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ABSTRACT

We compute joint AM-FM models that characterize infrared targets and backgrounds in the modulation domain.
We consider spatially localized structures within an IR image as sums of nonstationary, quasi-sinusoidal functions
admitting locally narrowband amplitude and frequency modulations. By quantitatively estimating the modula-
tions that dominate the signal spectrum on a spatially local basis, we obtain a new modulation domain feature
vector that can augment the more traditional pixel domain, Fourier spectrum, and multispectral color features
that have been used in IR target detection and tracking systems for a long time. Our preliminary studies, based
primarily on midwave and longwave missile approach sequences, suggest that IR targets and backgrounds do
typically possess sufficient spatially local modulated structure (i.e., texture) for modulation domain techniques
to be meaningfully applied. We also present qualitative results strongly indicating that the modulation domain
feature vector is a powerful tool for discriminating infrared targets and backgrounds.
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1. INTRODUCTION

The notions of amplitude and frequency modulation are fundamental in telecommunications and speech process-
ing, where one normally thinks of a high frequency carrier signal that is modulated by one or more relatively
lower frequency information signals. While the dichotomy between carrier and information signal does not ap-
ply as readily to typical visible images, it is well-known that texture may be interpreted as a carrier of region
information in the classical image segmentation problem. AM-FM image models, which consider an image as
a sum of nonstationary quasi-sinusoidal components, have been used with great success in a variety of image
processing and computer vision applications including, e.g., texture segmentation, shape from texture, content
based image retrieval, and stereopsis. Computed estimates of the amplitude and frequency modulating functions
provide a powerful description of the structure of an image in the modulation domain. In this paper, we apply
AM-FM modeling techniques to compute modulation domain descriptions of infrared targets and backgrounds
for the first time. Our goals are to determine if typical infrared imagery possesses sufficient texture structure
to be meaningfully treated by modulation domain techniques and to provide an assessment of the potential of
modulation domain feature vectors for enhancing the performance of traditional target detection, tracking, and
identification processes. In Section 2, we motivate the notions of instantaneous amplitude, phase, and frequency,
and provide a brief overview of AM-FM image modeling techniques. In Section 3, we consider the problem of
computing AM-FM models for infrared imagery and develop adaptive Gabor filters for extracting estimates of
the dominant modulations of infrared targets. Two comprehensive examples are given in Section 4, where we
compute modulation domain feature vectors from longwave infrared missile closure sequences.

2. AM-FM IMAGE MODELS

The classical Fourier transform represents a signal as a sum of complex sinusoids, each one of which has a constant
amplitude and a constant frequency. Thus, a signal x : R → C may be written in terms of the uncountable set of
spectral basis signals {ejωt}ω∈R by first computing the inner products between x(t) and the basis signals (Fourier
transform) and then summing up the inner products times the basis (inverse Fourier transform). By analyzing
the coordinates X(ω) of x(t) with respect to this basis, one obtains a quantitative notion of “how much” of each
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basis signal is present in x(t). This notion is valuable in a wide variety of applications, especially those that are
concerned with linear translation invariant filtering.

However, the Fourier representation can fail to provide the simplest, most intuitive interpretation of the signal
(with respect to human visual or auditory perception). This occurs in particular when the signal is nonstationary
in the sense that the frequency content is changing over time, so that finite length Fourier transforms computed
over different time intervals are significantly different from one another. A classic example of this is the chirp
signal x(t) = cos(t2). If this signal is played through a loudspeaker, the human listener perceives a single tone
with a fixed amplitude and a frequency or pitch that increases linearly over time. In the Fourier theory this signal
must be represented using the only building blocks that are available, which are sinusoids of fixed amplitude
and fixed frequency. Thus, in the Fourier representation, the nonstationary structure of the chirp signal must
be represented by constructive and destructive interference between a large number of stationary sinusoids.

One motivation for performing time-frequency analysis is to obtain a representation of the chirp signal that
better agrees with human hearing, so that it can be analyzed intuitively as a single sinusoid with a fixed amplitude
and a linearly increasing frequency. The short-time Fourier transform (STFT) takes a step in this direction by
providing a sequence of Fourier transforms X(ω, t) computed over finite length windows referenced to the time
parameter t. Ideally, it would possible to consider the limit of the STFT as the window vanishes in order to
obtain well posed notions of the instantaneous spectrum and amplitude. Then, the chirp could be represented
unambiguously as a single tone (or component) x(t) = a(t) cos[ϕ(t)] with constant instantaneous amplitude
a(t) = 1, quadratic instantaneous phase ϕ(t) = t2, and linear instantaneous frequency ϕ′(t) = 2t.

AM-FM image models1–3 arise from the extension of these notions into multiple dimensions. Suppose we are
given a locally narrowband multidimensional signal s : R

n → R. The objective is to find a positive semidefinite
instantaneous amplitude or AM function a(x) and an instantaneous frequency or FM function ∇ϕ(x) so that
the signal s(x) can be written as

s(x) = a(x) cos[ϕ(x)]. (1)

An immediate problem is that the AM and FM function fail to admit well-posed definitions because, for any given
s(x), there exist uncountably infinitely many pairs of functions a(x) and ϕ(x) that provide equality in Eq. (1).
Nevertheless, in many cases our intuition will deliver powerful notions of what the instantaneous amplitude
and frequency should be, just as was the case with the chirp signal considered above. The multidimensional
Teager-Kaiser operator and associated energy separation algorithm described in Ref. 2 provide one approach for
associating an intuitively satisfying pair of AM and FM functions with the real-valued signal s(x).

An alternative approach that we will adopt throughout this paper is to add an imaginary part jq(x) to the
real signal s(x) to obtain a complex-valued signal z(x) = s(x) + jq(x). The signal z(x) may then be modeled
according to z(x) = a(x) exp[jϕ(x)] where the AM function a(x) and FM function ∇ϕ(x) are unique. These
modulating functions may be computed directly from the values of the complex signal z(x) using the exact
demodulation algorithms1

∇ϕ(x) = Re
[∇z(x)

jz(x)

]
, (2)

a(x) = |z(x)|. (3)

Thus we see that adding an imaginary part jq(x) to the real signal s(x) is precisely equivalent to selecting a
particular pair of AM and FM functions to associate with s(x). Therefore, the specific method of choosing q(x)
is of considerable importance. Let x = [x1 x2 . . . xn]T and let e1 = [1 0 0 . . . 0]T . Throughout this paper, we
will take q(x) = H[s(x)], where H is the directional (or partial) multidimensional Hilbert transform1, 3–5

H[s(x)] = p.v.
1
π

∫
R

s(x − ξe1)
dξ

ξ
(4)

and where the integral in Eq. (4) is interpreted as a Cauchy principle value. As described in Refs. 3 and 4, this
provides a definition of the complex signal

z(x) = s(x) + jH[s(x)] (5)

that shares many of the attractive properties of the 1D analytic signal.6–9
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2.1. Multi-Component Models

The complex model in Eq. (5) and demodulation algorithms in Eqs. (2) and (3) tend to deliver an intuitively
appealing pair of AM and FM functions provided that the signal s(x) is locally coherent in the sense that it is
approximately sinusoidal over sufficiently small neighborhoods. However, for signals that are not locally coherent,
such as, e.g., a sum of two or more pure sinusoids or of two or more chirps, the approach based on Eqs. (2),
(3), and (5) will generally fail to provide a meaningful interpretation of the modulated signal structure.8, 10 In
actuality, the types of complicated signals encountered in real-world engineering applications such as, e.g., typical
infrared scenes, are never expected to be locally coherent. It therefore becomes necessary to model the signal
of interest s(x) not as a single AM-FM function as in Eq. (1), but rather as a sum of multiple locally coherent
AM-FM functions given by

s(x) =
K∑

k=1

ak(x) cos[ϕk(x)] =
K∑

k=1

sk(x). (6)

By linearity of the Hilbert transform in Eq. (4), it follows immediately that

z(x) = s(x) + jH[s(x)] =
K∑

k=1

ak(x) exp[jϕk(x)] =
K∑

k=1

zk(x). (7)

Because the demodulation algorithms given in Eq. (2) and (3) are nonlinear, the components zk(x) in Eq. (7)
must be isolated from one another on a spatially local basis prior to demodulation. This is typically accomplished
by applying a multiband bank of linear translation invariant filters.1–3 In order to avoid demodulation errors
due to cross component interference, it is necessary for the filters to be spectrally localized. However, they
must also be spatially localized to avoid averaging out the important spatial texture structure of the signal.
In view of these conflicting design goals, the Gabor filters, which in the continuous case uniquely optimize the
uncertainty principle lower bound on joint spatio-spectral localization,6, 11 have frequently been employed. The
impulse response of a unit L2-norm isotropic unity-variance Gabor filter at baseband is given by

g(x) =
1√
2π

exp
(
−1

4
xT x

)
. (8)

The frequency response of this filter is an n-dimensional isotropic Gaussian centered about the frequency origin.
By adding frequency scaling and frequency translation, we obtain the bandpass impulse response

gk(x) =
1

σk

√
2π

exp
(
− 1

4σ2
k

xT x
)

exp
(
jΩT

k x
)

(9)

with center frequency Ωk ∈ R
n and half-peak radial octave bandwidth given by

B = log2

( |Ωk| +
√

ln 2
σk

|Ωk| −
√

ln 2
σk

)
. (10)

The frequency response of the bandpass filter is given by the isotropic Gaussian

Gk(Ω) = F[gk(x)] = 2
√

2πσk exp
[−σ2

k(Ω − Ωk)T (Ω − Ωk)
]
. (11)

By construction, the spectrum of the complex signal z(x) in Eq. (7) is supported only in 2n−1 frequency
orthants where it is given by Z(Ω) = 2S(Ω). Consequently, in designing the multiband filterbank it is sufficient
to tile half the frequency space with a tesselation of filters Gk(Ω). The frequency response of a typical 33-channel
2D filterbank is shown in Fig. 1(b), where the filters cover quadrants I and IV of the 2D frequency plane. The
filters are arranged in a polar tesselation comprising four filters at each of eight orientations. Each filter has a
unity radial octave bandwidth and any group of four adjacent filters intersect in a single frequency where all four

Proc. of SPIE Vol. 6239  62390D-3



are at half of peak response. The structure of the filterbank defines the decomposition of the signal z(x) into
components zk(x) as indicated in Eq. (7). For each filterbank channel Gk(Ω), we take

yk(x) = z(x) ∗ gk(x) ≈ zk(x) ∗ gk(x), (12)

where the symbol “∗” indicates linear convolution and, by construction, the channel response yk(x) is dominated
by signal component zk(x). While the approximation error inherent in Eq. (12) prohibits the possibility of per-
fectly reconstructing the signal from the computed modulations obtained from the filterbank channel responses,
this is usually not a concern in analysis-only applications such as those considered here.

The modulating functions ak(x) and ∇ϕk(x) of the individual components zk(x) in Eq. (7), are estimated
by applying a novel family of quasi-eigenfunction approximations (QEA’s)1 to factor the effects of the filter
Gk(Ω) out of the response yk(x). This provides a closed-form expression for the response in terms of the input
modulations that can be solved to arrive at the filtered demodulation algorithms

∇ϕk(x) ≈ Re
[∇yk(x)

jyk(x)

]
, (13)

ak(x) ≈
∣∣∣∣ yk(x)
Gk[∇ϕ̂k(x)]

∣∣∣∣ , (14)

which may be applied to each channel response on a pointwise basis.

2.2. Discrete Implementation

To apply the approach given in Section 2.1 to 2D digital images, we obtain the discrete filterbank by frequency
sampling of the continuous design. For an N ×N discrete image s : Z

2 → R, let S(u, v) = DFT[s(x)]. The DFT
domain discretization of the Hilbert transform in Eq. (4) is given by3, 12

H(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−j, u = 1, 2, . . . , N
2 − 1,

j, u = N
2 + 1, N

2 + 2, . . . , N − 1,
−j, u = 0, v = 1, 2, . . . , N

2 − 1,
−j, u = N

2 , v = 1, 2, . . . , N
2 − 1,

j, u = 0, v = N
2 + 1, N

2 + 2, . . . , N − 1,
j, u = N

2 , v = N
2 + 1, N

2 + 2, . . . , N − 1,
0, otherwise.

(15)

The complex image z(m, p) is then obtained by z(m, p) = DFT−1[S(u, v)H(u, v)]. For the discrete FM function
∇ϕk(m, p), which contains the samples of ∇ϕk(x), let ∇ϕk(m, p) = [uk(m, p) vk(m, p)]T . The QEA1 may then
be applied to obtain the following discretization of Eq. (13):

|uk(m, p)| ≈ arccos
[
yk(m + 1, p) + yk(m − 1, p)

2yk(m, p)

]
, (16)

sgn uk(m, p) ≈ sgn arcsin
[
yk(m + 1, p)− yk(m − 1, p)

2jyk(m, n)

]
, (17)

|vk(m, p)| ≈ arccos
[
yk(m, p + 1) + yk(m, p − 1)

2yk(m, p)

]
, (18)

sgn vk(m, p) ≈ sgn arcsin
[
yk(m, p + 1) − yk(m, p − 1)

2jyk(m, p)

]
. (19)

The filtered amplitude algorithm of Eq. (14) may then be sampled according to

ak(m, p) ≈ |yk(m, p)|
|Gk[uk(m, p), vk(m, p)]| . (20)
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2.3. Dominant Modulations

For each pixel in a discrete image s(m, p), it is of interest to obtain a modulation domain feature vector by
extracting the AM and FM estimates ak(m, p) and ∇ϕk(m, p) given in Eqs. (16)-(19) and (20) corresponding
to the component zk(m, p) that dominates the instantaneous image spectrum in a local neighborhood about the
pixel. To this end, we compute at each pixel a channel selection criterion given by

Γk(m, p) =
|yk(m, p)|

maxu,v |Gk(u, v)| , (21)

where 1 ≤ k ≤ K. The dominant modulations are then given by {aD(m, p),∇ϕD(m, p)}, where D =
argmaxk Γk(m, p). With the QEA, it may be shown that

Γk(m, p) ≈ |ak(m, p)| |Gk[∇ϕk(m, p)]|
maxu,v |Gk(u, v)| . (22)

Thus, choosing the dominant component as the one that dominates the response of the channel that maximizes
Γk in Eq. (21) tends to select the component zk(m, p) that has the largest amplitude, and, moreover, to extract
estimates of the AM and FM functions of this component from the channel for which the estimated frequency
vector lies nearest to the channel center frequency. This approach ensures that, even when the input in fact
contains only a few components so that most channels are driven primarily by noise and cross component
interference, the approach based on Eq. (21) will tend to select the strongest component and extract the dominant
modulations from the channel for which the signal-to-noise ratio (SNR) is best.

3. APPLICATION TO INFRARED TARGETS AND BACKGROUNDS

Visually, the dominant modulations characterize and quantify the dominant local texture structure of an image.
The dominant amplitude aD(m, p) captures the local texture contrast. The local texture orientation is given
by θ(m, p) = arg∇ϕD(m, p), while the spatial granularity is quantified by R(m, p) = |∇ϕD(m, p)|. We consider
two main questions in this paper. First, does typical infrared imagery possess sufficient texture structure to
admit a meaningful characterization in the modulation domain? Second, is the modulation domain feature
vector potentially useful for enhancing infrared target-background class separability? In the modulation domain
feature vector, we generally expect naturally occurring backgrounds to exhibit a lower degree of organization or
coherency than, e.g., targets such as military vehicles. However, we expect both man made and natural clutter
to potentially be highly organized.

Because the richly textured surface patterns characteristic of visible images tend to occur to a much lower
degree in infrared imagery, the measurement of dominant modulations in an infrared image is challenging and
highly sensitive to the filterbank structure. Whereas the generic filterbank of Fig. 1(b) may be used to compute
modulations for a wide variety of visible images for applications such as image segmentation, we have found
that it is less likely to be successful when applied to typical infrared images, as illustrated in Fig. 1. A typical
scene is shown in Fig. 1(a).13 The generic filterbank was applied to compute the dominant AM function given
in Fig. 1(c). A reconstruction of the dominant AM-FM image component appears in Fig. 1(d). Each patch or
region in Fig. 1(d) shows the nonstationary quasi-sinusoid that best agrees with the dominant modulations. The
patches themselves arise as a consequence of the fact that different image components zk(m, p) are dominant
in different image regions. Here, we see that the dominant modulations have been determined almost entirely
by the highly structured background with the result that the modulation domain features utterly fail to reveal
the target. By contrast, the much less dense filterbank structure shown in Fig. 1(e) effectively captures the
heated tracks of the vehicle, which appear prominently in the computed dominant AM function of Fig. 1(f) and
dominant component reconstruction of Fig. 1(g).

To effectively measure the dominant modulations of infrared images, we consider that the modulation domain
feature vector will be used as an auxiliary observation to improve the performance of a standard target tracker
such as an extended Kalman filter or particle filter in an automatic or assisted target recognition system. Thus,
we assume that there is an independent detection process, that a target designation is available in the initial
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 1. Example illustrating the sensitivity of the computed modulations to the filterbank structure when computing
infrared AM-FM models. (a) Typical scene.13 (b) 33-channel filterbank of the type that is usually successful for computing
AM-FM models of visible images. (c) Dominant AM function obtained with the filterbank of (b). (d) Reconstruction
of the dominant AM-FM image function obtained with the filterbank of (b). (e) The filters in this bank have nearly
twice the typical bandwidth and a much less dense spacing than the typical bank. (f),(g) Dominant AM function and
reconstructed dominant image component obtained with the filterbank of (e).

frame of any image sequence, and that a predicted track gate is available in subsequent frames. Initially, we
make use of a filterbank with the typical structure as shown in Fig. 1(b).

For practical sequences depicting an extended target, the designated target signature in the first frame
generally spans multiple pixels where several different filterbank channels optimize the selection criterion of
Eq. 21. We initially choose a channel that lies centrally within the locus of these optimizing channels. We
construct a Gabor filter G0(u, v) having a center frequency identical to that of the chosen filter, but with a fixed
linear bandwidth of 0.1 cycles per image. We demodulate the response of this filter to extract the modulation
domain feature vector of the target over the pixels that lie in the initial track gate. For each subsequent frame,
the target filter Gk+1(u, v) is adaptively generated from Gk(u, v) by updating the radial and angular components
of the center frequency as follows. Let rk and ϑk be the radial frequency and orientation of center frequency of
Gk(u, v). Similarly, let Rk be the mean radial frequency |∇ϕ(m, p)| and θk be the mean orientation arg∇ϕ(m, p)
of the target signature measured in frame k. The center frequency of Gk+1(u, v) is given by

rk+1 = rk − (rk − Rk)∆r (23)
ϑk+1 = ϑk − (ϑk − θk)∆ϑ, (24)

where ∆r and ∆ϑ are adaptation step sizes that limit misadjustment due to noise and cross component inter-
ference. For sequences depicting rapidly evolving kinematics, the step sizes must be designed to balance noise
rejection against the adaptation speed of the filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. Example showing small scale adaptation of the target filter with excellent clutter suppression in the computed
dominant AM function. (a)-(c) Original frames. (d)-(f) Dominant AM function computed from the target filter. (g)-(i)
Detail views of the target signature from the original frames. (j)-(l) Detail views of the reconstructed dominant AM-FM
component computed from the target filter.
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4. EXAMPLES

In this section, we present two examples where the adaptive Gabor filter described in Section 3 is used to extract
modulation domain target features from AMCOM longwave (8 – 12 µm) infrared missile approach sequences.
The kinematics in these sequences tend to be relatively mild, and we typically take 0.01 ≤ ∆r ≤ 0.02 and
0.1 ≤ ∆ϑ ≤ 0.4 in Eq. (23) and (24). Three frames from the first sequence are shown in Fig. 2(a)-(c). These are
frames 1, 5, and 9 of the sequence, which demonstrate small scale adjustments of the filter Gk over short time
intervals (the entire sequence contained 30 frames). The target is a truck which is in motion. The dominant AM
function computed over each entire image using the target filter is given in Fig. 2(d)-(f), where we see substantial
suppression of the background structure and amplification of the target. Detail views of the target extracted
from the unprocessed frames are shown in Fig. 2(g)-(i), while corresponding reconstructions of the dominant
AM-FM component extracted by the adaptive Gabor filter are given in Fig. 2(j)-(l). Although we do not have
detailed ground truth information for this sequence, it appears that wheels are visible below the brightest part
of the target signature, and the horizontal granularity of these structures dominates the modulation domain
interpretation of the target signature. The distant structure at the top of the original frames appears to be a
tree line and it is interesting to note that in places the spacing of the trees matches that of the wheels, leading
to a nontrivial response in the AM images of Fig. 2(d)-(f). In this example, the filter orientation ϑk adapted by
0.5◦ and the radial center frequency 0.4 cycles per image. The adaptation step sizes were set to ∆r = 0.01 and
∆ϑ = 0.1.

As shown in Fig. 3, the second example shows dramatic adaptation of the filter Gk over a much longer
sequence. Fig. 3(a)-(d) show, respectively, frames 50, 80, 90, and 99 out of a total of 100 frames. In this case,
the magnification of the target changes substantially through the sequence. The adaptation step sizes were
set to ∆r = 0.02 and ∆ϑ = 0.4. The filter radial center frequency decreased monotonically from 12.8 to 5.5
cycles per image, while the orientation varied between −2.8◦ and 70◦. The dominant AM functions extracted
from the target filter are given in Fig. 3(e)-(h) and once again show substantial suppression of the background
structure. Reconstructions of the dominant AM-FM image component extracted from the target filter are given
in Fig. 3, where the steady decrease in the dominant radial frequency over the course of the sequence can be seen.
In order to provide a qualitative assessment of the usefulness of the computed AM-FM models for enhancing
target-background separability, we constructed scatter plots of the modulation domain feature vectors for frames
50 and 90 of this sequence. The scatter plots are given in Fig. 4(a) and (b), respectively, where the target pixels
are shown as red circles and the background pixels are shown as blue crosses. The AM and FM functions for
the target were extracted from the adaptive Gabor filter Gk over the pixels contained in the track gate. For the
remaining (background) pixels, the dominant modulations were extracted from the filterbank of Fig. 1(a) using
the channel selection criterion given by Eq. (21). These plots demonstrate the ability of the modulation domain
representation to pull the target up and out of the background, despite the fact that the raw pixel values from
the two classes are substantially overlapped. It is also clear from Fig. 4(a) and (b) that the amplitude axis of
the feature space provides by far the most powerful class separability information in this sequence.

5. CONCLUSION

We applied the theory of AM-FM image modeling to construct modulation domain feature vectors for infrared
targets and backgrounds. For each pixel, the feature vector comprises a scalar amplitude modulation value
a(m, p) and a two-element instantaneous frequency vector ∇ϕ(m, p). These vectors can be used as auxiliary
inputs to enhance the performance of track processors and ATR systems that would otherwise operate on the
pixel values alone. Under the assumption that predicted track gates and an initial target designation are available
as side information, we constructed adaptive Gabor filters for measuring the target modulating functions. The
dominant background modulations were computed using a fixed filterbank structure with a selection criterion
for determining the channel that contains the dominant background AM-FM component. Our results show
that typical infrared imagery does possess sufficient local texture structure to admit a useful and meaningful
characterization in the modulation domain. In addition, the feature vector scatter plots of Fig. 4 demonstrate
qualitatively that computed AM-FM models have the potential to offer powerful class separability information
for discriminating infrared targets and backgrounds.
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 3. Example showing large scale adaptation over a longer sequence. (a)-(d) Original frames. (e)-(h) Dominant
AM functions computed from the target filter. (i)-(l) Reconstructions of the dominant AM-FM components extracted
from the target filter.
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Figure 4. Scatter plots of the modulation domain feature vectors for frames 50 and 90 of the sequence depicted in Fig. 3.
(a) Scatter plot for frame 50. (b) Scatter plot for frame 90. Target pixels are shown as red circles, while background
pixels are shown as blue crosses.
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