown in Figure
10(c). Due to the symmetric configuration of -1 coefficients in the filter mask, the
blurred targets are attenuated less than they were by the Laplacian filter. We also note
that the point detection filter output contains less clutter leakage around the targets than
did the Laplacian filter output. The beta factor of the point detection filter for this input
is 5.464 x 10-!, and SCE =1.577. Although these results are not particularly
noteworthy, the point detection filter will be further investigated for comparative

purposes in Section 3.3,
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3.2.3 Unsharp Masking with Mean Filter Mask

This algorithm is a realization of Equation 2.2.1 with G(.)=1and a =0. A 3 x 3 mean
filter is used for the masking operator. Each output pixel y,, is computed by subtracting
from x,, the mean of the 3 x 3 neighborhood centered about x,,. The response of this
prefilter to the unit edge frame of Figure 6 is shown in Figure 11(a). The output
contains 18 nonzero pixels, giving MSE, = 2.000 x 10-? and ¢,/0,= 3.514. The response
to the square input of Figure 7 is shown in Figure 11(b). In this case, the output

contains 37 nonzero pixels, MSE, = 4.889 x 10-?, and ¢,/a,= 2.090 .

The mean filter unsharp masking response to the input of Figure 8(b) is shown in Figure
11(c). For this input, SCE = 1.601 and §=5.128 x 10-! . Although these results are
comparable to those obtained with the point detection filter, mean filter unsharp
masking will not be considered in Section 3.3 for reasons of economy. As with the
Laplacian filter, the primary draWback of this algorithm is that target energy is

subtracted from target energy when the input contains a multi-pixel target smear.

3.2.4 Recommended Algorithm, Variant I

The response of R4, to the unit edge frame of Figure 6 is shown in Figure 12(a). The
clutter is perfectly rejected, yielding MSE, =0 and o,/0,= co. The response of R4, to
the square input of Figure 7 is shown in Figure 12(b). There are four nonzero output
pixels, MSE, = 4.938 x 10-?, and ¢,/0,= 2.132. The nonzero output pixels arise from the
fact that the corners of the square are not monotonic in all directions, and hence this

input frame is not locally monotonic with respect to the 3 x 3 median filter mask
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employed by RA, (two-dimensional local monotonicity was defined in Section 2.2.2).
When RA, is applied to the input frame of Figure 8(b), the output frame shown in Figure
12(c) is obtained. Three of the four targets are perfectly extracted, since they have
unattenuated amplitudes and are immediately surrounded by zero clutter leakage in the
filtered output. For this input, SCE=9.872 and f=9.465x 10-. Based on this

experiment, R4, ‘appears to be an extremely good approximation to the ideal algorithm.

3.2.5 Recommended Algorithm, Variant II

In response to the unit edge frame of Figure 6, the output of RA,, is shown in Figure
13(a). We see that MSE, =0 and o,/0,= co. The response of R4, to the square input
of Figure 7 is shown in Figure 13(b). As with the uncompensated median filter mask
of RA,, the corners of the square leak through to give MSE_ =4.938 x 10-? and
o,Jo,=2.132. Figure 13(c) shows the output of R4, in response to the input frame of
Figure 8(b). We see that f=9.524 x 10-! and SCE =8.232. For this input, the
compensation has provided a slight improvement in the beta factor due to one extra
amplitude unit of target energy being passed for the blurred target at the upper right
corner of the input frame. Some additional clutter leakage has also been introduced
around this target due to the averaging operation inherent in computing the median of
an even number of samples (for R4,,, N =8 ). Consequently, RA4,, has a slightly smaller
SCE than R4, for this input. Based on this experiment, RA,, appears also to be an

extremely good approximation to the ideal algorithm.
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response to square input; (c) response to the input of figure 8(b).
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3.2.6 Recommended Algorithm, Variant III

Since RA,, utilizes a one-dimensional five-point median filter masking operator, the
positions of the indeterminate pixels in the output frames of this filter are different from
those in the output frames produced by the two-dimensional masking operators used for
RA, and RA,. As a result, a slightly different set of pixels is used to estimate the clutter
variance when RA4,, is evaluated. In particular, with respect to R4, the input of Figure
6 has g, = 5.012 x 10-'. The input of Figure 7 has ¢, =4.713 x 10-!, while the input of
Figure 8(b) has o, = 1.433, S, = 90, and S, /o, = 62.822.

The output of RA4,, in response to the unit edge frame of Figure 6 is shown in Figure
14(a). We observe that since N=35, there are two columns of indeterminate values on
each side of the frame, and that since the filter is one-dimensional there are no
indeterminate values along the top and bottom edges. For this input MSE, =0 and
o,/0,= oo . The response of RA,, to the square input of Figure 7 is shown in Figure
14(b). As expected, the one-dimensional median filter mask is able to perfectly track the
corners of the square, giving MSE, =0 and ¢,/0,= co. Figure 14(c) shows the output

of RA,; in response to the input frame of Figure 8(b).

We observe that the two targets appearing over the constant background in the left half
of the input frame are passed perfectly, while the targets in the right half of the input
frame are somewhat attenuated. There is also some significant clutter leakage around
the latter. These effects are due to the fact that, for the monotonically increasing
background in the right half of the input frame, the presence of a target in a window
with a horizontal extent of five pixels biases the median upward more than in a window

with a horizontal extent of three pixels. Stated another way, the five-point median filter
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mask has “oversmoothed” the input in the horizontal direction, with the result that the
targets in the smoothed image are smeared over several more pixels than they were in
the original image. Upon subtraction of the smoothed image from the original, this
causes significant clutter leakage around the targets. For this input, R4, has
B =8.675x 10! and SCE=4.763. As a final point, we note that the results of this
experiment are not sufficient to permit any conjecture as to the effectiveness of R4,
This algorithm employs an unsymmetrical window, and the clutter features in the input
of Figure 8(b) are all of horizontal orientation. Had we rotated the input frame by

90°, RA,; would have produced the same output as the ideal algorithm.

3.3 Evaluation on Realistic Inputs

In this section, an experiment comparing the linear point detection filter,
R4, RA,, and RA,, is described. A total of 120 input frames were prefiltered. The
United States Naval Research Laboratory provided the author with a ‘tape containing
computer generated clutter frames representative of actual imagery in the ATWS. The
simulated imagery contained no targets. The author extracted 10 128 x 64 frames from
the tape, added one-pixel targets and two- and four-pixel target smears to these frames,
and prefiltered them with each of the four algorithms. We refer to the 10 frames
obtained from the tape simply as the tape frames. The experimental procedure is

described in Section 3.3.1.
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3.3.1 Experimental Procedure

Three experimental input frames were generated from each tape frame. An array of 72
one-pixel targets was created in the first of these. An array of 72 two-pixel target smears
was created in the second, while an array of 72 four-pixel target smears was created in
the third. Hence, 10 frames were created for each type of target, and a total of 30 unique
experimental input frames were generated. The targets were arranged such that at most
one target fell within any prefilter window at any given time. One-pixel targets were
constructed by adding excess amplitude to each pixel located at a simulated target.
Likewise, two- and four-pixel target smears were constructed by adding excess amplitude
to each pixel of the smears. In all cases, the amount of excess amplitude added to each

target pixel was equal to 3g,, where o, was calculated using Equations 3.1.2 and 3.1.3.

Each of the four prefilter algorithms was invoked upon each of the 30 input frames.
Hence, 120 frames were prefiltered in all. To account for finite word length effects, all
prefiltering calculations were carried out using integer arithmetic with 13-bit two’s
complement integers. After each prefiltering operation, Equation 3.1.1 was used to
calculate SCE, and Equation 3.1.4 was used to calculate f. These calculations were
carried out using floating-point arithmetic. For each algorithm, # and SCE were
averaged over the 10 input frames containing one-pixel targets, over the 10 input frames
containing two-pixel target smears, and over the 10 input frames containing four-pixel
target smears. The results are discussed in Section 3.3.2. For each type of target, the
average SCE of each algorithm is shown in Table 2. The beta factors are shown in Table

3.
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Table 2. Average SCE data for the experiment of Section 3.3

Filter

oooooooooooo

oooooooooooo

Target Smear Size

1-Pixel 2-Pixel 6G-Pixel
1.7547 1.6668 1.5472
1.9777 1.9453 1.8809
1.7855 1.7503 1.6947
1.4532 1.3621 1.3476
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Table 3. Average beta factors for the experiment of Section 3.3

Target Smear Size

1-Pixel 2-Pixel 6-Pixel

Point Detection

Filter............ 0.7580 0.7262 0.6810
RAI..........ov.t 0.7811 06.7700 0.7526
RAII............. 0.7621 0.7500 0.7321
RA III............ 0.6557 0.6162 0.6117
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3.3.2 Experimental Results

The average unfiltered clutter standard deviation of the 10 frames containing one-pixel
targets was 1297.720 units. For the 10 frames containing two-pixel target smears, the
average was 1298.560 units. Finally, the average for the 10 frames containing four-pixel

target smears was 1298.483 units.

The point detection filter had an average beta factor of 7.580 x 10-! and an average SCE
of 1.75S for the one-pixel targets. For the two-pixel target smears, the average beta
factor was 7.262 x 10~! and the average SCE was 1.667. Finally, for the four-pixel target
smears, the point detection filter had an average beta factor of 6.810 x 10-! and an
average SCE of 1.545. As expected, this filter did not perform as well with multi-pixel
target smears as it did with true point targets. Averaging the point detection filter beta
factors for each target type yields a result approximately equal to the beta factor that
was observed for this filter in Section 3.2, where both one-pixel targets and four-pixel
target smears were simultaneously present in the input. This is also true for the signal
to clutter ratio enhancement. Apparently, realistic clutter was no more difficult for the
point detection filter to discriminate against than was the monotonic clutter used for the

experiments of Section 3.2.

For one-pixel targets, R4, had an average beta factor of 7.811 x 10-! and an average
SCE of 1.978. For two-pixel targets smears, the average beta factor was 7.700 x 10-! and
the average SCE was 1.945. Finally, R4, had an average beta factor of 7.526 x 10-! and
an average SCE of 1.888 for the four-pixel target smears. The signal to clutter
enhancement was approximately five times greater when this filter was run against

monotonic clutter in the experiment of Section 3.2. The beta factors for the realistic
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imagery were only about 20 percent lower than the beta factor observed for R4, in
Section 3.2, however. These results were expected, as the realistic imagery contained
random noise and irregular clutter features. Consequently, the output clutter variance
was substantially greater for the realistic input imagery than for the monotonic imagery
used in Section 3.2. As was pointed out in Section 3.1, signal to clutter enhancement is
a stronger function of clutter rejection than is the beta factor. The performance of R4,
was better than that of the point detection filter, significantly so for blurred targets. The
presence of multi-pixel target smears in the input did not degrade the performance of

RA; as much as it did the performance of the point detection filter.

RA, had an average beta factor of 7.621 x 10-! and an average SCE of 1.786 for the
one-pixel targets. For the two-pixel target smears, the average beta factor was
7.498 x 10! and the average SCE was 1.750. For the four-pixel target smears, R4, had
an average beta factor of 7.321 x 10-! and an average SCE of 1.695. The performance
of RA,, was quite similar to that of RA4,, with RA4,, being evaluated slightly lower by both
criteria. The superiority of R4, was more marked in the signal to clutter enhancement
than in the beta factor. From this result we conclude that the output clutter variance
of RA, is more sensitive to random noise in the input than is the output clutter variance
of RA,. Due to the compensation in the RA,, masking operator, the beta factor of this
algorithm was slightly less sensitive to the number of pixels in the targets than was the

beta factor of RA,.

The average beta factor of RA,, was 6.557 x 10! for the one-pixel targets, while the
average SCE was 1.453. For the two-pixel target smears, R4, had an average beta
factor of 6.162 x 10-! and an average SCE of 1.362. Finally, for the four-pixel target

smears RA,; had an average beta factor of 6.117 x 10-! and an average SCE of 1.348.
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Of the four algorithms evaluated on realistic imagery, RA4,, rated poorest in all respects.
The output of the five-point median filter mask was too smooth in the horizontal

direction, and consequently this algorithm suffered from substantial clutter leakage.

3 Algorithm Evaluation 69



4 Real Time Sorting for Algorithm Variant II

The most difficult problem in median filter implementation is the design of a mechanism
for sorting the pixels in the filter window. Since R4, and RA,,; employ conventional
median filters as masking operators, this chapter will concentrate on the development
of an architecture to perform the sorting operation required for the implementation of
the compensated median filter used in RA4,. This median filter is unique in that the
number of pixels to be sorted is even. Fast software sorting algorithms, such as the
quicksort which has time complexity O(N), are generally used to extract the medians for
low data rate median filtering. Even the fastest software algorithms are too slow for use
in high data rate applications such és the ATWS prefilter, however. For this system one
filtered output must be produced every 509 nanoseconds, which is about equal to the
time required to execute one or two instructions on most general purpose
microcomputers. . In the open literature, three methods have been proposed for the
implementation of real time sorting for median filters. Each is briefly described in this

chapter. A sorting architecture for RA4,; is presented in Section 4.4.
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4.1 Selection Networks

The most obvious hardware approach to sorting the pixels in the filter window is to
employ an array of comparators called a selection network. The icon that will be used
to represent hardware comparators in this thesis is shown in Figure 15(a). The samples
a and b at the top of the comparator are input pixels. The bottom left output is the
smaller of a and b, while the bottom right output is the larger of the two. A simple
selection network to find the median of three inputs is shown in Figure 15(b). Note that
this network sorts the three inputs in a single machine cycle, and that extraction of the
median does not in general imply that the samples in the window must be fully sorted.
Selection networks are attractive because they have constant time complexity. Due to
the propagation delay of hardware comparators, the sorting delay associated with a
digital selection network is in practice a strong function of the number of bits, or word
length, used to represent pixels. Provided that the comparator propagation delays are
short enough for a comparison operation to be considered as a single operation, the time
complexity of the selection network method is not a function of the number of pixels in
the filter window. The disadvantage of selection networks is that they generally have a

greater hardware complexity than other methods.

Adhering to the convention established in Chapter Two, we let N denote the number
of pixels in the filter window. We let I'(N) denote the minimum number of comparators
required in a selection network that extracts the median of N inputs. I'(N) is not known
for large values of N, and N is usually large for image processing applications [34].

Using a proof of Alekseyev [31], Knuth [30] has shown that I'(N) is bounded by:
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a b
min(a,b) min(a,b,c)
max(a,b)
max(a,b,c)
median(a,b,c)
(a) (b)

Figure 15. Sclection networks: (a) single comparator; (b) network to extract the median of
three pixels.
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I‘(N)z[ Dl ] logz-I\J—%-—3—+log2 N;” @.1.1)
Ataman, Aatre, and Wong have concluded that selection networks become too complex
for practical implementation when N > 5 [34]. Narendra asserted that I'(9) =29 and
['(25) =94 [35]. In an effort to reduce the hardware complexity, Shamos [27] and
Eversole, ez al. [28], have implemented approximate median filters using digital selection
networks. The approximation involves partitioning the pixels in the window into & small
groups. The median of each group is found, yielding Y = {v,, ..., v,}. The true median
is then estimated by b= MF[Y] [32]. This method is advantageous because the
hardware complexity of selection networks is a steeper-than-linear function of the
number of inputs. Hence, & + 1 small networks are less complex than a single network,
even though the total number of inputs is the same in either case. As was mentioned in
Section 2.3.3, Narendra has suggested the implementation of separable two-dimensional
median filters by applying one-dimensional median filters independently to the rows and
columns of frames. To achieve real time video rates, he specifically recommended use
of the analog diode selection networks proposed by Morgan [33]. The advantage of this

method is that two N-point median filters are less complex than a single N x N median

filter.

4.2 Histogram Method

Huang, Yang, and Tang [22], and Garibotto and Lambarelli [19] independently

developed a fast method for extracting the median that is based on the histogram of the
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pixels in the filter window. We define the histogram as the function h(.), where h(a) is
equal to the number of pixels with amplitude a that are present in the window. We then

define a cumulative frequency function by:
k
k)= ) h(a) 4.2.1)
a=0
The median is the smallest value v with A(v) # O that satisfies the condition:

N+1
2

1) = (4.2.2)

The sequence Y = {v,,} of running medians required for median filtering can be
computed quickly using this method. Suppose that an M x M square window is being
used, and that v, is known. When the window is displaced by one pixel for the
computation of v, ,,,, the histogram A(.) is updated. In the worst case, all of the M pixels
entering the window have different values from the M pixels leaving the window.
Consequently, updating the histogram may require as many as M subtractions and M
additions. Computing A(.) from the updated histogram, if A(v,;) > [(N + 1)/2], then
v, is found by decrementing v,; to the smallest value for which Equation 4.2.2 is
satisfied and A(v, ,,,) # 0. If A(v,,) <[(N + 1)/2], then v, ,,, is found by incrementing v, ,

until the same conditions are satisfied.

There are two disadvantages to using the histogram method. First, the hardware
decision logic required to update the histogram and compute the median is quite
complex, especially at the beginnings and ends of rows. Secondly, the number of “bins”
required for the histogram is an exponential function of the word length. Consequently,

the worst case time complexity also depends exponentially on the word length.
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4.3 Radix Method

Ataman, Aatre, and Wong proposed the radix method as a fast algorithm for extracting
the median of the elements in the filter window [34]. In this method, the k* bit of the
median is deduced from the k most significant bits of the pixels in the window. Once
again employing the notation of Chapter Two, we let W represent the set of pixels in the
window and N represent the cardinality of this set. The first bit of the median is found
by examining the first bits of all pixels in W. If a majority of these are ones, then the
first bit of the median is a one. If a majority are zeros, then the first bit of the median
must be a zero. W is then partitioned into the set S of pixels whose first bit is equal to
that of the median, and the set D of pixels whose first bit is different from that of the
median. The median is obviously a member of S, and if D is non-empty then it is not
the median of S. However, which order statistic of S is the median of W can be
determined from the cardinalities of S and D. The second bit of the median is
determined from the second bits of the elements of S, and S is subsequently divided into
those elements whose seconds bits equal that of the median and those elements whose
second bits differ from that of the median. The procedure continues recursively until all
bits of the median have been determined. The cardinality of each partition is saved
through the construction of a tree-like data structure in a dedicated register set, or in a
random access memory if N is large. Provided that dedicated parallel hardware is
constructed to determine the majority function of the 4* bits among the elements of S,
the time complexity of the radix method is a linear function of the word length and does

not depend on N.
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The disadvantages of using the radix method are that extremely complex hardware
decision logic must be implemented to partition the window elements, and that in
practice the time complexity may be degraded by the significant number of operations
required to maintain the tree structures and deduce the medians. If the word length is
less than [(N+1)/2] bits, then the radix method can be modified to make the
computation of running medians slightly faster than the computation of individual

medians by retaining some of the partitions when the window is moved [34].

Delman implemented a 5 x 5 median filter with a throughput of 10 million eight-bit
pixels per second by simplifying the decision logic required for the radix method [36].
His method, which we will call the modified radix method, eliminates the need for
computing and saving the cardinality of each partition by recoding the bits of the
elements of W. Delman’s example of using the modified radix method to find the
median of five three-bit pixels is shown in Figure 16 [36]. In the original data, the first
bit of each pixel is examined. Since a majority of these are zero, the first bit of the
median is zero. All bits to the right of the first are then changed to ones for all pixels
whose first bit is not a zero. In the second step, the second bits of the recoded pixels
are examined. Since a majority of these are ones, the second bit of the median must be
a one. The third bit is then changed to zero for all pixels whose second bit is zero (ie.,
not equal to that of the median). Finally, since a majority of the third bits of the recoded
pixels are zeros, the third bit of the median must be zero. Assuming that the majority
function and recoding operation can both be performed in a single operation, the time
complexity of the modified radix method is equal to the word length used to represent

pixels. Pipelined hardware could be designed to produce a median every machine cycle.
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Figure 16. Modified radix method (from reference [36])
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4.4 Selection Network with In-Place Computation

We now address the problem of developing a sorting architecture for R4,, and note that
for this algorithm variant N =8. The word length in the ATWS is 12 bits. Although
Equation 4.1.1 tells us that I(8) > 11, the actual number of comparators required to
implement a selection network for R4, is 24. The selection network is shown in Figure
17, where a and b are the two middle values from among the inputs. As only a partial
sort is effected by this network, a and 4 do not appear in any particular order. To
emphasize the symmetry of the selection network, four additional unnecessary
comparators are included in Figure 17. These four are each marked with the character
X. The standard integrated circuit used to implement comparators is the 74n85, where
n is a character representing a particular fabrication technology. This device compares
two four-bit integers, and can be cascaded to construct larger comparators of the type
required for the selection network of Figure 17. In total, a selection network for RA4,,
would require the incorporation of 72 74n85 devices. We consider this number too large

to be of practical interest.

The histogram method requires maintenance of a number of histogram bins equal to the
number of values that can be assumed by a pixel. For the ATWS, this number is
27 =4096. Although a contents-addressable random access memory could be used to
compute the histogram rapidly for R4,,, in the worst case we might have to perform 4095
comparison operations to find the median of W. Hence we conclude that the histogram

method cannot be used to implement a sorting architecture for this application.
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Figure 17. Network to extract the median of eight inputs
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Due to the complex decision points inherent in the algorithm, the author knows of no
case in which the radix method of Ataman, Aatre, and Wong has actually been
implemented in hardware. The modified radix method of Delman would be an attractive
alternative, except for the fact that it too involves complex decision logic when it is
extended to include the case of N even. We conclude that the radix method is too

complicated to be of practical interest for RA,,.

Returning to Figure 17, we note that if this network were implemented it would be
extremely fast and require only one machine cycle to extract the middle two values from
the inputs. Since the comparator array is highly symmetrical, we reason that we could
implement only two rows of it in hardware, and then reuse these two rows four times to
extract the middle values. Such hardware reuse is generally referred to as in-place
computation. The possibility for such a simplification in the implementation of R4, was
first observed by Mr. K.A. Sarkady of Sachs/Freeman Associates Inc., Landover, MD,

who subsequently suggested it to the author.

Repeated use of two rows of the selection network requires the incorporation of memory
into the comparator units. Figure 18(a) shows a comparator with a storage register to
retain the smaller of its two inputs, while the comparator in Figure 18(b) remembers the
larger of its inputs. The comparator shown in Figure 18(c) has registers for storing both
of its outputs. A practical architecture capable of performing the sort operation required
for RA, is shown in Figure 19. On the first iteration through the comparator network,
the multiplexers at the top of the figure route the eight pixels of W to the first row of
comparators. On all subsequent iterations, these multiplexers select the pixels being fed
back from the comparator network. After four iterations, this in-place selection network

extracts the two middle values a and b from W, just as the selection network of Figure
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17 would do in a single machine cycle. Implementation of the architecture of Figure 19
requires only 21 74n85 devices, however. We note that a four-fold increase in time
complexity has been traded for a factor of 3.4 reduction in hardware complexity. In
Chapter Five, the sorting architecture of Figure 19 will be incorporated into a complete
real time hardware implementation of R4,. We will choose the system clock rate fast
enough to permit the expenditure of five clock cycles in computing each neighborhood

median.
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(a) (b) (c)

Figure 18. Comparators with memory: (a) comparator that remembers the smaller input;
(b) comparator that remembers the larger input; (c) comparator that remembers
both inputs.
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Figure 19. Sorting architecture for algorithm variant 11
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5 A Complete Real Time Design

In this chapter, a complete real time hardware implementation of RA,; is presented for
the ATWS. A schematic diagram of the design is included in appendix A. Individual
drawings of the schematic are referenced by sheet number. The primary reason for
choosing RA,, for implementation in this thesis is that, because N is even for this variant
of the recommended algorithm, implementation of the median filter masking operator
for RA,; requires the special non-standard sorting architecture developed in Section 4.4.
With some modification, the design could also be used to realize real time
implementations of RA4; and RA,,. In particular, since these algorithms employ median
filters for which N is odd, one could modify the design by replacing the sorting
architecture of Section 4.4 with an architecture based on the modified radix method of
Delman. The design presented in this chapter was verified by a chip-level simulation
using the HILO circuit simulation language under the Unix operating system on an HP
9000 minicomputer. The control microcode was further independently verified by a
minimal simulation of the design control states. The latter simulation was coded in the
REXX language under the CMS operating system on an IBM 3090 computer system.

We begin the presentation of the design with the problem specification.
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5.1 Design Specification

Figure 20 shows simplified block diagrams for two possible prototype configurations of
the ATWS. The data rate of the focal plane array sensor may be up to 120 frames per
second. The frame size may be 128 x 128 pixels or 64 x 64 pixels. Each pixel output
by the sensor is represented by a 12-bit unsigned binary integer data word with an
optional 13* sign bit, which is required in the system data path because some output
pixels from the recommended algorithm may be negative. Hence the system throughput
may be as high as 25.559 million bits per second. As they are still in a developmental
stage, the ATWS target recognition, classification, and tracking algorithms are
implemented in software on a VAX 11/780 computer and Numerix array processor.
Obviously, these machines are not capable of keeping pace with the sensor data rate.
Consequently, both of the system configurations shown in Figure 20 involve a high
density data recorder, or HDDR. This device is capable of recording several seconds of
imagery to tape at the sensor data rate. In the configuration of Figure 20(a), RA,, is
implemented in the box labeled MEDIAN FILTER, and consequently must operate at
the sensor data rate. Filtered data are recorded on the HDDR, and later read back at
a rate slow enough for processing on the VAX 11/780 and array processor. In the
configuration of Figure 20(b), unfiltered data are recorded on the HDDR. RA, is
installed after the HDDR, and consequently must operate at the lower data rate. We
conclude that the implemented version of RA; must be capable of operation under at
least two widely different data rates. Furthermore, the prefilter must be transparent in
the sense that the signals at its output must be indistinguishable from the signals at its

input. This requirement arises from the fact that the HDDR must be conveniently
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interfaced to either the prefilter output or the post-sensor signal processing assembly,

depending on which system configuration is being used at any given time.

The timing characteristics of the system data path are shown in Figure 21. The signal
CLOCK is a twisted-pair strobe. CLOCK is normally high, and all other signals are
valid on its falling edge. The only constraint that applies to CLOCK is that consecutive
falling edges must be separated by a time interval of at least 509 nanoseconds,
corresponding to a maximum data rate of 120 128 x 128 frames per second. In
particular, CLOCK is not required to have a regular duty cycle, and it is not required
to be periodic. The signal FRAMESYNC is a scalar twisted-pair strobe that is stable
at high during all falling edges of CLOCK that correspond to the first pixel of a frame.
Any spurious number of falling edges may occur on CLOCK between the last pixel of
one frame and the first pixel of the next frame. The beginning of the new frame is
recognized only when FRAMESYNC is high. The signal vector DATA comprises 12
twisted-pair lines for the pixel data and an optional 13# twisted-pair sign bit. The vector
DATA is valid on all falling edges of CLOCK, except those that occur between the end

of one frame and the beginning of the next.

Two peculiarities apply to the signals at the output of the RA,, prefilter. First, the sense
of CLOCK is reversed from the convention stated above. That is, the prefilter output
signal corresponding to the input signal CLOCK is actually CLOCK, and all other
signals are valid on the rising edge of CLOCK. This convention was mandated by the
proprietors of the ATWS. With respect to the two configurations of Figure 20, this does
not pose a system integration problem since the sense of any twisted-pair signal can
easily be reversed by simply cross wiring a special interconnect cable. Secondly, the

vector DATA at the prefilter output is interpreted as a 13-bit two’s complement integer.
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Figure 20. Simplified ATWS system block diagram:

data; (b) system for prefiltering recorded data.
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Figure 21. System data path timing characteristics for the ATWS
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At the prefilter input, the sign bit has no significance and the pixels are assumed to be
represented by non-negative 12-bit integers. As stated above, the sign bit in the prefilter
output is necessary because, even though all input pixels are non-negative, R4, may
produce output pixels that are positive or negative due to the subtraction operation

inherent in the algorithm.

In the practical implementation of RA,, several complications arise that were not
present when the algorithm was evaluated in Chapter Three. Here, we present these
complications by listing a set of rules for producing filtered output. This list will be

referred to as the design specification list in Section 5.2. The rules are:

1. The data in the first row of any input frame is header information, and does not
represent pixels. The header row must be transmitted to the prefilter output without

alteration.

2. Since the first row of any frame consists header information, the frame actually
contains only 127 or 63 rows of pixel data, with the first of these being the second
row of the frame. As the compensated median filter window is of size 3 x 3 pixels,
this results in the second and last rows of any output being indeterminate.
Corresponding to these indeterminate rows, the prefilter output vector DATA

should be tri-stated.

3. Due again to the size of the compensated median filter window, the first and last
data words output on any line containing pixel values are indeterminate.
Corresponding to such data words, the prefilter output vector DATA should be

tri-stated.
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4.

Detectors in the sensor array sometimes cease to function, or die. Any input pixel
with a value of zero is assumed to come from a dead detector. Such zero values

must be passed to the prefilter output without alteration.

Detectors in the sensor array sometimes become saturated when part of a scene
under observation by the ATWS is particularly bright. This is a consequence of the
fact that the sensor is a charge integrating device, and only a finite amount of charge
can be integrated on the substrate. The prefilter must provide a bank of 12 DIP
switches for manually setting a saturation threshold. Any input pixel that is greater
or equal in value to the saturation threshold is assumed to come from a saturated

detector. Such values must be passed to the prefilter output without alteration.

Any input data word not meeting any of the criteria in items one through five above
is assumed to come from an active non-saturated detector, and to be interior in the
sense that all of its nearest neighbors represent pixels. Such data words are
interpreted as pixels. The prefilter output corresponding to these data words is

computed using RA4,, as specified in Section 2.3.2.

5.2 Design Presentation

Sheet 1 of the schematic is a block diagram of the entire circuit. For convenience, it is

reproduced as Figure 22. In the schematic, low active signals are annotated by

postfixing the signal name with a tilde. In the thesis text, low active signals are

annotated with an overbar. Circuit module SINGLESTEP generates the system clock,
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and circuit module MICRO CTRL is a custom microcode sequencer which generates
timing signals and control strobes for the rest of the circuit. Circuit module EXIN
SYNC synchronizes the external inputs to the system clock. Pixel data enter the prefilter
sequentially in conventional scanning order. Circuit module DELAY LINE is
essentially a large shift buffer which holds two full scan lines plus three pixels of data
words. The delay line has nine taps, and at any given time a particular pixel x, ; and its
eight nearest neighbors are available at the taps. The sorting architecture presented in
Section 4.4 is implemented in circuit module SRT MTRX, and this module also contains
additional hardware for the computation of prefilter outputs according to the rules in the

design specification list of Section S.1.

In the present section, the operation of each circuit module will be discussed in some
detail. First we describe the circuit data flow at a general level, once again with reference
to the block diagram of Figure 22. Data words representing pixel values arrive on the
vector EDAT at the top left corner of the figure. Once they are synchronized to the
system clock, they are transferred to the delay line on the 12-bit data bus DINBUS. The
pixel x,; which is at the center of the 3 x 3 filter wi_ndow 1s output from the delay line
on the data bus XIJBUS. The rest of the pixels in the window are available on the eight
data busses XABUS through XHBUS. These nine busses lead to the module SRT
MTRX. In this module, the median of the neighborhood is computed and subtracted
from x,;. The resulting 12-bit data word is output from the prefilter on the data vector
DOUT at the lower left of the block diagram. The sign bit is output on the scalar
twisted-pair line UNDERFLO. Although components from several logic families appear
in the schematic diagram, timing calculations for the circuit were carried out using 74F

series components wherever possible. These devices have particularly short rise and fall
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Figure 22. Circuit block diagram
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times. We begin our discussion of the circuit modules with SINGLESTEP, which

generates the system clock.

5.2.1 Circuit Module SINGLESTEP

This circuit module has only one output signal. It is called CLK and serves as the
system clock for the entire prefilter. SINGLESTEP appears on sheet 3 of the schematic
diagram. The input signal XTAL comes from a 12 MHz crystal. During normal
operation, this 12 MHz square wave directly drives CLK. For diagnostic purposes, a
bipolar rocker switch is included on the front panel of the prefilter and drives
SINGLESTEP inputs SS and SS. If SS is.true, then the prefilter operates in single step
mode and XTAL is isolated from CLK. In this mode the system clock is generated from
a pushbutton switch on the front panel of the prefilter. The pushbutton drives
SINGLESTEP input lines SSCLK and SSCLK. In single step mode, one clock pulse is

generated each time the pushbutton is depressed.

5.2.2 Circuit Module EXIN SYNC

The purpose of this circuit module is to synchronize the prefilter inputs to the system
clock. EXIN SYNC appears on sheet 2 of the schematic diagram. This module operates
in a totally asynchronous mode, and does not make use of the signal CLK. The names

of input signals to module EXIN SYNC are prefixed with the character E to indicate

that they come from the exrernal world. E128 and E64 are generated from a bipolar

switch on the front panel of the prefilter. They drive the inputs of a differential line
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receiver in EXIN SYNC to yield a single output signal 128. If 128 is low, then the
prefilter assumes that the frame size is 128 x 128 pixels. If 128 is high, then the prefilter

assumes that the frame size is 64 x 64.

A system reset pushbutton on the front panel of the prefilter drives EXIN SYNC input
lines ERESET and ERESET. When this button is depressed, the low active EXIN
SYNC output signal RESET goés low and resets the entire prefilter. In addition, a
simple RC circuit in module EXIN SYNC holds RESET low for about 300 ms when
power is initially applied to the prefilter. Hence, the system always powers up in a reset

state.

The remainder of the inputs to EXIN SYNC come from the ATWS data path, which
was illustrated in Figure 21. These twisted-pair signals enter the prefilter through a
DB-37 connector on the back panel of the chassis. The signal CLOCK of Figure 21 is
connected to the EXIN SYNC input bus EPCLKBUS, which stands for external pixel
clock bus. The negative logic version of this signal is extracted, and will hereafter be
referred to as the pixel clock. The signal FRAMESYNC of Figure 21 is connected to
EXIN SYNC input bus SYNCBUS, while the vector DATA of Figure 22 is connected
to EXIN SYNC input bus EDATBUS. On each rising edge of the pixel clock, EXIN
SYNC latches the value on SYNCBUS to produce the frame synchronization signal
FSYN. FSYN is high for the first pixel of each frame. The value on EDATBUS is
latched into the data vector DINBUS, which stands for data input bus. Once these
values are latched, EXIN SYNC output signal EDAV (which stands for external data
available) is set high. When the microcode sequencer detects this condition, the value
on DINBUS is transferred to the delay line, provided that the pixel clock edge was not

a spurious pulse between frames. The microcode sequencer then issues a negative pulse
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on the line REDAV (which stands for reset external data available), causing EXIN

SYNC to reset and await the arrival of the next rising edge of the pixel clock.

5.2.3 Circuit Module DELAY LINE

The delay line appears on sheets 8, 9, and 10 of the schematic diagram. This module
does not make direct use of CLK, but rather is driven by control strobes derived from
CLK in the microcode sequencer. The delay line taps are a series of nine 12-bit registers
which at any time hold the pixels that are currently contained in the 3 x 3 compensated
median filter window of RA4,,. The outputs of these nine registers drive the nine output
busses of the delay line. On each rising edge of the microcode sequencer generated

strobe REGCLK, pixel data are advanced one position in the delay line.

As an example, consider that x,, is currently in the register which drives XIJBUS. Then
X141 18 in the register which drives XABUS, x,,, , is in the register which drives XBBUS,
and x,, ,, is in the register which drives XCBUS. A bank of six 74F413 FIFO buffer
devices is connected to the output of the register which drives XCBUS, and all x, , which
fall between x,,, ,, and x, ,,, in the scan order are stored in these buffers. The delay line
input strobes SOA, SIA, SOB, and SIB (which respectively stand for shift out of buffer
A, shift into buffer A, shift out of buffer B, and shift into buffer B) control the operation
of these FIFO buffers. The input x, ,, is in the register which drives XDBUS, and the
input x, ., is in the register which drives XEBUS. A second bank of six 74F413 FIFO
buffers is connected to the output of the register which drives XEBUS, and holds all
inputs x, , which fall between x, ,_; and x,_, ,,, in the scan order. These FIFO buffers are

controlled by the delay line input strobes SOC, SIC, SOD, and SID, which are named
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according to the same convention as the control strobes for the first bank of buffers.
The input x,_, ;,, is in the register which drives XFBUS, x,_,; is in the register which
drives XGBUS, and x,_, ,, is in the register which drives XHBUS. Hence, x,; and its
eight nearest neighbors are available at the taps of the delay line. On the next rising edge
of REGCLK, the delay line shifts one position. At that time, x, ,,, enters the register
which drives XIJBUS. This pixel and its eight nearest neighbors are then available at
the delay line taps. The pixel x,_, ,, is shifted out of the delay line and discarded in order

to make room for x,,, ;_, to enter the delay line.

The timing constraints applying to the control inputs of the 74F413 FIFO buffers are
quite complex, and will not be discussed here. These devices are each four bits wide and
64 bits deep. When the prefilter operates in 128 x 128 mode, 125 pixels must be stored
in each buffer bank. Each bank is constructed from a square array of 74F413 buffers
that is three devices wide by two devices deep, collectively providing storage for up to
128 12-bit data words in each bank. In 64 x 64 mode, each bank must store only 61
pixels. Consequently, the registers driving XDBUS and XFBUS were constructed from
74F399 four-bit dual-ported register devices to provide the capability of realizing buffers
of either depth. The signal 128 selects whether these registers latch the pixel at the head

of a 61 element queue or at the head of a 125 element queue.

As a final point concerning the delay line, we note that this circuit module must be
primed by the microcode sequencer after any system reset. By this is meant that two
complete scan rows plus three data words must be received at the prefilter input and
shifted into the delay line before the first complete neighborhood becomes available at

the delay line taps. Furthermore, since the first row of any frame contains only header
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information, three complete rows plus three data words must be received before the first

filtered output pixel can be produced.

5.2.4 Circuit Module SRT MTRX

The SRT MTRX module appears on sheets 11 through 22 of the schematic diagram.
Returning once again to the block diagram of Figure 22, we see that the inputs to SRT
MTRX are RESET, CLK, five control strobes, and the nine data busses output by the
delay line. The module outputs are all wired to a DB-37 connector on the back panel
of the prefilter, and are all twisted-pair signals. Excepting the inverted sense of the
prefilter output clock as described in Section 5.1, the outputs from module SRT MTRX
adhere to the ATWS timing characteristics illustrated in Figure 21. 12-bit filtered output
pixels are produced on the output data vector DOUT of Figure 22, and correspond to
the vector DATA in Figure 21. The scalar output signal UNDERFLO is the output sign
bit, which was also discussed in Section 5.1. If this signal is true, then DOUT is
interpreted as a negative pixel value. Taking UNDERFLO to be the high order bit of
DOUT, one obtains a 13-bit two’s complement integer. The output signal FSYNO
provides the means of frame synchronization in the filtered output. This signal is true
when the first data word of any output frame is stable on the output vector DOUT.
Timing characteristics for the signal FSYNO in Figure 22 are the same as for the signal
FRAMESYNC in Figure 21. The output pixel clock is PCLKO. DOUT and FSYNO
are assumed valid on the rising edge of PCLKO. Since all prefilter outputs are
twisted-pair signals taken from differential line drivers, the timing characteristics of

signal PCLKO in Figure 22 are identical to those of the signal CLOCK in Figure 21.
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Figure 23 is a block diagram illustrating the computation of prefilter outputs. It is
functionally equivalent to the diagram on sheet 11 of the schematics. The data word
which is currently at the center of the 3 X 3 compensated median filter mask of R4, is
available on XIJBUS, unless the delay line is being primed. This bus is represented by
the center tap of the delay line in Figure 23. If the data word on XIJBUS is a header,
then the microcode sequencer asserts the low active signal X1J, causing the multiplexer
at the bottom of Figure 23 to connect XIJBUS directly to the prefilter output vector
DOUT. Hence, all headers are passed directly to the prefilter output without alteration

as required by item one of the design specification list.

Circuit submodule SATDETECT appears on sheet 22 of the schematic diagram.
SATDETECT contains a bank of 12 DIP switches which are used to manually set the
saturation threshold. SATDETECT also contains logic which compares the data word
on XIJBUS to the saturation threshold and to zero. Ifthe data word on XIJBUS is zero,
or if it is greater than or equal to the current saturation threshold, then the output signal
SEL from SATDETECT causes the multiplexer at the bottom of Figure 23 to connect
XIJBUS directly to DOUT. Hence, as required by items four and five of the design
specification list, zero valued pixels and saturated pixels are passed directly to the

prefilter output without alteration.

When XI1JBUS holds a normal pixel in the sense described by item six of the design
specification list, the hardware sorting architecture of Figure 23 operates as described in
Section 4.4. During the first cycle of CLK for which this pixel and its eight nearest
neighbors are stable on the delay line taps, the microcode sequencer asserts the SRT
MTRX input control strobe DAV (which stands for dara available). During any clock

cycle for which DAYV is asserted, the multiplexers at the top of the sorting array connect
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the delay line taps to the top of the array, allowing a partial sort of the neighborhood
to take place. For three subsequent cycles of CLK, the multiplexers feed back the
sorting array outputs to the array inputs. Consequently, by the end of the fourth clock
cycle the two middle valued pixels of the neighborhood emerge at the bottom of the
sorting array. These middle valued pixels are added using a cascade connection of three
74F181 arithmetic logic units, and the low order bit of the sum is dropped to yield the
neighborhood median. The median is then subtracted from the pixel on XIJBUS using
a second set of three 74F181 arithmetic logic units. The addition and subtraction
operations are both performed during the fifth clock cycle after DAYV is asserted, and
thus R4, is realized in five cycles of the 12 MHz clock. As the result is a valid filtered
output, the multiplexer at the bottom of Figure 23 connects the outputs of the second

set of arithmetic logic units to the vector DOUT in this case.

Since computing a filtered output pixel requires five clock cycles, circuit module SRT
MTRX contains a simple five phase hardwired control unit to generate internal timing
signals. Each control phase lasts for one cycle of CLK. The control unit waits in phase
one until DAYV is asserted, and then cycles through the other phases. The filtered output
is latched into DOUT at the end of control phase five. During the next occurrence of
phase one, the output pixel clock PCLKO is generated, provided that the microcode
sequencer has not asserted the control signal EDGEMASK. EDGEMASK provides a
means of preventing spurious output pulses on PCLKO while the delay line is being
primed. Additionally, if the microcode sequencer asserts control signal HSYN, then the
current output data word is assumed to be the first header word of a frame. In this case,
SRT MTRX asserts the output frame synchronization signal FSYNO. Finally, the

control signal OE provides a means for satisfying items two and three of the design
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specification list. When the microcode sequencer asserts OE, the data output lines

DOUT and UNDERFLO are tri-stated by the SRT MTRX module control unit.

5.2.5 Circuit Module MICRO CTRL

Circuit module MICRO CTRL is the prefilter microcode sequencer, and appears on
sheets 4 through 7 of the schematic diagram. The architecture for the microcode
sequencer is shown in Figure 24. A three phase internal hardwired control unit 1is
employed, and each control phase lasts for one cycle of CLK. During control phase one,
the microcode sequencer waits for EXIN SYNC to assert EDAYV, signifying that external
data has arrived and has been synchronized. When this occurs, the microcode sequencer
enters control phase two, during which strobes are asserted to advance the delay line.
Control phase two is always followed immediately by control phase three. During phase
three, the microcode sequencer asserts the five strobes which control module SRT
MTRX, and also sequences to the next microinstruction. Control phase three is always
followed immediately by control phase one. Since the microcode sequencer can stay in
control phase one for any number of clock cycles, the requirement that the prefilter be
able to operate at vastly divergent data rates is satisfied. The internal clock always runs
at 12 MHz. In a low data rate application, the microcode sequencer simply spends most

of its time in control phase one waiting for input.

The microinstruction format is shown in Figure 25. The implementation of R4,, requires
191 microinstructions, and consequently the microaddress register is eight bits wide.
This register is labeled PC in Figure 24, which stands for program counter. The

microinstructions are 24 bits wide, and the microstore is implemented in three
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Monolithic Memories high speed 256 x 8-bit ROMS. The first microinstruction field is
called P,, and it controls the delay line FIFO buffers. The signal SIA, which was
discussed briefly in Section 5.2.3, is coded directly as the first bit of P,. The other three
bits of P, are called PO, P1, and P2. The block labeled DCD in Figure 24 contains
combinational logic to decode these bits, and from them generate the FIFO control

strobes SIB, SIC, SID, SOA, SOB, SOC, and SOD.

The second microinstruction field is called I, and its four bits are used to generate
internal control signals for the microcode sequencer. The first bit of I is called
WDAV/HSYN. Ifthis bit is a zero, then the microcode sequencer waits in control phase
one until EXIN SYNC receives input data with FSYN active. Stated another way,
coding a zero in this bit forces the prefilter to wait for the first pixel of a new frame,
irrespective of how many spurious pulses occur on the external data clock. If
WDAV/HSYN is coded as a one, then the microcode sequencer waits in control phase
one only until EXIN SYNC activates EDAV. The remaining three bits of I are used to
control the two internal programmable event counters provided in the microcode
sequencer architecture. These counters are labeled C1 and C2 in Figure 24. If the bit
LOADI1 is set in the current microinstruction; then Cl is loaded with one of two
hardwired values, depending on the value of the operation mode control signal 128.
Likewise, if the bit LOAD?2 is set, then C2 is loaded with one of two hardwired values.
These counters are used by the microcode sequencer to keep track of which pixel of the
input frame is currently being processed. Cl counts columns, while C2 counts rows.
Cl is decremented every time input is received by EXIN SYNC. If the bit C2E is coded

as a one in the current microinstruction, then C2 is also decremented. C2E stands for

counter two enable.
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The third microinstruction field is called P,,, and also contains four bits. This field is
used to generate control strobes for module SRT MTRX. The name P,, was chosen to
emphasize the pipelining between the microcode sequencer and module SRT MTRX.
Recall that SRT MTRX employs a five phase internal hardwired controller, and that the
prefilter outputs are latched by the output differential line drivers at the end of phase
five. Consequently, the prefilter outputs are not actually stable until phase one of the
following control cycle. During phase one, however, module SRT MTRX may proceed
to fetch a new neighborhood from the delay line and begin sorting it. Whereas the
control signals generated from microinstruction field P, always pertain to the
neighborhood that is currently being transferred from the delay line to module SRT
MTRX, the control signals generated from microinstruction field P,, determine the
characteristics of the prefilter output signals. Consequently, control strobes generated
from P,, pertain to the prefilter output that was calculated during the previous control

cycle of module SRT MTRX.

The four bits of microinstruction field P,, are called EDGEMASK, MED/XIJ, and
HSYN. They directly generate the signals bearing the same names, with the exception
that the name of the signal generated by MED/XI1J is shortened to XIJ. These signals
were discussed in Section 5.2.4. DAYV, the fifth control strobe generated by the
microcode sequencer for use in module SRT MTRX, is always true during microcode

sequencer control phase two.

As shown in Figure 24, there are three ways in which the next value of the microaddress
register may be determined. Normally, the current microaddress is simply incremented.
The microcode sequencer architecture also provides four software branch conditions.

The fourth microinstruction field is called CC, and it contains one bit for each of these
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branch conditions. CC stands for condition codes. Only one bit of CC may be a one in
any given microinstruction. During control phase three, combinational logic in the
block labelled g in Figure 24 examines the CC field of the current microinstruction. This
logic also examines the four corresponding hardware conditions, which are labelled
COND in Figure 24. If a bit of CC is set and the corresponding condition is also true,
then the logic in g outputs a high. value. In this case, the address of the next
microinstruction is constructed by replacing the low order five bits of the current
microaddress with the five bits of the BADDR field of the current microinstruction. The
name BADDR stands for branch address. 1f the output of g is low, then the condition
fails and the next address is formed by incrementing the current contents of the

microaddress register.

The first bit of the field CC is called 64/128. If this bit is set, then a software branch is
taken if the current value of mode control signal 128 is a one. Recall that the signal
128 is driven by a rocker switch on the front panel of the prefilter. The second bit of

CC is called TRUE. If this bit is set, then the microcode sequencer branches

unconditionally. The third and fourth bits of CC are called TC1 and TC2. If TC1 is set,
then a software branch is taken unless the terminal count has been reached by counter
Cl. Likewise, a software branch is also taken if bit TC2 is set and counter C2 has not

reached its terminal count.

The microcode is arranged in two sections, each of which contain microinstructions to
process one frame. The difference between the two sections is that the first, which
begins at microaddress zero, contains microinstructions to prime the delay line.
Consequently, this section is executed only during processing of the first frame received

after the prefilter is reset. The microcode in the second section is repeatedly executed
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for all subsequent frames. As was mentioned above, software branching is effected by
replacing the five low order bits of the microaddress register with the BADDR field of
the current microinstruction. This branching mechanism has the result that the
microcode is divided into segments of 25 = 32 microinstructions each. Software branches

can only reach destination addresses within the current segment.

Since the second microcode section is far greater than one segment in length, it is
impossible to use a software branch to return to the top of the section. A hardwired
branch was designed for this purpose, and represents the third and final method by
which the next microaddress may be determined in Figure 24. The parallel load lines
of the microaddress register are permanently hardwired with the first address of the
second microcode section. The last microinstruction of this section has the bit SSLTC
coded as a one, and this bit is coded as a zero in all other microinstructions. After the
last microinstruction is executed, the hardwired address is always loaded to the
microaddress register. Hence, the microcode sequencer branches back to the top of the
section for another iteration. SSLTC stands for steady state loop terminal condition. The
two microinstruction bits labelled RESERVED in Figure 25 are reserved for use in

future modifications.
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6 Conclusions and Recommendations for Further

Research

The ATWS prefilter problem is a difficult one because little is known about the
characteristics of backgrounds in midwave infrared imagery. In many cases, the target
and clutter spectra may not be disjoint. Since precise models are not currently available
for targets or clutter, qualitative design techniques must be employed. The concept of
an ideal prefiltering algorithm for the ATWS was developed in the opening of Chapter
Two. The ideal algorithm passes all targets in the input imagery without attenuation,
and it also reduces the values of all non-target pixels to zero. The remainder of the thesis
was devoted to the investigation of realizable prefiltering algorithms to approximate the

ideal algorithm.
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6.1 Algorithm Development and Evaluation

In Section 2.1, an image enhancement technique known as unsharp masking was
introduced. With this technique, output images are formed by subtracting masked
versions of the input images from the originals. The properties of median filters were
examined in Section 2.2, and it was hypothesized that a median filter masking operator
would be capable of removing targets from the ATWS imagery without significantly
distorting the clutter features. Consequently, a prefilter based on unsharp masking with
a median filter masking operator would provide a realizable approximation to the ideal

algorithm.

Three specific median filter unsharp masking algorithm variants were recommended in
Section 2.3. RA; employed a 3 x 3 median filter masking operator. It was hypothesized
that the presence of multi-pixel target smears and heavily-tailed random noise in the
input imagery might bias the amplitudes of the medians computed by this operator
upward from the true values of the clutter medians. Consequently, a compensated
3 x 3 median filter masking operator was used in RA4,. Each output pixel of the
compensated median filter was computed as the median of the eight nearest neighbors
to the corresponding input pixel. This compensation technique was proposed by
researchers at the United States Naval Research Laboratory. Finally, RA4,, employed a
one-dimensional five-point median filter masking operator applied to only the rows of

the input frames.

The three recommended algorithm variants were quantitatively evaluated in Chapter

Three. For comparative purposes, three linear prefiltering algorithms were evaluated as
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well. Algorithms were compared on the basis of signal to clutter ratio enhancement due
to prefiltering. Since signal to clutter ratio enhancement favors those algorithms that
are best able to reject clutter more than it favors those that are best able to pass targets,
a second evaluation metric called the beta factor was proposed in Section 3.1. The beta
factor may be loosely interpreted as a percentage measure of how well a given algorithm
performs with respect to the ideal algorithm. Which criterion is more important to any
particular automatic target recognition system depends on the specific characteristics of

the target detection and segmentation algorithms employed by that system.

The experimental results show RA,, to be an inferior prefiltering algorithm for the
ATWS. R4, and RA, were consistently superior to RA4,,, and in some cases the latter
did not perform as well as the linear point detection filter. For the input imagery that
was considered, a better estimate of the clutter was obtained from a 3 x 3 square window
than from a one-dimensional five-point window. As RA,, is more economically
implemented in hardware than are R4, and RA,, implementation of RA,,, might be

considered as an alternative to a 5 X 5§ two-dimensional filter for some applications.

The clutter considered in Section 3.2 was smooth and noise free. With the exception of
the square-containing input frame of Figure 7, it was also locally monotonic. In the
experimental results, R4, and RA,, were shown to perform nearly as well as the ideal
algorithm. They were both consistently superior to the linear point detection filter.
RA, enhanced the signal to clutter ratio approximately 20 percent more than RA4,. This
was a consequence of slightly greater clutter leakage in the output of the latter. RA,
passed slightly more target energy than RA,, and consequently had a slightly greater beta
factor. The Laplacian filter and unsharp masking with a 3 x 3 mean filter mask were

both inferior to the other algorithms.
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Realistic input imagery was considered in Section 3.3. Due to random noise and
irregular clutter features, the performances of the recommended algorithm variants were
significantly degraded from that observed in Section 3.2. R4, and R4,, were consistently
superior to the linear point detection filter. All three of these algorithms performed
comparably against imagery containing true point targets. In the presence of multi-pixel
target smears, however, the performance of the point detection filter was degraded more
severely than that of the recommended algorithm variants. As discussed in Section 3.2,
this result was expected. For all three target types, the signal to clutter ratio
enhancement due to R4, was approximately 11 percent greater than that due to RA4,,.
The beta factor of RA, was approximately 2.6 percent greater than that of RA,,
irrespective of the target type. These results indicate that RA, and RA, were
approximately equal in their ability to pass the targets, while the filtered clutter variance
was somewhat lower for R4,. Stated another way, for the experimental input imagery
the compensation in the masking operator of RA4,, provided no tangible advantage over
the uncompensated median filter. One explanation for this might be that the clutter
distribution did not have large enough tails for R4, to excel. The author recommends
extensive further investigation of R4, and RA,, before either one of these is declared
superior to the other. In particular, both algorithms should be evaluated on a large
number of realistic frames. The input for the experiments of Section 3.3 contained only

10 unique background scenes.

With respect to the algorithm measurement criteria used in this thesis, it is probable that
the performance of both R4, and RA4,, could be significantly improved if these prefilters
were followed by a simple thresholding operation. The filtered clutter mean is expected
to be nearly zero, and a good deal of the clutter leakage around targets is expected to

have negative amplitude. These assertions are corroborated by the output frames shown
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in Section 3.2. Although thresholding the output of R4, and R4, would most certainly
reduce the clutter standard deviation, it is questionable whether such an operation would

actually facilitate target detection.

6.2 Algorithm Implementation

Because the determination of local order statistics is a highly nonlinear operation, the
design of real time median filters is difficult. The histogram and radix methods resulted
from various authors efforts to circumvent the hardware complexity associated with full
scale selection networks. Unfortunately, these methods both require extremely complex
control logic. In Section 4.4, in-place computation was used to simplify the hardware
complexity of the standard selection network. A practical real time sorting architecture
for RA, was developed. The author recommends that this architecture be further
investigated with the objective of applying it to the implementation of real time median
and order statistic filters in general. That RA, and R4, are in fact realizable
approximations to the ideal algorithm was demonstrated by the complete design
presented in Chapter Five. Although only RA,, was implemented, with reasonable cffort
the design could be modified to realize R4,. In particular, the author would recommend
that the sorting architecture developed in Section 4.4 be replaced with an architecture

based on the modified radix method.

6 Conclusions and Recommendations for Further Research 112



Literature Cited

1. D.S. Fraedrich, “Analytic Evaluation of Frame Difference Processing on Terrain
Clutter at MWIR Wavelengths,” SPIE v. 781, Infrared Image Processing and
Enhancement (1987), pp. 26-32.

2. D. Casasent, “Electro Optic Target Detection and Object Recognition,” SPIE v. 762,
Electro-Optical Imaging Systems Integration (1987), pp. 104-125.

3. B. Bhanu, A.S. Politopoulos, and B.A. Parvin, “Intelligent Autocueing of Tactical
Targets,” SPIE v. 435, Architectures and Algorithms for Digital Image Processing
(1983), pp. 90-97.

4. B. Bhanu, “Evaluation of Automatic Target Recognition Algorithms,” SPIE v. 435,
Architectures and Algorithms for Digital Image Processing (1983), pp. 18-27.

5. M.S. Longmire, A.F. Milton, and E.H. Takken, “Simulation of Mid-Infrared Clutter
Rejection. 1: One-Dimensional LMS Spatial Filter and Adaptive Threshold
Algorithms,” Applied Optics, v. 21, no. 21, Nov. 1982, pp. 3819-3833.

6. M.C. Hetzler, R.M. Smith, R.C. DuVarney, and J.M. Marks, “A Study of Clutter
in Infrared Backgrounds,” SPIE v. 781, Infrared Image Processing Enhancement
(1987), pp. 10-17.

7. E.H. Takken, D. Friedman, A.F. Milton, and R. Nitzberg, “Least-Mean-Square
Spatial Filter for IR Sensors,” Applied Optics , v. 18, no. 24, Dec. 1979, pp.
4210-4222.

8. T.L. Bergen and P.K. Mazaika, “Evaluation of Spatial Filters for Background
Supression in Infrared Mosaic Sensor Systems,” SPIE v. 341, Real Time Signal
Processing V (1982), pp. 209-222.

9. M.A. Kruer, D.A. Scribner, and J.M. Killiany, “Infrared Focal Plan Array
Technology Developments for Navy Applications,” Optical Engineering, v. 26, no.
3, March 1987, pp. 182-190.

Literature Cited 113



10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D.A. Scribner, M.R. Kruer, CJ. Gridley, and K. Sarkady, “Measurement,
Characterization, and Modeling of Noise in Staring Infrared Focal Plane Arrays,”
SPIE v. 782, Infrared Sensors and Sensor Fusion (1987), pp. 147 - 160.

M.R. Pauli, M.S. Longmire, and E.H. Takken, “Point Source Detection with
Multiple Spatial Filters in a Staring Array Sensor,” Proc. 33rd National Infrared
Information Symposium, May 19835.

T.F. Tao, D. Hilmers, B. Evenor, and D. Bar Yehoshua, “Focal Plane Processing
Techniques for Background Clutter Suppression and Target Detection,” SPIE v.
178, Smart Sensors (1979), pp. 2-12.

J.J. Otazo and R.R. Parenti, “Digital Filters for the Detection of Resolved and
Unresolved Targets Embedded in Infrared (IR) Scenes,” SPIE v. 178, Smart Sensors
(1979), pp. 13-24.

C.M. Lo, “Forward Looking Infrared (FLIR) Image Enhancement for the
Automatic Target Cuer System,” SPIE v. 238, Image Processing for Missile Guidance
(1980), pp. 91-102.

R.T. Gray, D.G. McCaughey, and B.R. Hunt, “Median Masking Technique for the
Enhancement of Digital Images,” SPIE v. 207, Applications of Digital Image
Processing 111 (1979), pp. 142-145.

J.W. Tukey, “Nonlinear (nonsuperposable) Methods for Smoothing Data,”
Conference Record, 1974 IEEE EASCON, p. 673.

J.W. Tukey, Exploratory Data Analysis, Addison-Wesely, Reading, MA, 1977
(preliminary edition 1971).

A.E. Beaton and J.W. Tukey, “The Fitting of Power Series, Meaning Polynomials,
Illustrated on Band-Spectroscopic Data,” Technometrics, v. 16, no. 2, May 1974, pp.
147-185.

G. Garbotto and L. Lambarelli, “Fast On-Line Implementation of
Two-Dimensional Median Filtering,” Electronics Letters, v. 15, no. 1, 4 January
1979, pp. 24-25.

L.R. Rabiner, M.R. Sambur, and C.E. Schmidt, “Applications of a Nonlinear
Smoothing Algorithm to Speech Processing,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, v. ASSP-23, Dec. 1975, pp. 552-557.

N.S. Jayant, “Average and Median-Based Smoothing Techniques for Improving
Digital Speech Quality in the Presence of Transmission Errors,” IEEE Transactions
on Communications, v. COM-24, pp. 1043-1045, Sept. 1976.

T.S. Huang, G.J. Yang, and G.Y. Tang, A Fast Two-Dimensional Median Filtering
Algorithm,” IEEE Transactions on Acoustics, Speech, and Signal Processing, V.
ASSP-27, no. 1, Feb. 1979, pp. 13-18.

R. Steele and D.J. Goodman, “Detection and Selective Smoothing of Transmission
Errors in Linear PCM,” Bell System Technical Journal, v. 56, pp. 300-409, March
1977.

Literature Cited 114



24,

25.
26.

27.

28.

29.

30.
31

32.

3.

34.

3s.

36.

37.

38.

W.K. Pratt, “Median Filtering,” in Semiannual Report, USC IPI Report 620, Image
Processing Institute, University of Southern California, Los Angeles, CA, pp.
116-120, 1975.

W.K. Pratt, Digital Image Processing, Wiley-Interscience, New York, NY, 1978.

B.R. Frieden, “A New Restoring Algorithm for the Preferential Enhancement of
Edge Gradients,” Journal of Optical Society of America, v. 66, pp. 280-283, 1976.

M.I. Shamos, “Robust Picture Processing Operators and Their Implementation as
Circuits,” Proc. ARPA Image Understanding Workshop, Pittsburg, PA, pp. 127-129,
Nov. 1978.

W.L. Eversole, D.J. Mayer, F.B. Frazee, and T.F. Cheek, Jr., “Investigation of VLSI
Technologies for Image Processing,” Proc. ARPA Image Understanding Workshop,
Pittsburg, PA, pp. 191-195, Nov. 1978.

V.K. Aatre, E. Ataman, and K.M. Wong, “Median Filtering,” I/7th Allerton
Conference, Monticello, IL, Oct. 1979, pp. 886-895.

D.L. Knuth, Sorting and Searching, Addison-Wesely, Reading, MA, 1975.

V.E. Alekseyev, “Sorting Algorithms with Minimum Memory,” Kibernetika, v. S, pp.
99-103, 1969.

J.W. Tukey, "The Ninther, a Technique for Low-Effect Robust (Resistant) Location
in Large Samples,” in Contributions to Survey Sampling and Applied Statistics, ed.
H.A. David, Academic Press, New York, NY, 1978, pp. 251-257.

D.R. Morgan, “Analog Sorting Network Ranks Inputs by Amplitude and Allows
Selection,” Electron. Design, v. 21, pp. 72-73, Jan. 1973. Also, “Correction,”
Electron. Design, v. 21, p. 1, Aug. 1973.

E. Ataman, V.K. Aatre, and K.M. Wong, “A Fast Method for Real-Time Median
Filtering,” IEEE Transactions on Acoustics, Speech, and Signal Processing, V.
ASSP-28, no. 4, Aug. 1980, pp. 415-420.

P.M. Narendra, “A Separable Median Filter for Image Noise Smoothing,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. PAMI-3, no. 1, Jan.
1981, pp. 20-29.

D.J. Delman, “Digital Pipelined Hardware Median Filter Design for Real-Time
Image Processing,” SPIE v. 298, Real-Time Signal Processing IV (1981), pp.
184-188.

G.R. Arce and N.C. Gallagher, Jr., “State Description for the Root-Signal Set of

Median Filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, V.
ASSP-30, no. 6, Dec. 1982.

J.P. Fitch, E.J. Coyle, and N.C. Gallagher, Jr., “Median Filtering by Threshold
Decomposition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, v.
ASSP-32, no. 6, Dec. 1984, pp. 1183-1188.

Literature Cited 115



39.

40.

41.

42.

43.

44,

43.

46.

47.

48.

49,

G.R. Arce, “Statistical Threshold Decomposition for Recursive and Nonrecursive
Median Filters,” IEEE Transactions on Information Theory, v. 1T-32, no. 2, March
1986, pp. 243-253.

F. Kuhlmann and G.L. Wise, “On Second Moment Properties of Median Filtered
Sequences of Independent Data,” IEEE Transactions on Communications, V.
COM-29, no. 9, Sept. 1981, pp. 1374-1379.

E. Ataman, V.K. Aatre, and K.M. Wong, “Some Statistical Properties of Median
Filters,” IEEE Transactions on Acoustics Speech, and Signal Processing, v. ASSP-29,
no. §, Oct. 1981, pp. 1073-1075.

N.C. Gallagher, Jr., and G.L. Wise, “A Theoretical Analysis of the Properties of
Median Filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, V.
ASSP-29, no. 6, Dec. 1981, pp. 1136-1141.

B.I. Justusson, “Median Filtering: Statistical Properties,” in Two-Dimensional Digital
Signal Processing II: Transforms and Median Filters, ed. T.S. Huang, Topics in
Applied Physics v. 43, Springer-Verlag, New York, 1981, pp. 161-196.

P.F. Velleman, “Robust Non-Linear Data Smoothing,” Technical Report 89, Ser.
2, Dept. of Statistics, Princeton University, 1977.

S.G. Tyan, “Median Filtering: Deterministic Properties,” in Two-Dimensional
Digital Signal Processing II: Transforms and Median Filters, ed. T.S. Huang, Topics
in Applied Physics v. 43, Springer-Verlag, New York, 1981, pp. 197-217.

T.A. Nodes and N.C. Gallagher, Jr., “Median Filters: Some Modifications and
Their Properties,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
v. ASSP-30, no. §, Oct. 1982, pp. 739-746.

A.C. Bovik, T.S. Huang, and D.C. Munson, Jr., “A Generalization of Median
Filtering Using Linear Combinations of Order Statistics,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, v. ASSP-31, no. 6, Dec. 1983, pp.
1342-1349.

T.A. Nodes and N.C. Gallagher, Jr., “The Output Distribution of Median Type
Filters,” IEEE Transactions on Communications, v. COM-32, no. §, May 1984, pp.
532-541.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, NY 1984.

Literature Cited 116



Appendix A. Schematics

Appendix A. Schematics 117



SOnRWIYPS 'Y Xipuaddy

81l

XIN_SYNC ICRO_CTAL
| FFini E1287 1208~ 128~
ERESET™> SET™ RESET™ ¥ ESET~ ASTDETECT —————RSTJETECT >
EPCLK, EPCLK " el £ P CLKBUS EDAV EDAV
E T VA E T BYHC™ et SYNCBUS FSYN FSYN soam
EDAT IO 111 EDAT (0. 31) P EDATBUS REDAV> —MREDAV~ SO ————
Ega > E64” soc -—————]
ERESET > peneser DINBUS DGEMASK scop———]
ICHSYH SIA
L ax19" SIDp————
e DAV sicp——mm——
| ——————oE" S1D— s
uogsTEe [Rek  mescLcg————
RYAL >—————P XTAL cLx
ES5. 58T Dty SSBUS
BCKSSCRT>——Ppsscous SAT_MTAX YELAY L INE
¥ CLK EDGEMASK 4 DINBUS SOA g————
HSYH 44— 1287 soB ¢—— —————
YN SYNBUS X1J~ & AESET™ soC q——————————
<PCURG™IPCTRG} LKBUS DAV ¢ ' $00 G
<UrDEARFLD, UNDERF L0 et UF L BUS OE~ @— SIA 4—
BT AT 0T IoTiD acouTsus xapus ETOY E—
RESET™ 'zi::; SIC g—————
3XC0US i
REGCLK €—— - B
XABUS X1J8US
xu8US dXEBUS
XCBUS XFBUS
X0BUS IXGBUS
XIJBUS <AHBUS
xeBus )
XFBUS
XGBUS
XHBUS
MEDIAN PREFILTER
GizefDocument Number
_J_ BLOCK DIAGRA!
. . - — Oote: | . May 19, 39806heet _ _




SPBWIAPS 'y X1puaddy

611

vcc
. vizep 100
SATE _'\N&l .
EDAT — 4
EDAT~0 1 §4 oEr
EDATL 14138 oal2 RIN0:24) SYRRUS >
EDAT~1 IX1§R SalE2
EDAT2 oc 5
EDAT~2 % S5
EDAT§ 10 [0} _
£oAT™3 18 oes 12 D1 Q1 NO_/
02 @2 R —y
HE3AbG F) D3 O3 N3
3 D4 Q4 3 ¥
5 p g
v177D 100 : D6 G6
[~ V™ V™ U163 oK
EDAT 4 : oeA -2
EDAT-4 T TaLSTTA
EDATS T4138 oalsd
EDAT™5 15148 A
gare & ofo
= 1
EDAT? < oo
EDAT"7 ) oep |4
vcc
. AC5386 ug
ra ERUE Y 1 e/
Z JING /]
u1780 100 193 83m% (i
4 & Za~nd id1ps 35 HE N1
ui6a F 06 G6 15 N3ig uizsc 4700
E0ATE w OER
N 1 B e :
A 3 ~
EDAT9 12188 S5 cLa
EDAT10 cc 2 7405174
EDAT~10 {& S50
EDAT13 3
EDAT=11 18 oeo |22
HC3486
U752
I 4 E\
6
74508
R1
2500
_ u7608 u7soc
Al AV
6
U751
100 Ohm 74LS04 74LS04 U465
2 S
EPCLREUS o2 U770 = 2{o01 a1l-&
EPCLK, EPCLK™ j& o= 4 ’[200 uF 4 gz g2 —5—
A D. Q3 65—
14018 oal-2 = U760A —3ilps qa Ao
asl s ealEis 1310s as[1E-
1i& o J —i4]p6 a6 H3-
€ oo |4~ 5
191319 . < TpoLK
EYHCHUS > 3 QJ—‘ 15 oes A2 4L504 CLR
E_F_SYNC, E_F_SYNC™ L Y5173
-F u7s1 MC3466
100 Ohm

MEDIAN PREFILTER

REV

Sizelocument Number
B INPUT SYNCHRONIZER
— Date; Moy 19, 39@esheet




sonRWaYdS v Xipuaddy

071

[N

4700 ) U404

74L504

114024

73aCS2794

MEDIAN PREFILTER

Size|Cocument Number
B SINGLESTEP

DOnte: My 33, 1428!Shaes 3




SONBWIYIS *Y Xipuaddy

121

BESET >

JCRQ_CNTRL LEFT

PFSYN
P EDAV

RESET™

ICAD _CNTRL ATGHT

ESET™

120”7

RSTDETECT

1287

MUXCLK

LK

LOADS™

UXCLK
LOAD1"™

LoAaD2™

0AD2”

c2E

SIA

posus

TCwus

csL1

Ui6W114

SIA
poBus
TCBUS
csLs

U1ani10

Ui6W11

USWa

U14W10

PC

P1

USW4
PO

P2

Y

[Fhsdal k]

U28W3

UlawW1s ’1

UaadwWig

SIAp—T2A>
S10p—SI8 >
s1cH———FIC >
siop——EIo>
SOA ——503 >
S08 Y—-{508 >
SOC ——F0L >
SCO ————FETT>
EDGEMASK B¢ 2{s] MASK
XIJu™ M (RI7
HSYN —————HSYN >
oE~ ——ET >
REDAV™ ———HETAVT >
REGCLK ————fEGCLK >
DAV i———— DAV >

MEDIAN PREFILTER

Size;Cocument Numb

er’
MICROCONTROLLER ELOCK DIAGRAM

4 _cf

[Date; May 39, 31988[Shoet




saewWRYdS *y Xipuaddy

(44

TBLK

RSTDETECT ——————\STPETECT >

USF

uzo068
74L5S04

PCBUS
vge 3
BUxCR™>— 1 £5>
U310
ca 3[a oA A4 usc
PCS 4l a8 |45 A8 A 74L504
58 58 a8 26
| /FCT 61§ ¢o A7
cO E— uso
enp  ceo pli- 3
—22d EN
LK
g Loao 2 74LS04
SCLA —
U168
ACL 74L508
/i
1374 G
JaE5eg
bco JREGES . ro s
Bey 1A QA -8 A1 Q0L Y
5C2 518 FEeE Az
5C3 15 G B A3 A
7, Bk
tH—Zdene  ccopif-
uis
Haq ent it9az
=5 CLK
-21d Loao
R [:
ACL.
T Lf N
u/o
1573 Y N A
CTAFEHEY N_AS
N—i gi1anio >
u13
e GIT 4 i | U3€D
43 s VY EE N
poz .
c 321 4y 2 q Ei 73LS38
PCE ay ] 55‘;'34
BCS 2] oy = uBD ueB
- BRag 74LS08 74LS08
Pca al,y
VaT
Lo T CSi3]
X‘/g L, 5’ 1
43 GRAA 3
48 o 15
pca 12 1
R T BRAD uisc
pc2 3 7sLs32
3 34 RAAY
28
PCy 721y 2% - oro
18 e
PLO yy 1a GEETE >
7aU8257 ui4a 3
MEDIAN PREFILTER
. e SizejDocument tiumber REV
. MICRGCONTROLLER LEFT
74502
- Da%e; ray 19, 158BiSheet 5 __of @2




saBWIYdS Yy Xipuaddy

1 XA

U9
190
L'ld 08
19
13
4LS08
U204a

L?Ts‘ée

ug

s

74L508

ug

 S—
74LS08

| SFACTW

Biawio

<IEDAVT T}

U22a
74LS28

<>csL13

vee A U703 . I—Ensems« >
02 ——34o1 o1& -
e
% _{pa Qal4% Lgsyvii>
3 T LYo i EEEE e
= i —4lp6 6o [ E
—8 j (/\c 1, 9lek
—&] 3 — CLR
— S -4 e S E 3
— b _ 74aF174
=] B —BEGCIRT>
=5 I C
SEY N 1 U26A
r—v‘/‘ 1 55
4 \' ]
12 Ei b}
0 [ UBa 74LS14
—91 g7 (25 4 |
—9] ie 3
| 7 2
6183 Rifs
“3lg3 [ 74508
—41 a2 < < -
—3-01 les
= 3 MEDIAN PREFILTER
111
-l Size|Document Mumbar
= 8 MICROCOMTROLLER RIGHT

Date;

Moy 319, 31968[Shcet 6 _of




SNRPWIYPIS "y xipuaddy

vl

u203C

74LS32

MEDIAN PREFILTER

Size!Cocument Wumber HEV
] RESET DETECT
Onte: May_ 39, 3988JSheoet of 2




nRWIYPS 'y Xipuaddy

1A

DELAY {,INE LEFT

128~
XoBUS
RESET™
REGCLK

{XpEUS >
DELAY LINE RAIGHT

128~ XEBUS Pmeemeeemee{XEH IS >
XDBUS XFBUS P XF US>

RESET~ XGBUS M 3005
GCLK XHBUS Pt XPHUS >

XIJBUS ._—.—m

soc ¢—————<80¢])

soo & —<Z00]

si1c ¢——<EIC]

s10 ¢————<EID)

MEDIAN FREFILTER

Size{Document Kumber

8

CELAY LINE BLCCK DIAGRAM

REV

Date;

HMay 19, i9e8lchecet 3]

ct




SONRWIAYIS 'y Xipuaddy

S
X0 Qi) GORGS >
uU37
—=2 é.f,‘ OR |24
83 Reopid
401 % uag
B> 8t 3§~“° ] :—-Aé aal-2
U A
s mmEr) 21 mA s A C—¢]a3 pos-2—
137185 3ac 1o
[VEE] 74F&313 3 52 9
——<BEGCLK) —35]c2 15
—201n oR|A4- j581 o
00
01 Pao (43 WS
. o2 Gas ¥ LK
; 03 AF359
<K ARUE A1) <XPRUS -SAdQiaal 0% sI 303 (HO— I 39
S1rR  so (i
IF4i3
28 v36
u u30 uaz .
3 —
its = =zl = 5B oebe
il Nt T 161 8 E e T1es oo pid
D4 G4 4 4 4
BiNs R——3%{os esHE 13105 as 43~ 13105 as[H3] 03 Loz B a2 —
PINS 34106 a6 141p6 a6 [H2] c6 6 [H9 st 323 - A2 2
2 bk ek 2 ek u33 2 W so (42 1 81 Mas —Z
CLR id cLp CLA A 51182 3
—2l1n onpia- SFATT —43c1 gac O
74LS174 74LS174 74CS174 Do = ca2 5
- D1 Nao (42 4101 ap
83 18203 =ik
i - s1 3a3 49 [ | LK
R 1 74F399
9lam solas aF389
ug9 u3s
DING 3 [ 2 |2_/] ELEEE) —2J17  oR -
DINZ o2 g%—r/ 2 L5 oo 43
DING 5103 a3 [-Z] "y 01 Foo (2
DINS 3 31] i 9] 02 4013
oInto [\ 33153 93 sy i3 7103 822 uas
DIN1 Y 131p6 g6 [ 1 Ja3 AL QA |—Fr
2 2R so 4] a2
LK 6 b kd
cLh 1d LR ) 81 gos .
7aCS174 7ars174 JICS179 (AL FE] :; E;_ aac |4
A5 15
4101 ao
1
o2
uego 102
4
—2{1n on}ii- LK
3182 mgola3 7aru59
) F 13
£1c2 fai
£3 jo2 31
5T 303 L
- Qi mw so R
7AFILT
NS
Eo>—

HMEDIAN PREFILTER

Sizc{Document Hurm! er
B DELAY LINE LEFT
[Date Way 19, jo6n|Shegt

971




SINBWIYOS 'y Xipuaddy

L

1Sy —
uso
) —a ég oR |44
01 Hao |43
02 Lo HZ— l
B> 97 133O l
—<BE£SETT) AR so M2 L
Fy
———<BEGCLK ) 7aEss 3
Y
I\ 1 XHBU!
<RIBS L ) <zepUy R ||l %6 (§L2) Fopus—>
TaF413
Uaa uag usz —_
Bt u = B &=
. 03 a3 (7] 01 Poo 43 03 ©3f7
i 61 & 82 b e dine
1 06 a8 |22 sI 303 (HQ 141pg @6 (2
k3] 8 L2 rrd 15 ks
3 &n T B mose &
JALS174 a8 ©on Tarais 7aLS174
2
2401 Hao 3
£]02 Lai H2
€] D3 162
SI 303
2 7w sofdd
uaj ua3 J u4ap usa - USe
8 alE = —S{zg on) B o NEe gl
03 a3 |2 £{o3 oS——d 2101 Hoo (12 03 03[, 5] 503 03 |+
83 8B iHes e 82 181 b ae SHINDHS apE
06 a6 |12 EN TS os—‘gj s1 363 Y (i 14105 a6 4406 as 45—
LK - 2bck 211 so 4R ] A 2 bk - 2 oLk
L ] —id cLn B1 —3d cLA t—id cLR
JALEi7a 7ACS174 TaFII3 az 74L517a TaL5174
FY
] ca
33+ o1
yas oz =
—241n on |34 LK
g? Ngo |13 7aF 369
o2 a1 iz +—
03 jaz2 i1
sI 363
L]
2157 so (42
RZLEEE]
L m
Sfele} Eon >

MEDIAN PREFILTER

Size|Document Number v
B DELAY LINE RIGHT

Onta; May 19, 31988|Shoet of 2




saewaYdg Y Xipuaddy

871

l COMPD I
P OHIBUS DHIBUS M
OLOWBUS
REI0: 33T XHBUS
[ ACREEY] XGBUS COMPUTE
. CLK -
GHIBUS csLt CoMPG XTUBUS @ X 10 (07 137 )
OLOWBUS GHIBUS
GLOWBUS
cLk &
COMPC cH1BUS
GLOWBUS CHIBUS.-———-—-——’
CLOWBUS B
XFBUS
XETO 33T XEBUS
18US DCUTBUS B=f10UT 10: 3137, DOUTT {0; 33] >
csu1 CoueF
t==qp CLOWBUS FHIBUS HIBUS FSYNBUS Bt~ 5YNO, FSYNO™ >
FLOWBUS By FLOWBUS
PCLKBUS Br-FCLRO™, FCLKO >
CLK &
guIo — BHIBUS UFLBUS B-UNDERFLD, UNDERFLO” >
FLOWBUS P I SE————
S B8LOWBUS
oI 33> XDBUS
LK
FEIG1IT > XCBUS
SETT
EHIBUS sL1
csti
COMPE
BLOWBUS EHIBUS
ELOWBUS
ELrR > <EDGEMAEX]
HSYH
CLk &
AHIBUS CTALOUS 4 —XJJ7]
GouEA —— I —<0V]
ELOWBUS AHIBUS By
—— —<CET]
B, ALOWBUS
[FNcCRESYE XBBUS
Ao ZIT > XABUS
CLk
ALOWBUS
csLi

MEDIAN PREFILTER

Size|Docuiient Number 5 REV
B SORT MATRIX BLOCK DIAGRAM
[Onte: Msy 19, 1988[Shact 11 of 22




>
: b3
) 3 e
z|
J
o
(]
~N
o
g o
0
] 14
5% ¥ fi
<« - 21 <9
g ) - fot
e B o BBk
8 ca [ F =) |y
a <o i S - G
o] avo o 03 IO z| &
0% figagel IS AL A P RNG .l ao|Ex
B an Qre /] ETUR ey AT o WO o
ju (/N popamy I A o M 25
[l (e <o —d o 3 ~
& NE Iraslnl\ le~m - m
o
XTO ES Py a c
2 {m< M re c
B Exa b -y ~ g
It o T 9 H
= «m ]
Ot p 2] a
» .l B
Y » ~T )
~Jlca =1 [ o
m < o k3 pen| 8oy
a7 | RS L la_l5
5 <a <z
cn X
ﬂ <0 < ITHO
o ) <o
W oY s AT
1N &
o w1 «
% n] o > oY
S o beG)
[ e o B H
~a
' xan Tom< m- o, =5 vy 04
poe 1] oY
== Ttlec o 3~ N
A 1~] EY
N N oo oro
B e e 3
<o 1 ~
2 00 -
. Y=ot © e[
° og -] oV < S i n <THw
ﬂ T w37 [ @an N Q. 2“. -
<«v@  <V@ o e [} <TH
2 a3 4] V1o <1m 2~ = e o> T
S BN <AD <AQ an CE -y <TI0
i am o] It
J “ v — =5 - 4 <a o
SRDE ~a = o, |
x20 T ne - R 30 =
o l~a
Xaw T & a B
@ m> oN 3 ol
ma
oo < e ) N
1 €
xam " ~A
2 L I
4 | <
w
anm
A0
B < N
__T| a oo -
g g3 2 3
Do a
o 3~ 9
3 o - <«va T.m a ]
o] pH:J o 3
N — [l e <@ <nm f—2 0% E
X< e o B’ on
[ 2
<O e anA. > 2 A MM ..... < o< <JOZD
S92 - <o o 3V N <oz |3
x<-o DR A oo 03" oa
o0 p
X<re | 2 e CET g L 0z w0
e ), o y
k <rie =] SY o -0 < JOT e
b S oo~ aoa
) 10N M
< @]z %
~ vax
8 g |
o 4] 7] :
B aJ ]
R a3 0z
M. =1 =1 m
N~ Sfac o> 5 3 2l ol
XY o] o2 ~ s crmcn i Qv
! o] e - o U—lo—a] < o~ !
o «m .
X< olne o> 2 1 S99 eo a1 U an 0 |27 |
\ b 2ol 39 <«
X<© o] mw > o \nn'i on MM uu_ aw o D rjti0z0) !
2 = va « 1 ~ <0 T o - 4020
“« - o <o as “SHun  ou e
o o _||B| <@ <o f—% an =19V o g <ISIN
e <A@ <A an ~5{c~ cca
H —jcu M
i alzn &
~ oux
8
B 8 3
3 a3 >
ny
H IS
« /] __
N g > I
X<0 o N !
uc oo < <« <Jox0
X< e o A ao
K< cea Sl < = <JOXw
xa<n ok fat'] -
= Bed £ an <Joz0
X< Q cn
0] o an <J0xM
o la ca P
A .
p
4
M
!
«
-4

Appendix A. Schematics

129



n i
S
: I
T o
o
o
ﬂ o
- ¢ W
m © o
= ! 1
] ~J
: o7 &
X <@ o " 5 F
a9 o SR asn 218
& <o o @ N ezl | 5
. 0J an L @yl e
R ov <wo Hoa LS g R
§ EI avo e B S IS G bl I
: : = o v c o
e > Qo | /] Lot we| 02 oy 1] Z i
5@ ~n e ey RS N t%
ne o (D ] 4)95 2 4
s i i ' w o
=me > 2O = E
QO = | no : y
cExa kA Y LT ]
- ; :
E ¢—d o g n.
g ) o a
B ) : :
: [ ] 8
@ Q
- EIN o) 4
R < Q o
M = o > hd L9 u o M
4 av. b o9
k 2o T il N
i EIN & 5 v
: 2 =0 nq oy e (DTHO
xQ% 5] 3 - Sl N
(TR 1 A}Bn. |
T =] a2 2 -
me m> (—2 1 @ :
XG6 w103 8%
L N Y EN 3
B § wa : i :
] o | | «nwo g
E 0q o oo ] <9 8 :
~a “rom] < 7 ]
& [{=o-nl <8 J :
‘ S [u ] €
~ Tone] 99 o 1
5 e an = :
g o
o ] \BI-IBw M am Fa g Ha - -
e a7 Si<va -« <va — a3 e !
# 1 g a2 o S,
B . <ArD - <A@ o EapE 2
i s Q04 - . = 0 -
X000 R N . =% -
o] Ne - o ) = x = s o
EGT e U0 o avl A AB/.B
a< o> . =
XGW Ea b ; =
R
|/ <o va g
n ; ,
z =09 @ g
g o], a )
: ‘o [TN]
[ =
20800
< =
X <o S <
S e e = 8
_ 5 7% T
] ol o s
2 ol a9 atet o
[} o~ st =ien _
i ] : z 1 on
N o hen el ] <2 /] et i
_ = f «va - <vo I ]
5 e U<ra - <109 ]
= e @ <Arm o <Aa L 23 i
=0T o> (0s=e] - ,,,
XOw0. e E :
=3l g @y pofigon ! = :
XGrier 73 a2 S et Bt
~ = PE i} Y
ik @ TR RN N nioza
. Y g
R - - @I0ZwO
P a3
)7 a o N2 e pmet QDX
- v’
o 0
o 0y 3 :
o ki la 3
-‘hﬂu BN Y 1
r BN &
uzp ono
- b ~ ] © 9 3
PSP T . 7 <vem ] & :
) -2 ~No Y amen) <« 57
el e O ol 20 =
OO CxH bis] o : = o E
< o S auny] O %
xon R <a x o] mu o
S S f om ¢
. 0 —8 <va s <va | % oo
a <13’ ¢ <1 2 :
ﬁm I <ra A>W 0 ms i
o ;
7 - WIS
0
5 b
4 nd d
& ELS >
< > <2 |
XGo ra
Ne oo D=
G o
ne - m» (220 :
oM fe oy am A 2
z - - b aoz0
ECL) ; va - e
= o [ W=
) aw
o niozM
Pl
) o o10zM
4 .
3
Dl
i

Appendix A. Schematics
| 130



uioz2
74L5257

1
A

-

2

>

o>

0y

-

ey

~CHI (0, 13)

789
)

>

uag
74L8237

>
i
o« |
I
o
of
ki
-
]
o
= ¢
9.u O
" |
c
ww Ll 6«
T EEAr
5 1| 2 |5
= = | <IN
3] e
a |%0 o
28 e
_-L mc .|
<+ 13
z |3
o |3
c
8
€
3
Q
o
a__|
o L
N 4
ST o O o
Lo 19
[OIHO
QT
QI
3520
UIrn
wzHN
uzHm
I

SLOY (0. 14)

78

~y___

o

ussg
74LS257

1
A

-

m>

oJozw
vJozn
ovJozo

oJoz~

LJoxo
UJOZ
oJoxN

3
B .
p
4
~
0
o
-t
oJ
"g
S~
u x> 2 | /]
= G0 oS B N I
21 wa
£ CEN S I I L
) o108 Loy Qen
N
prt 4 Ly @
e )
o
~
a
i
o o
H ov
o EIN
e
E S
5] 2
xS R N
v oD
xwn 2lme  m- 2
na
= Stlec e
xun 3
N i
= —eas
=ik
N Bkl
° sk
9 TR N I
nJ alcr <1q —2—
a7 CTECE P )
ENN <A@ tAd
..; ppaey I S
A1 "0
Lo Gl o S LN
2] na
P Tme o> 2 Qo /]
< wa] 03 1 __om
£ << ™
|~ - wa
x =2d o
3 ~a
]
<0
“ A0
m ree
___ 2 r @ Q7
= av SEs
I I
i
N e o @ ]
~a
) PR .- Y
~a
BT e m- 8L/
o
XWero << - Lt
L]
Xune I
3 ©
- <~
~
g g
I @
Y oJ ]
av av
m an o~
] T 4% «OrO
- lng crzus by
KW 0] 0% o o <0 Y/ aomn 8
<«men
N o — <0
xuan o< o 2-<2/] 2 % loo
o xR DR R 7
T =01 va <0 am ~
8 : wa <vai—E
3 = —Haa <2
W. la <A@ <AD
N
8
o o
o Q
- 23 >
m 3~
R
o <2
WS 8 S NP L)
2 vo .
X “ﬁ n< o 0_<n
Xw —v |72
X1t
g va
I
3 ~He
W la
. =
3 p
-4 .
: 4
.
b
[n
o
S
3

2o 4137834

>

Joxm

OJOZvtn

Appendix A. Schematics



>
¢
o
2 kY
.
1= 0|
v
4 3 g Lk
b N ~m U a |9
bt 9
. < -
B 9 R g w | T |5
3 . ~ o~ w......_ m 2
ps e B ok
% = « <o u < ogf— e ¢ o
o0 < “Zlo | %S
BN} co E P ~ nélz
a7 <m ] O 59 Inr ' e
o~ oa G bl ) G |5 |36 |
[or 2 TV puammerey IR 21 T 04 < =8 lon v B g 29 |
E oS Qw0 Eraby w B |5
2 — T I g <n ] 8 ©3 ERNE
d Y oy < e
xzo_§/] o NS -0 Qe Hzn 2 o 19
CL) 1) Qx I
el Al 1 :
£ et H
wFon can B . o
QIrrie o
t—o b
-
. N R
bl @ 1=l
a1 a ol
W i QIHYT
o7 N
<& < Qoa QT
b1 o Mg |20
" | w QIO
an | ca =t
e [ v av <~ a QT
I m] e o~ z
o 8 b N B 1
2 wa o
xIQ =5 um o (290 1] mm m
Gl o o L1/ .
XIn —lis 2n Q g
[s:37N 2! <o a (=
ol pr o 2P 2
o Mm =01 v
Rz o] EIN
2] ao
oop/ v <]
~ na\ EXH <o <= o< aTHo
o N —] o o) Se Tom
"o 2ol 01970 valt < o e
“J Q% L) o1 an oo 0
oy Haa <102 o an Dao oz
o~ <}/ <A <A@ o ou -n
. 2 o aw ca -
*xIQ neo it an o
) ~ Qe 0
XL e - S &
o o A z
0 nc  m —0-A0 &)
ma e gm | A T
N 1< ™ 0 a
%Im by @
) H.u
o) v 1
<\ on I3
-
10
am ol
<0 Koy um
~ 2
o L] =2 <m
.__Tll. ol o == 90
. oJ ) LR
ax Qo 3 o 5
BN = 78 Y o
~ o] V@ on =
. R Yl o < u»u “ =
\X20 ~a a7 &
x Dlne - DR/ =~ !
\XQ® -2 va a <o <2 - auozo (3
KOO =) m< m> i ca “‘M > y,
o o 4
=2 o T A « I8 DR S SR L]
\X Qv | = «a amo N e Mw P .} a0z w0
Two Eale)
.Mu_ﬁza <o Ei S . I X T
Qe =0l oa
)
~ —q0 .
o 0 ~a 3
o @ 1
an ~Y .
oJ oJ &
"Y ~“v ~ ~
o~ o~ 3 &
NP e s b TR m = a2 B2 84 E
R e = <« EIN
\X20 L)
, wte o <A & [l pown aoxe
020 abi] o_an <5 o] o3 ~ ooz
X i et ExbSe
Al ol -
oo ] wal <G TR b S a_oxw
14 o <«a—2 PN =2 ma ol a.ox~
<AD < A2l
o N ] 3%
—01
~ i 1)
5 D
89 g
a7 >
o~
N jozmoa (O™ 211 v <o I
\ x20 I
3-V - N Lw ¥
hx@a. olNs <N aJozo
22ine o> <0l z
[\ S o o1 _<m an o-oxn
Nxom = x b < auoza
ICE an
0 < a_ozm
] el cm|
. 3
3 p
s .
{
i
|
|

Appendix A. Schematics

132



L_OWBU!

>
uw
v = s
3 (4
.|
of
J
a ]
nn ] o
cu 21 Y e
53 215
. ~ 3|8 &
<THD < o< ox.m 5
a_ozo b Bt E
<T@ A ] ez |
oz rraGal- N N VIR R
<Trwo ] 97 @00 Y18 (28 [
00X ] I b T 5 ERE
050z« —]cu © e
=1 29 PR
X c
Q
€
@ H
[9]
" [ 8
I s B
- o |4
E=IN Nl
N o
<«THT H o o< S
a_ze o8 N b
AT w| o oo 2
@Jozn s A Y
AT o] 97 @00
@_0z0 SRR v o
T ] 9 Yoo =0
aJjozn xS o
0 =30
3 0%
nJ 3
“g e
EIN :
- :
<zH0 ] © 8 m
-0 —n] &0 a0 3
DT LN o 3% .
<Tm@ o =0 BN ’
aJjozn - =
@JozW0 [ ——<] 2" 2 <
QJoz~ [ ——— o <IHO 5] o<
g0z = am N a@Jozo o IS e
@I0Xv ] va Vo o e o
<o <102 ooz« ==15a 8 o
<THe <A@ <A@ <Tred 2 on goo =2 =iy
aJozn SHOY O g T
<Trm ]S %ca Ly THm
@Jozm =]ou < !
2oz
ooy
a
Q u_
oy 1§
nJ
e
o
<Tran = e
EHRETe) ] &
AT 0 <«
" &) <M
QOO —e] 29
QuOZ S Xl o
QuOZ 8
on
<wva . <va—
<1o’ <1gb—2-
<o <wapi
4 93
4 3
<«
3 3 @JozD D
q4 3 <D waozo
s P .
3 aJoz~d uozme
AT
10T uoxm
0
9 2 bax =
&g 2
od a E
- EIN an g
<10 T8 oy ER g
<THw ] & = EnLO
= «Tr o o
P \||\ oo @JozY 7] < o< il
@00 Vamcry SSom 2
Aklau: = £ Emal wlan  oapn Auaozn
aJoxN = pyratd &
@J0zMm 17 ~ oJoz0 St o oo 2 030
Si<vo  <va paray N
—H<eo <ol @O Esn il o
<o <aa—2 ex i
. z0
ooy
g a
8 am
“u
BN
||=_. «THO m o 0!
aJozo H< o e
<Trim o8 i
Gna olan  og b fusoxe
<Tm =S¢ o -0
@IoxN ] o aoo oz
<Trm o b I 4
@_ozm “%ign Log {0 fu-on
Dlen ©
2130
2%

Appendix A. Schematics

133



o
a &
om =
. ]
“g _T.
an~ 3&
Fc
QTraD €
vJozao -
aT~a z
0Joz® <
QaTrwo 3
00z ~d o
QTraeies
0JOZ
o
a
I ﬂm
" qu
an~
a o
QImT D e AL
0JoxvY %) Mm—. oa ~
s P a Lo o
oJozn Hav o | o ]
bt j = mm 7o wTHo
_OZ10 =
DHIN 1M c= WDD — ' e
oJoTN . = o b
b 2 S0ux
on |
] A
"y 3
o :
g
£ o g
oI w ] €@ a 9
aI~o a1 <o 8 ¥
@I o] < RE F
oI 2 <«m o
oJozo e 29 . .
oJozo < —
s = am WMMMO 21 4.THO
b @ N Wlna oot
wIoTY tH<va <o aiom e .
-1 <1a <10 —2- Loz 2 s b I Y
QD QTN oy -
) N 0JoxN SHow 0 | g w0
QIrm 10 %ea
_— coozm 0 icy % wIrm
= 30
=0
n
o
L]
3
a7
EI
Rale)
QI=O =] 3
QIO - -
QIrme =l
<m
3
vJoza R
AN Xe) =2 aw
QuOZww
)
o
omn
oY
EEE ED
ks -
3 < 8 u < o« |— W JOZXD
: an
3} Ylam ca L~ Awaczo
at
d =i 5 ey ] L0z w0
9 “How 0 ] )
[k 2 =7 mu %oa Lads) DT
=30
S Loy n
p
a 4
2
no
G o
QIO a4 :
QT P
ATl ar~e
QI~m 4 OJozY R Loz e
T < .
brin: €44 Soga N 9law oo pB—sfuiozn
: 2 o
oJozn Figraeed =] Gn Qou o2 Je-oz0
0J0zM i =5o- @
Fwa =] Qe Loq 2 W JOZN
vJoz~ cun
5130
oY
o
a
Tm
L
ng
IIIL =IN
I QI~o m
_ uJozo < Mm.. o« —ti—Juaoz0
DT 5
[t 23} a BM on 5 L JOX
e 22 G D0 o fuozn
oIrm “ddow 6|,
oJozm —5] G WOD 0 L JOXM
2o
= z0
Qx

Size
8
Cate

ruv’
B

_
of =

1au6lSneet

COMPARATOR F

tHay 32,

Document Number

!

[
&
T
19|

5

&

Appendix A. Schematics



>
w
iC o
o
C
|
&
@ «
a u
an 5 5
au 21°l
g I H
EIN m | 1
" W g
ozHD H e o< =P |
QJozo X ot o3 Eg
OIra &an capt R AR
QJoza “e |G a e
OTrwo = 5n Joo e F3 |G |35 T
ww_uwxn = MZ o wn 5 g 8o 17
oz - Loa =
= N
QJoz oy ® it
O oo e ®
Q
. g
I 4 :
" am 3
%% S
33 N alt
"ol
5
o “u P o< (v} D m
cJoz =2 e o
OTr0 Faw oa—=
oz EEN babill) 20
9253 =i 0n goo (<2
ow.OuB =] 9% 2 hbll/ﬁnxu
Orex aw» Yoo =
. Qlox~ =ajou * o=
a =0
2 012
g
“v E
o~ ;
O
oo =] <9 3 :
OTH0 o] &0 g :
OTren EY0 e Y G
oI G0 ﬂ_,.a. i
QJoz0 | —=212°
aJ0z0 Ea b B
asoz~ on : I.rﬂ
oJoz0 —r e vz 1] PR I o
QJoxe Siava  <va = o e -
Qi< <02 oz o N
oD <AD <A@ oz =l En Foo =
aJozn ECH bl °
Q~m Sjos st
aJoxm ex i o0
. 550 i
3 3 ) |
-3 .
q4 9 g
q 3 7 5
1 9 e
2 i =
OF-; =
L) =< |
gt S _
7 =) «ry
Q0T e “
ot o “
Q0% wn ]2 |
[¥] co _
2 <va _
<1 B _
<AQ = _
H 1
QIO &
uzea a0z (T
i OIra v
aJozo o0
OIHe0 N
aoozd 2030
O N
G ] 0_IO% et
bt
=
o oz A
§a 3
v .
BN : :
- -m z
oo V- ET [yt R d
OIrw o] < = ﬂ
0Ty 70 i ooz >
ox~m o] X0 2
auozxo | ——<] % gia e
QJo; L
: = £ e oJ0z0
aJozm G 52 .
<wa <ol oz’ -
<o <iop2 clox >
<A@ Aq =2 = )
o
0
>
.|.=_.
oIro
oJozo °-0x°
QI
GZne 00z «
oTru
auozN oozt
OIrm
alozm o020
_
—

Appendix A. Schematics



SIRWIYPIS Y X1puaddy

COMPTOPR
m———PFLOwBUS x1uBUS @ US
FHIEUS et F H1 BUS RESET™ <BESETT)
XCLK CLK € <CLx]
AINTAL Bl
BINTAL
U151H16
coMpPROT
<ETLKDUS Jrmmmmemmmereemead@ P CLK BUS AINTAL e
CEETRNUE prmmemsseesmsearen. o=t 'S Y NBUS BINTARL
<UFLIUS e § UF L BUS U151W16
<BOUY {305 et OOU TBUS cLK
RESET™
EDGEMASK q <CIRLADY)
XCLK HSYH &~
X1J- &
oAv &
o~ gq———m

MEDIAN PREFILTER

Size|Document Humber

B CCMi-UTE MOCULE BLOCK DIAGRAM
ate; May 19, 19€88|Sheet i9 oY 22

Q

9tl




o
= - Ty
- O
& -
: )
Y = wJ B
x| <4 "7 0]
3 EIS
[ m_inm 0
pt ABV o 9 wo P37 Lt
x <l g < e PRS-
2 <wO| —ad W W P gan 14
_m it — <M wm ﬁ )
- Bl e e
01D ] 29 FREEE
IN3IO V1555 oo w )
INDIng - w
o - am LR
o ~ R
& 3 z | T
N u o T < .5
3 ~ v 0 H.o. = a 29 |o
m ~ 1 oc 4 (21 |
- 01 ERNE
] z = |9
0J o |
e
3n ] §
| -
e o e 3 ] :
CRE o8 Sar—=a a9 4 8
] ov  ov (i o7 a9 o Q__f
X0 o0 on =t Cio BN oy -] ] ol
\ XYt o0 oo o) dne 2 @ " %N\-A u a M
d o <1 g © A CERGEIRY 3y I_la_|d
Dhoux < ind <7 we DoE— T an B
d ooz " ) o ST S m
) < = «m .pav.L.P) oz -
3 a =4 eo THX
p o 0z
’ N 0oz et [ Clom  OZ4N =2
9 a T0dz0 o t rrE
3 o0 10330 an ——=3an
- aJd Z0dIN <1 MM =1 0N ~
s an oz 0Z+9 qom Q D
© DI 93 om © P2
XHI0 Ll wo o pd
X <] an o
=Ryl Ol om "
=0 el ot wm
sk =01 a0 I
Y0 L v
a
QJX -
— T o
|, ox a
an
x T
-7
bd o>~
-
N 10 wo P52
P o D S e
= <t —ng P LRI
< d «m wn
5 | -
ZudI0 ey o
InDIw T eod 2
= a ZudIn s
1 4 a IudIm V <1 u_w
19 4
q -3 P
# EIN o
3 3 X
g 4 2 G
i
3 «
0o
B
k3 '
ps 9P -2 om
w2 Vo oy T
MR T3 o <=
E =d 20 > [N -
Cxq il -, nY -
0% o =29 < EIN z
203 == <« 2
[yt [ i a
9 —9 b - (7] Or
[ —\
-
a
=
v ]
: E
n ~
|
3]
AT N [+,
Ox g <0 wo
S T, ) InDIM
me“ zlnh.o < F.u Pea—\Jzuszv g
[ 7 o & g Nzud3n we
[ P \Jzuoz0 o
LI \IHHIboaJ% 20
WHHrAw “lllpmnm e ||ﬂdr.3 o b2
W Tre % @ v | — R ap
<1a = =34 e
Llloz  oz+vw n'..ml ] e
] A 0w
24 w0 a pil— Sdav  wz4N -
e ——=d o  UT+- oo
o —oddo  oZ+x
o o uz
H
-
@
an
o -
H 9
D) EIN
5y — bo
oz < wo
2B L ey SCIe)
28~ e e o scrm 2 5F 1Y
= =5 LERER
H—== zo
resed I
o] O
—2d om
T ~ <1@ (-
0z oz+w TR
o b2
0o o
0w
gl
vum
T
Q
Ol
>

Appendix A. Schematics 137



sanBrWAYdS Yy Xipuaddy

8€1

<XELR}— —<ELK]
EDGEMASK — EE TS
<>
—(csts —<EEEETT)
1 ————<U3531038]
1 ‘L’b u7738
u7740 12
74Lso02 e go
13 SATDETECT
cLk csLs
g & <>
3 74LS74 XIJ~ “_<>xxa'
9
| — u7720
74514
uz72C u3 vyz70 3 Ad0: 21
74LS14 a1 01 )—2- 13 —ESEL AINTARL @ ATNTAL ]
@2 D2 | 1 lia g]
63 03| \ |-
a3 o2 Bt 730508
GG 06 A4~ EEETY
2 ERp 2 o 2 E— BINTAL
T u1608 74aL8174 3
74Ls08
&
74F74
uyn?
CLK ¢——
WS
F¥e 811
o2
1% 1 A1l
U170 51 u eof o1} 8
1~ 13 12 : 3 &2 A10
1 14 U174 =1 ac3 g; 85
[l 1 18 72lga 53 A9
4 oA 5 A2 os
ui69 93 1 1A A1 A8
g MC3487 ) 737359 EDGEMASK
7 6 fs
g ! U136 .
T T CLKI— HSYN O
! ui7s s1u1e7 T : o nal3 o7
I\_DO 12 4 A
[\"0oy w14 90 OEC r L1900 o1 [ Az
N\—DOU 18111 65¢ i3 23 1] AB XIJ™
N_Do! 107 9% §g q aca c1 |22 a8
Ny 5 1o 2 7lcs B3 A3
N_pouT 2 8Iar 5 84
N_vourt oa 7 ¢ 2100 a2 A4
DPOUT A oea |2 L A Dav
J 13 74aF399
MC3387 34 ke
9
o ui72 51 U166 _ z‘ uys! oE~ 0—
DO 3 12 : | 9 |
N_Dou 14| 98 O€C CLRra
N_nau 53108 Mg lan | 515 02 [ 83
[\pou ——BA 8] BE Sre 2 15 oo pi [ A3
No_pouri” S108 316 2 OF 011 A B2
N houT 26 00 ) 10 3 i A2
J0U 3 gu f1a acg t:é 5 81
N_OoUTo 31 oa B2 [
LOUTO 19 21 ba oea -2 Zlos b1}|—5 a3
L _J v173 2fon T[22 A0
MC3487
74F393

MEDIAN PREFILTER

512e|Document Number
COMPUTE BOTTOM

Dnte Moy 316,

1968[Sheet 21 of 22




~ SBWAYIS Y Xipuaddy

6€1

™1 ! ! 1] ~avce
NRVCC HAvCC NRVCC
NRVCC HNRVCC NAVCC
NRVCC NRVCC NRVCC
= u3los & . & NRvCC P o NRVCC
\’ \ u3log
vce vce vce
U306 u3os u307
F) 6
3
4700 Ohm —=
4700 Ohm 2700 Ohm
&I AL
AJAIATA A LA A A AIAIATA A A 1A AE 6 A A A A |A
EIFIN 1319 4 67|58 1y 9 7 4 3 [2 F <)
vee 1 1
BV 1 1114
432:419A3él$ 432143'1‘ )
= usoo u3oi
AAABBBBAAAA AAABBBBAAAA
>=<32103210 [ 74LS85 >e< 2
358 74L585 asaga‘°3“’°
AAA AAA
>m< >m<
BEB8 8BS
slcl7 6|7
bl 1t blalslele .
AAABBDBAAAA|Y302 N
Essgg:oaaao 74Ls83 3 |2 B |5 s la 2 11 2 |2 6 Is
vce L1 u303a L_11u3oan u303c L_Lqu3osn L_l1usoaa L_11u304s
7aLso2 74LS02 74502 74L502 74Ls02 74Ls02
g2
BBE
]Ju 7 1
I 1 4 0 1 4
I,l—. als lels }L
U313A il -t I~U3 °
1 iyt 1
: 12 B NN —— - ] 730530
<SEL} — 15
74L511

. SizelCocoment Humber TREV
B SATURATICN DETECTOR
e — [Cass; TRy 3%, 300B(Encet @3 _of o |

MEOIAN PREFILTLA




The vita has been removed from
the scanned document



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150

