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We consider the challenging problem of tracking highly
maneuverable targets with unknown dynamics and introduce a
new generative maneuvering target model (GMTM) that, for a
rigid body target, explicitly estimates not only the kinematics,
here considered as effect variables, but also the underlying
causative dynamic variables including forces and torques acting
on the rigid body target in a Newtonian mechanics framework.
We formulate relationships between the dynamic and kinematic
state variables in a novel graphical model that naturally facilitates
the feedback of physical constraints from the target kinematics to
the maneuvering dynamics model in a probabilistic form, thereby
achieving improved tracking accuracy and efficiency compared
to competing techniques. We develop a sequential Monte Carlo
(SMC) inference algorithm that is embedded with Markov chain
Monte Carlo (MCMC) steps to generate probabilistic samples
amenable to the feedback constraints. The proposed algorithm
can estimate both maneuvering dynamics and target kinematics
simultaneously. The robustness and efficacy of this approach
are illustrated by experimental results obtained from noisy
video sequences of both simulated and real maneuvering ground
vehicles.
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I. INTRODUCTION

The effective and robust tracking of maneuvering
objects of interest, or targets, in video sequences
acquired from imaging sensors is a challenging
problem that is central to a variety of important
applications ranging from intelligent surveillance
to military guidance, threat warning, situational
awareness, and fire control. This is a difficult
problem that has been studied extensively for
decades, with notable progress occurring recently in
several areas including dynamic motion modeling
[1—3], target/background representation [4, 5], and
high-dimensional state estimation [6—8]. In the most
difficult cases where the targets of interest are highly
maneuverable and no accurate target/background
representation is available, it is absolutely critical to
devise a sophisticated, robust motion model. A major
challenge in this regard lies in effectively modeling
the relationship between the maneuvering dynamics
and the target kinematics [9—11]. Here, we specifically
distinguish between kinematics, which refers to
motion over time, and dynamics, which refers to
the forces and torques that give rise to temporal
changes in the kinematic quantities. For the case of
a maneuvering vehicle, the dynamics in particular
often result at least in part from the intentions of a
human operator and are consequently unpredictable in
a general sense. In a recent comprehensive survey of
motion modeling, it was stated that “a good model is
worth a thousand pieces of data” [3].
In this paper, we introduce a new generative

maneuvering target model (GMTM) based on
explicit online estimation of the maneuvering
dynamics that directly explain the target kinematics
through the laws of Newtonian mechanics. In
addition to the improvements gained by modeling
the dynamics directly, this approach enables us to
leverage additional physical constraints between the
dynamics and kinematics to further enhance tracking
performance. For targets such as ground vehicles
and aircraft, the maneuvering actions are largely
due to the forces and torques present in the engine
system and a mechanical drivetrain or flight control
system [12]. Indeed, it is the dynamic quantities
that cause the kinematics to vary over time. The
kinematic variables include velocities and positions
that are estimated statistically by traditional target
tracking systems. Many existing tracking algorithms
estimate and predict the kinematic variables based on
a motion model applied to a point target model or to
a centroid obtained from the detection process [3].
This may not be appropriate in cases where the target
orientation and aspect are significant. The GMTM
approach we propose in this paper is based on a
more complete model of the full dynamics of a rigid
body target and the physical laws that govern its
motion, where both linear and angular motions are
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integrated into one formulation [12]. This results in
a realistic dynamic/motion model that is capable of
accommodating substantial maneuvering behavior. In
addition, we account for the limited power that can
be delivered by any practical engine by introducing
a probabilistic constraint between the velocity and
the driving force and use this to generate probable
hypotheses of driving forces during inference.
Graphical models provide a general framework to

represent the underlying probabilistic structure of a
complex system in the presence of uncertainty [13].
For GMTM, we propose a generative graphical
model to represent two types of latent variables
describing the target state: the kinematics, which
we interpret as effect variables, and the dynamic
forces and torques, which we interpret as causative
variables that alter the kinematics. We consider a
sequence of video frames acquired from an imaging
sensor as observations associated with the latent
states. The conditional densities of the effect variables
are dependent on the causative variables through
the principles of Newtonian dynamics. Hence the
dynamics underlying the maneuvering actions are
incorporated into the motion model in a probabilistic
way, so that target tracking and dynamics analysis
can be formulated as a Bayesian estimation problem.
Moreover, additional physical constraints that
relate the kinematics and dynamics, such as the
velocity-force constraint mentioned in the preceding
paragraph, can be accommodated via conditional
probabilities between the latent variables. We use a
sequential Monte Carlo (SMC) method (e.g., a particle
filter) to infer the posterior densities of the latent
variables given the observations. This is in view of
the fact that the effectiveness of the SMC methods
for nonlinear/non-Gaussian estimation problems
has been well established recently [2, 9, 14—16].
In addition, we use a Markov chain Monte Carlo
(MCMC) step [17—19] to rejuvenate the particles
associated with the causative variables given those
of the effect variables. The kinematic states as well
as those of forces reflecting the maneuvering actions
of the target can be simultaneously obtained by this
inference algorithm.
A key idea behind the new GMTM proposed in

this paper is that of formulating the dependencies
between the latent dynamic and kinematic variables
of a rigid body target into a graphical model. This
idea is sufficiently general that it could be used
as the basis for a new graphical approach to the
general object tracking problem at a fundamental
level. Doing so in complete generality is beyond our
present scope, however. The reason for this is that
the particular conditional dependencies between the
observations and the latent dynamic and kinematic
variables must be considered explicitly in developing a
specific practical inference engine for performing state
estimation on the graphical model, and clearly these

relationships are dependent upon the particular sensor
technologies used to acquire the observations.
Here, we choose rather to focus on the particular

case of an imaging electro-optical (EO) sensor that
delivers a temporal sequence of two-dimensional
(2D) video frames integrated at, e.g., infrared or
visible wavelengths. This restriction of scope relative
to the completely general problem provides us
with a concrete foundation on which to investigate
physical principles such as Newton rigid body
dynamics [6, 7] in conjunction with practical
engineering constraints and to formulate them together
in a concrete probabilistic framework that facilitates
the development of demonstrable SMC estimation
algorithms on specific graphical structures and
probability distributions. However, it should be kept in
mind that the graphical model approach is general and
not limited to observations acquired from any specific
sensor types. Thus, addressing the more general
problem in order to support other types of sensors
such as radar and sonar as well as sensor fusion
between, e.g., radar and imaging EO sensors [20] is
an important problem that merits further investigation
but is beyond the scope of this paper.
The remainder of the paper is organized as

follows. Important related work is briefly reviewed
in Section II. In Section III, we formulate the
GMTM model for ground vehicle motion and
discuss it in relation to several existing, well-known
motion models. Our generative graphical model for
representing the maneuvering dynamics is proposed
in Section IV, followed by a development of the
inference algorithm for state estimation in Section V.
Experimental results including both simulated and real
data sequences are presented in Section VI, where
we compare the proposed algorithm with two recent
techniques. Finally, conclusions and a brief discussion
of future research directions are given in Section VII.

II. RELATED WORK

Practical target tracking systems are generally
based on models of the available observations, which
typically consist of measurements delivered by
one or more sensors and of the target motion. The
relationships between the observation model and the
motion model depend on the specific types of sensors
that are used. Throughout this paper we assume an
imaging EO sensor, where the goal of the observation
model is to provide an informative and compact
representation of the target appearance. A considerable
variety of appearance models have been studied
for visual target tracking, including kernel based
appearance models [21, 22], eigen appearance
[23, 24], and silhouettes [25, 26]. A comprehensive
recent review of techniques for vision-based tracking
was given in [27]. Our main focus in this paper is on
development of a new GMTM that explicitly considers
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the dependencies between kinematics and dynamics.
In order to illustrate the complementary roles of
observation and motion models while demonstrating
how tracking performance and robustness can be
enhanced by a sophisticated motion model, we make
use of a relatively simple appearance model.
The number of dynamic motion models that have

been proposed for target tracking is also large [3].
One of the most popular among these, particularly
for practical deployment tracking systems, has been
the constant velocity model where the motion of
a point target (or of the centroid obtained from
the detection processing for an extended target) is
modeled as a white Gaussian noise acceleration
(WGNA) process [1, 2]. In [6], [7], Miller, et al.,
utilized the Newtonian equations of three-dimensional
(3D) rigid body dynamics as the motion model and
proposed a joint tracking and recognition algorithm.
They provided an elegant and unified framework that
explicitly models the target motion and rotation under
arbitrary dynamics and proposed a jump-diffusion
process for statistical inferencing in the resulting
high-dimensional kinematic state space. Unfortunately,
the state space grows exponentially with respect
to increases in the observation sequence. Thus, the
associated jump-diffusion random sampling algorithm
results in infeasible computational complexity for
many practical tracking problems. A similar approach
using the Metropolis algorithm instead of jump
Markov MCMC was proposed by Runnalls in [28].
The new GMTM we introduce in this paper

leverages recent advances in graphical models and
particle filtering to dramatically improve efficiency
and reduce the computational burden relative to [6],
[7] for tracking ground vehicles. In particular,
we simplify the Newtonian dynamics for ground
vehicles and, more importantly, obtain enhanced state
estimation efficiency by introducing the velocity-force
constraint. We also invoke a graphical model approach
to characterize the probabilistic dependencies
between latent variables in an explicit way, where the
Markovian structure is assumed in order to support
efficient sequential state estimation.
Multiple-model techniques have been developed

for tracking maneuvering targets where a discrete
process is introduced to generate maneuvering
switches among a finite set of continuous linear
dynamic models [29]. This general approach has
also been well studied in the context of a jump
Markov linear system (JMLS) where the discrete
switching process is assumed to be a Markov chain
[29, 30]. Graphical models can also be used to capture
probabilistic dependencies similar to those of a JMLS.
When expressed in terms of graphical models, such
jump motion models are collectively referred to as
switching linear dynamic systems (SLDS) [31]. The
parameters of an SLDS are often adjusted (or learned)
a priori using precollected training data [32, 33].

Neither JMLS nor SLDS techniques explicitly
represent the maneuvering dynamics. Rather, they
represent maneuvering actions as discrete switching
variables with instantaneous values that indicate
different motion models. For the GMTM approach
proposed in this paper, we investigate the underlying
physical laws of maneuvering actions to build a
graphical motion model that is able to encode the
dynamics in terms of clear physical meanings.
In a recent study, Godsill, et al., also developed

a dynamic model in terms of the driving force [9].
The force is expressed as a piecewise constant
deterministic function and the maneuvering time
when the force changes act on the target is explicitly
modeled, which demands deterministic interpolation
of the maneuvering state process to match the
measurement time. This deterministic interpolation
is used to drive a stochastic particle filtering method
to achieve the state estimation. In our approach,
continuous force values are stochastically generated
from the probability distribution that is conditionally
dependent on current velocities, which are derived
from physical observations. This probabilistic
expression of force together with the dependencies
between the kinematic variables are formulated into
a unified probabilistic graphical model framework
where the stochastic particle filter is a natural choice
for performing statistical inference. Compared to the
method of [9], our approach provides a flexible and
general formulation where physical laws as well as
practical engineering constraints can be seamlessly
incorporated together for target tracking.
Blom’s interacting multiple-model (IMM)

algorithm is one of the most widely used estimation
algorithms for multiple-model techniques where
the constituent continuous models are linear and
Gaussian [34, 35]. However, the standard IMM
algorithm fails to accurately estimate non-Gaussian
probabilities. Moreover, exact inference techniques
for graphical models, such as belief propagation
(BP), are not applicable to hybrid state estimation
with discrete and continuous variables; they also are
not easily adapted to the case of complex non-tree
structures [36]. Thus, variants of IMM [30, 37, 38]
and BP [39—41] have been proposed to achieve state
estimation in more general cases.
These algorithms are all related in the sense

that they employ sampling-based approximation
in the form of particle filters (SMC). The SMC
method can easily propagate particles in a sequential
manner according to the motion model for recursive
Bayesian state estimation. Researchers have explored
a great number of applications of the SMC method
to navigation [8], fault and change detection [14],
data fusion [42], and visual tracking [25, 43] since
it was first introduction by Gordon, et al. [44].
Meanwhile, many variants of the SMC method
have been proposed to improve its performance
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[15, 16]. The common philosophy underlying these
various SMC-based algorithms is to devise an
effective proposal density that generates particles,
approximating the true probability distribution as
closely as possible while at the same time maintaining
the diversity of the particles. An MCMC method,
which can generate samples of any target probability
distribution by constructing a Markov chain, is
embedded into each time step of the SMC process to
overcome the impoverishment problem of the particle
set (e.g., all particles have nearly identical values)
[18, 19]. However, performance can only be improved
with the introduction of MCMC moves that have
the correct stationary distribution. Therefore, for the
GMTM proposed in this paper, the MCMC scheme is
specifically designed for consistency with the physical
constraints that exist between the target kinematics
and the maneuvering dynamics.

III. DYNAMICS OF RIGID TARGET MOTION

We consider the dynamics of a maneuvering
ground vehicle in 3D rigid motion which, as discussed
below, may be approximated as a special constrained
case of general 3D motion. The Newtonian equations
governing the general 3D motion of a rigid body are
given by [12]

_p= f

_h= ¿
(1)

where the vectors p and h are the linear and angular
momentum of the body, respectively, and the vectors
f and ¿ are the force and torque acting on the body.
It should be noted that the Newtonian equations
in (1) are valid when the motion is resolved in a
fixed inertial reference frame, in which the linear
and angular momentum are dependent on the linear
and angular velocities, respectively. The dynamics
given by (1) indicate that forces and torques cause the
motion of a rigid body having kinematics represented
by position r, linear velocity v, and orientation and
angular velocity !. Our generative graphical model
for GMTM is constructed based on an explicit model
of how forces and torques generate kinematical state
changes.
To characterize the motion of a ground vehicle,

here considered as an object of interest that is to
be tracked, we define three principal axes along
the body frame as shown in Fig. 1 and express the
dynamics (1) according to [7]

_v+ !̃v=
f
M

(2)

J _!+ !̃J! = ¿ (3)

where f= [fx fy fz]
T and v= [vx vy vz]

T are
composed of the forces and linear velocities along
the body axes, and where ¿ = [¿x ¿y ¿z]

T and ! =

Fig. 1. Coordinate system defined relative to body frame of
ground vehicle. The x axis is given by direction of forward
motion, and y axis is its perpendicular within sustaining plane.
The z axis is defined so that it forms a right-handed coordinate

system with sustaining plane axes.

[!x !y !z]
T are the torques and angular velocities

expressed with respect to the body axes. The mass
M in (2) and inertial momentum matrix J in (3) are
fixed for a given object. The skew-symmetric matrix
!̃ appearing in (2) and (3) is defined by

!̃ =

0B@ 0 ¡!z !y

!z 0 ¡!x
¡!y !x 0

1CA :
Motion of the vehicle with respect to the ground

is caused primarily by fx and ¿z. The following list
provides a discussion of each of the six forces and
torques appearing in (2) and (3).

1) The driving force, fx: The total force parallel
to the x axis is the summation of engine boosting and
friction, i.e., driving and resistant forces. This force
causes changes in the linear velocity.
2) The sliding force, fy: When a vehicle such

as the one shown in Fig. 1 travels along a steep
transverse slope, it may occasionally slide in the
y direction due to the component of gravity along
the y axis. Even less frequently, translation in
the y direction may result from a loss of contact
with the ground, collisions with other vehicles, or
ordnance impacts. However, these cases are not
typical. Therefore, in the interest of reasonably
constraining the complexity of the model without
unduly compromising sophistication, we henceforth
assume that the vehicle remains in contact with the
ground and that the gravitational as well as any other
applied forces along the y axis are in equilibrium
with the frictional forces acting on the vehicle so that
fy = 0.
3) The supporting force, fz: Similar to the

discussion above, it is possible for a vehicle such
as the one shown in Fig. 1 to become momentarily
airborne when traversing rough terrain at high speeds
or to be momentarily lifted from the ground by a
severe collision or ordnance impact. However, these
are relatively rare occurrences. Hence, we assume here
that fz = 0.
4) The rolling torque, ¿x, and pitching torque, ¿y:

Consistent with our discussion of fy and fz above,
we assume that the vehicle remains in contact with
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the ground in an upright posture most of the time.
The drivetrain of a vehicle such as the one shown in
Fig. 1 is not designed to exert rolling and pitching
torques as part of normal maneuvers. Uneven terrain
may give rise to momentary unbalanced torques ¿x
and ¿y. However, if these torques were substantial
and persistent they would result in the vehicle being
overturned, which is not typical. Therefore, in the
interest of simplicity we assume here that ¿x = ¿y = 0.
5) The turning torque, ¿z: Torque about the

z axis results from the engine and drivetrain of the
vehicle, giving rise to turning maneuvers. Like fx, ¿z is
a major contributor to kinematical state changes.

Based on the discussion above, we assume that, in
relation to the coordinate system in Fig. 1, the object
motion is locally planar in the x-y sustaining plane
over time scales that are both realistic and appropriate
for the tracking problem. Thus, (2) and (3) may be
simplified according to· _vx

_vy

¸
+
·
0 ¡!z
!z 0

¸·
vx

vy

¸
=
·
1

0

¸
fx (4)

and
Jz _!z = ¿z (5)

which are expressed relative to the object-centric
coordinate frame of Fig. 1. The position r of the
object is related to the velocities v and !z by

_r=A(Á)v=
·
cosÁ sinÁ

¡sinÁ cosÁ

¸·
vx

vy

¸
(6)

where Á is the azimuthal orientation of the object. As
we assume that the object exhibits nontrivial rotation
about the z axis, the orientation Á is related to the
angular velocity !z by

_Á= !z: (7)

Although the force and velocity are resolved in the
coordinate system relative to the body frame as
shown in Fig. 1, it should be noted that the position
r and orientation Á are expressed relative to some
predefined, fixed reference point and direction.
Together, the differential equations (4)—(7)

characterize how fx and ¿z drive the kinematical
state to change over time. It is worth restating that
many motion models, including the widely used
WGNA models [2] for multi-aspect target tracking,
are obtained from the Newtonian equations of the
point motion, where the object is considered as a point
with mass. However, the WGNA models neglect the
constraints between linear and angular velocities that
can be captured in the dynamics of the rigid body
motion model adopted here. Equation (4) shows that
a typical ground vehicle would not tend to undergo a
large increase in linear velocity while simultaneously
exhibiting non-zero angular velocity. These constraints
(causes) can be observed in the motion of ground

Fig. 2. Proposed generative graphical motion model for
maneuvering target tracking in GMTM. Circles and boxes denote
latent variables and observations, respectively. Forces and torques
are causative variables, while changes in kinematics are effect
variables. Bold arrows show how forces and torques cause
kinematic variations, whereas dotted arrows depict effects of

velocity on realizable forces.

vehicles so widely that we regard such objects as rigid
bodies instead of simple points.

IV. GENERATIVE GRAPHICAL MODELS

In this section, we develop a generative graphical
model, depicted in Fig. 2, to describe the uncertainties
associated with the maneuvering actions of an object
of interest. The dynamics (4)—(7) reveal how the
maneuvering forces and torques generate kinematics
variations in future observations, which imply the
structure of the graphical model. The associated
conditional probabilities are derived from these
equations, thereby encoding the physical constraints
underlying the object motion.

A. Probabilistic Models of Maneuvering Variables

Similar to the main ideas of jump Markov linear
(JML) models [30] and SLD models [33], we define
multiple models indicated byMt 2 f0,1,2g for the
driving force fx,t at time t with the goal of describing
distinct maneuvers characterized by approximately
constant velocity (Mt = 0), by significant acceleration
(Mt = 1), or by significant deceleration (Mt = 2).
Each model is initialized to a normal density with
mean ¹k,0 and variance ¾

2
k,0, 0· k · 2. Rather than

learning the Gaussian parameters a priori as was done
in [33], we generate the hypotheses of the acceleration
and deceleration models (Mt = 1,2) in future time
steps by a conditional Rayleigh distribution on the
current velocities. Use of the conditional Rayleigh
distribution is justified in Section IVC below. For
the constant velocity model (Mt = 0), we assume
throughout that fx,t »N(0,¾20,0). Although estimation
algorithms exist for the case of an unknown transition
probability matrix (TPM) [45], we specify a fixed
prior TPM Ti,j

¢
=Pr(Mt = i jMt¡1 = j), e.g., Ti,j = 0:5

when i= j and Ti,j = 0:25 when i 6= j, since we find
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that our estimation algorithm is reasonably insensitive
to the exact choice of TPM. Our model for linear
motions is analogous to the JML and SLD models
in the sense of having a discrete switching variable,
but the continuous motion models accommodating
acceleration and deceleration allow for adaptively
updating the state based on the current kinematics
estimation.
We assume that the torque ¿z randomly generates

a certain angular velocity !z at a single time step and
that the angular velocity remains constant over the
sampling interval. Thus, we do not model the behavior
of the torque directly; rather, we characterize the
distribution of the angular velocity !z by the following
ternary-uniform mixture [3]: the object maintains its
current direction (!z = 0) with probability P0, rotates
counter clockwise at a rate uniformly distributed
in [0,!max] with probability (1¡P0)=2, or rotates
clockwise at a rate uniformly distributed in [¡!max,0]
with probability (1¡P0)=2. The value of P0 may
reflect some prior knowledge about the possible
motion pattern. The ternary-uniform mixture was
originally proposed for modeling the magnitude
and duration of target maneuvers when no prior
knowledge on the maneuvering time is available
in [46]. We apply this distribution to model angular
maneuvers. The distribution is easy to sample and,
as illustrated in Section VIB, produces satisfactory
estimation results in our experiments with real image
sequences in which the target executes abrupt turns. A
limitation of this approach as it is implemented here
is that the parameters of the ternary-uniform mixture
must be specified manually. However, with some
appropriate additional constraints these parameters
could be adaptively updated online.

B. Temporal Constraints

The temporal constraints relating the kinematical
variables in two consecutive time steps are determined
by (4)—(6). We denote the set of hidden variables v,
r, Á in Fig. 2 together in a kinematical vector K=
[vT,rT,Á]T. We assume that the sampling interval T
is sufficiently small that we may solve the differential
equations (4)—(6) using Euler integration according to

rt = rt¡1 +TA(Át¡1)vt¡1 +n
r
t¡1 (8)

vt = vt¡1¡T!̃z,t¡1vt¡1 + ft¡1 +nvt¡1 (9)

where the velocity vector v comprises the velocities
along the x and y axes, the skew-symmetric matrix
!̃z,t¡1 is formed by the angular velocity with respect
to z as in (4), and where

Át = Át¡1 +T!z,t¡1 + n
Á
t¡1: (10)

The noise variables nr, nv, and nÁ in (8)—(10),
which act as “driving” noise (or process noise) to
accommodate numerical errors and uncertainties in

the motion processes, are assumed to be independent
identically distributed (IID) and Gaussian with
zero means and known variances (in practice, we
have found that tracking performance is not terribly
sensitive to the exact tuning of these parameters;
in the simulation experiments of Section VIA, we
take the standard deviations of all three process
noises equal to the parameter fmax given below
in (11)). The one-step conditional probabilities of the
current kinematical variables p(Kt jKt¡1), graphically
represented by the bold arcs in Fig. 2, can be obtained
by (8)—(10) and the given noise statistics. If the
directed arcs from ! to v are omitted in Fig. 2, then
the proposed graphical model degenerates to the
WGNA or constant acceleration dynamic models
that are currently widely used in the context of target
tracking [2, 3]. In addition to temporally evolving the
linear and angular motion independently, our model
couples the nonlinear angular effects into the linear
motion.

C. Velocity-Force Constraints

In the JML [30] and SLD [33] models, an
independent discrete Markov chain is introduced as
the driving process of the continuous kinematic states
in tracking applications. The specific trajectory of the
evolving kinematical variables in any given realization
provides cues by which to infer the underlying
driving forces, but does not directly influence the
evolution of the driving process itself. We observe,
however, that the engine of any practical vehicle has
limited output power given by the product of force
with velocity [47], rendering certain state transitions
impossible or highly unlikely. In the GMTM approach
proposed here, we leverage this constraint by directing
a dotted arc from vt to ft in Fig. 2, thereby enabling
the kinematic state to drive the trajectory of the
causative (dynamical) force variables. It is worth
noting in this regard that forces and torques of
practical aircraft are strongly dependent on the
velocities [12], implying that this model could be
generalized to one that is applicable to conventional
aircraft, missiles, and space vehicles.
In defining the conditional probability p(fx,t j

vt,fx,t¡1), we explicitly utilize the observation that,
typically, only small increases in engine power
are available when the vehicle is operating near
maximum speed. For an object with increasing
acceleration, large acceleration increases are more
likely at low speeds than at high speeds, whereas
small acceleration increases are correspondingly
more likely at high speeds than at low speeds.
Similarly, for a decelerating object, the reverse is
typically true. Large decelerations are more likely
at high speeds than at low speeds due to the larger
resistant forces present at high speeds, whereas
small decelerations are correspondingly more likely
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Fig. 3. Rayleigh conditional distributions of driving force (left) and resistant force (right) for several speeds. Left figure shows that
large accelerating forces are more likely when target moves at lower speed, while right figure shows that large decelerating forces are

more likely at high speeds.

at low speeds where the resistant forces tend to be
smaller. These relationships between the driving and
resistant forces are dependent on the kinematics and
require an asymmetric distribution for a probabilistic
representation. The Rayleigh distribution, which is
asymmetric, was successfully used in [48] to estimate
the probability parameters of acceleration from
the velocity. In addition, the Rayleigh distribution
can be efficiently sampled, facilitating practical
implementation of the inference algorithm. Therefore,
we model the velocity-force constraints using
conditional Rayleigh distributions defined by

p(fx,t j vt,fx,t¡1) =

8>>>>>>>><>>>>>>>>:

fmax¡fx,t
c2t

exp

μ
¡ (fmax¡fx,t)

2

2c2t

¶
£U(fmax¡fx,t), fx,t¡1 > 0

fx,t¡f¡max
c2t

exp

μ
¡ (fx,t ¡f¡max)

2

2c2t

¶
£U(fx,t¡f¡max), otherwise

(11)

as shown in Fig. 3, where U(¢) is the unit step
function; fmax and f¡max are the forces that generate
maximum acceleration and deceleration, respectively;
and ck is a parameter that depends on the current
velocity vt according to

ct =

8>>><>>>:
fmax

p
2=¼

1+exp(jvtj ¡ jvmaxj)
, fx,t¡1 > 0

f¡max
p
2=¼

1+exp(jvmaxj ¡ jvtj)
, otherwise

:

The maximum velocity vmax, as well as fmax
and f¡max, are determined by the configuration
of a vehicle and are manually specified for the
experiments given in Section VI. The first case in (11)
corresponding to the condition fx,t¡1 > 0 generates
the acceleration hypothesesMt = 1, while the second

case corresponding to fx,t¡1 · 0 generates deceleration
hypothesesMt = 2.
Zhou and Kumar used a Rayleigh distributed

mean-adaptive acceleration model similar to (11) for
deriving the variance of the predicted acceleration
in a Kalman estimator [48]. In that case, however,
the proposed Rayleigh density depended only on
the previous acceleration and not on the current
velocity. The model in (11) also shares some common
characteristics with the idea of data-driven sampling
approaches [32, 49], where the feedback constraints
of the effect (e.g., the velocity) on the cause (e.g.,
the force) are considered. But our model is distinct
from the data-driven paradigm in that the data-driven
paradigm utilizes cues from the observed data to
define a better proposal that has a larger overlap
with the target distribution. As shown in Fig. 2, this
consideration is explicitly reflected by the conditional
distribution between the latent variables in our
generative model.

V. INFERENCE ALGORITHM

Due to the complicated topology of the proposed
graphical model shown in Fig. 2, it is nontrivial
to perform exact inference by the standard BP
algorithm [36] in this case. For the GMTM approach,
we resort to a SMC-based algorithm [2, 8, 9, 14—16,
30, 42, 44, 50—53] to estimate the kinematics and
the underlying dynamics. It is well understood
that the performance of SMC can be improved
by embedding MCMC moves having the correct
stationary distribution [17—19, 30, 54—65]. Hence,
we apply MCMC to generate the samples of the
conditional Rayleigh distribution (11) which enforces
practical constraints between the velocity and the
driving force as described in Section IVC. Observing
that the evolution of the kinematic variables K may be
represented by a Markov chain and that nonlinearity
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TABLE I
The SMC-Based Inference Algorithm

Initialize
Nt = no. time steps; Ns = no. particles;
initialize particle set fMi

0,f
i
x,0,!

i
z,0,K

i
0gNsi=1;

For t= 1, : : : ,Nt
Prediction
sample fKitgNsi=1 using (8)—(10);

Weighting
evaluate weights fw̃itgNsi=1 using (12);

Normalization
normalize the weights:

©
wit = w̃

i
t=
PNs

k=1 w̃
k
t

ªNs
i=1
;

Selection
resample fMi

t¡1,f
i
x,t¡1,!

i
z,t¡1,K

i
tgNsi=1 according to importance

weights fwitgNsi=1, and then set fwit = 1=NsgNsi=1
MCMC step
For i= 1, : : : ,Ns
sample !iz,t using ternary-uniform mixture;

sample Mi
t using TPM conditioned on Mi

t¡1;
If Mi

t = 0
sample fix,t from N(0,¾20,0);

Else
sample fix,t from (11);

End
End

is involved in the dynamic equations due to (8), we
apply the SMC algorithm to sequentially approximate
the posterior density p(Kt j Zt) at the current time
step given the previous density p(Kt¡1 j Zt¡1) by a
particle set fKit,witgNsi=1. The procedure for updating the
particle set is given in Table I, where the prediction
p(Kit jKit¡1) is formulated using (8)—(10).
The weights wit in Table I are evaluated using

a likelihood function p(Zt jKit) that depends on
an object template L. This template contains a
standardized instance of the spatial target signature
that is expected to occur in a video frame acquired
from the imaging sensor currently in use. It could be
generated on the fly from an appearance model of
arbitrary complexity including dependencies on the
particular sensor technology, estimated object type,
and estimated pose and magnification parameters.
Alternatively, the template L could be retrieved from
a stored library of expected signatures. Depending
on the estimated magnification, the template will
generally have a spatial support that is smaller than
an entire video frame. Thus, the probability that an
object (e.g., target) with kinematical variables Kit is
present in the observed frame Zt may be quantified
by the agreement between the template L and a region
of interest having the same size and shape as L that is
extracted from the location rit in the observed frame
Zt. Since our objective in this paper is to demonstrate
the performance of the proposed GMTM, we restrict
our attention to extremely simple appearance models
for generating the template L in the experiments of
Section VI. However, it should be noted that this is

not a general limitation; in any particular application,
further performance gains can be obtained through the
use of a more sophisticated appearance model.
Given the template L, the likelihood function for

the SMC-based inference algorithm of Table I is given
by

p(Zt jKit) = C exp
μ
¡kTK(Zt)¡Lk

2

2¾2o

¶
(12)

where C is a normalization constant, ¾2o is the
variance of the observation noise, k ¢ k2 is the squared
Euclidean norm, and TK is an operator which extracts
a region of interest from the observed frame Zt based
on rit and performs a 2D transformation depending
on Áit to account for rotation of the observed object
signature relative to the template L. Thus, TK(Zt) is
a subframe having the same size and shape as L.
More generally, the transformation TK might also
account for magnification differences between the
observed object and the template L; however, since
significant magnification changes are not considered
in the experiments of Section VI we neglect the
magnification parameter here in the interest of
simplicity.
The SMC algorithm maintains a running discrete

simulation of the posterior density p(Kt j Z1:t),
from which we generate samples fix,t and v

i
t in each

sampling interval. These samples are obtained by
applying the Metropolis algorithm [17] to draw from
a distribution p(fx,t jKit) that is given by either the
Rayleigh distribution (11) ifMi

t > 0 or, as we stated
in Section IVA, from N(0,¾20,0) ifMi

t = 0. One sample
is generated in each iteration as follows. We first
sample a proposal density q(¢) to obtain f¤ » q(¢). We
then accept f¤ as p(fix,t) with probability

min
½
1,

q(f¤t )
p(fi¡1t j ¢)

¾
where the proposal q(¢) is Gaussian. This procedure
is illustrated for the caseMt = 1 in Fig. 4, where
histograms of the generated samples are shown
overlayed on the true conditional Rayleigh
distributions. The details of the inference algorithm
are specified by pseudo-code in Table I.

VI. EXPERIMENTAL RESULTS

To illustrate the performance of the proposed
GMTM approach, we conducted tracking experiments
using both simulated and real video sequences. In the
simulated data cases, the simulated frame rate was 24
frames per second (fps). The real video sequences
were acquired with a commercial visible wavelength
camera having a frame rate of 30 fps. To avoid any
confusion arising from the two different frame rates,
we refer to digital video frames by the sequential
frame number throughout this section; in the case of
the synthetic examples the kth frame occurred at a
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Fig. 4. MCMC approximations for conditional Rayleigh distribution of driving force conditioned on velocity (as shown in Fig. 3),
corresponding to a low-speed target (left) and a high-speed target (right). Solid curves denote desired ideal Rayleigh density functions,

while histograms give approximations for 500 samples generated by MCMC algorithm.

Fig. 5. Example simulated video sequence generated by proposed GMTM. Every fifteenth frame is shown. SNR =¡0:5 dB.
Zoomed view of target is shown inset at lower right corner of each frame.

time k=24 s past the beginning of the sequence, and
in the case of the real video examples, the kth frame
occurred at a time k=30 s past the beginning of the
sequence. In Figs. 6—10, the time axis is expressed not
in seconds, but rather in units of frame number.
For every example given in this section, the

number of particles used in the SMC-based inference
algorithm was Ns = 500. The variance of the estimates
delivered by SMC is a decreasing function of Ns, so
it is desirable to have a large number of particles
to ensure stability and reduce the estimation errors.
However, the computational bandwidth required to
implement the algorithm is an increasing function
of Ns, making large particle sets infeasible from a
practical standpoint. Although we did not study the
design tradeoff between large and small Ns with rigor,
we did run examples with Ns = 100 which generally
resulted in unstable estimates with large run-to-run
variance and with Ns = 1,000, which resulted in
unacceptably long run times using Matlab on a typical
current generation commercial PC. In every case, the
kinematics were manually initialized in the first frame.
For the simulation studies, the object of interest

was a uniform rectangular block corrupted by additive
white Gaussian noise maneuvering against an IID
Gaussian background process. The object positions
and orientations were generated sequentially according

to the Newtonian rigid body dynamics (8)—(10), and
the physical constraints, given in Section IVC, where
the variance of the Gaussian noise processes nr, nv,
and nÁ in (8)—(10) were set equal to the parameter
fmax in (11). The background noise power was not set
directly. Rather, this parameter was calculated based
on the desired signal-to-noise ratio (SNR) as follows.
The background-noise-free target signature was a
subimage having the same size as the lower-right
insets shown in Fig. 5 and containing an image of
the rectangular white target corrupted by additive
white Gaussian noise against a black background,
but without any injected background noise. The
target power was defined as the variance of this
background-noise-free target signature, which was
calculated at run time in the simulations. The variance
for the injected background noise process was then
set such that the ratio of the target power to the
background noise power was equal to the desired
SNR. The SNR was specified as low as ¡0:5 dB for
the simulated examples given in this section. For all of
the simulated examples, the background-noise-free
target signature described above was used as the
object template L in (12). An example simulated
video sequence is given in Fig. 5, where every
fifteenth frame is shown. In the simulated data
experiments described below in Section VIA, we
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compare the GMTM tracking results with those
obtained by an estimation algorithm developed for
JML systems [30, 66].
The real data experiment was performed on a

video sequence depicting a top-down view of a highly
maneuverable radio-controlled tank moving on an
indoor planar surface. This sequence consists of 300
frames acquired at 30 fps. The tank was controlled
to perform significant linear accelerations and turns.
Additive white Gaussian background noise was
injected into the acquired video frames to achieve an
SNR of 0 dB, where SNR was defined as described in
the paragraph above, in order to evaluate performance
in a high-noise scenario where the tracker is required
to rely more heavily on the dynamic model as
opposed to the appearance model. The object template
L in (12) was generated by manually extracting the
background-noise-free target signature from the initial
frame prior to injecting background noise. Several
example frames are shown in Fig. 11. Comparison
of the GMTM results against those of the relatively
simple yet widely applied constant velocity constant
turn (CVCT) model [3], [35] demonstrate the power
of a sophisticated motion model for tracking highly
maneuvering targets in low quality video where no
strong appearance models are available.

A. Simulated Data Experiments

In this section, we present quantitative tracking
results obtained with GMTM and a jump-Markov
particle filter (JMPF) algorithm for simulated video
sequences where the object exhibits coupled linear
and angular motion and velocity-force constraints. The
specific JMPF algorithm, due to Doucet, et al. [30], is
a particle filtering approach to the optimal estimation
of JML systems in which non-Gaussian probabilities
are involved. JML systems [30, 66] are multiple
models where the linear system parameters evolve
according to a finite discrete Markov chain; they
share several common features with SLD systems
[31]. In our JMPF implementation, the switching
term accommodating linear motions takes one of three
discrete values (0,2,¡2) corresponding to constant
velocity, maximum acceleration (driving force), and
maximum deceleration (resistant force). For the
angular motion model, the transition probabilities
of this three-state Markov chain are set identical
to those given for GMTM in Section IVA. For the
linear kinematic state transitions, the parameters are
set to those given in [2], [30], [66], where coupling
between the linear and angular velocities is excluded.
For the sake of experimental validation, we restate
that GMTM differs from JMPF in the following main
respects:

1) GMTM formulates explicit probabilistic models
for the causative variables, as opposed to several fixed
switching values as in JMPF.

2) GMTM models rigid body dynamics as
opposed to point mass dynamics, including an explicit
model of the coupling between angular and linear
velocities.
3) GMTM explicitly incorporates physically

meaningful velocity-force constraints.

In the following two sections, we present the forces
and kinematics estimated by the proposed GMTM
technique in comparison with those obtained by the
JMPF method for several different motion scenarios.
Each scenario was run ten times, and the results
obtained from a randomly selected exemplar run are
given in Figs. 6—9.
1) Tracking with Coupled Linear and Angular

Motion: In order to compare how the generative
model and JMPF cope with coupled linear and
angular motion, we generated two video sequences
in which the targets have linear velocity changes
both with and without angular motions. In the first
sequence, the target accelerates in frame 40 without
angular motion. Angular motion occurs in subsequent
frames, but without linear acceleration. The dynamics
and kinematics estimated by GMTM and by JMPF
are shown in Fig. 6. As can be seen in Fig. 6(a),
both GMTM and JMPF track the force changes that
occur in frame 40 after a delay. Both approaches also
provide satisfactory kinematics estimation, as shown
in Fig. 6(b)—(d) and (f)—(h).
In the second sequence, the target simultaneously

turns and decelerates beginning in frame 33. It should
be noted that such coupled turning and deceleration
is widely observed in the motion of practical ground
vehicles. In this case, there is a tangible performance
difference between GMTM and JMPF. The dynamic
and kinematic estimates for both algorithms are given
in Fig. 7. The velocity and orientation estimates
obtained by JMPF deviate significantly from ground
truth from frame 34 onwards, as shown in Fig. 7(b)
and (c). As shown in Fig. 7(a), however, JMPF does
successfully capture the drop in force that occurs
in frame 33 after a delay, as does GMTM. The
inaccuracies in the kinematic estimates delivered by
JMPF in Fig. 7 result directly from the exclusion
of an explicit model for the dependency between
linear and angular motion, which is significant in the
second sequence. By contrast, since the rigid body
motion model of GMTM explicitly couples angular
effects into the linear motion through (4), GMTM
appropriately allocates particles in a way that leads
to accurate kinematic estimation as shown in Fig. 7.
2) Tracking with Velocity-Force Constraints: The

third simulated video sequence was designed to
illustrate the performance of GMTM and JMPF in
a scenario where velocity-force constraints play a
significant role. Beginning in frame 22, the target
rapidly accelerates. This cannot be maintained
indefinitely, however, and from frame 30 on the
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Fig. 6. Dynamic and kinematic estimation results for first simulated video sequence. (a) Force. (b) Velocity. (c) Orientation.
(d) Position. (e)—(g) Absolutely error plots. Linear acceleration occurs in frame 40 without angular motion, where force has an
abrupt change shown in (a). Both JMPF and GMTM perform satisfactory estimation on kinematics, shown in (b)—(d) and (f)—(h).

speed levels off at near maximum. In addition, there
is mild angular motion throughout the sequence
and an abrupt turn in frames 41 through 45. The
dynamic and kinematic estimation results are shown

in Fig. 8. Both algorithms track well for the first 30
frames. However, when the velocity starts to level
out in frame 30, JMPF begins to fail. As shown in
Fig. 8(a), JMPF does not follow the drop in force
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Fig. 7. Dynamic and kinematic estimation results for second simulated video sequence. (a) Force. (b) Velocity. (c) Orientation.
(d) Position. (e)—(h) Absolute error plots. Simultaneous turning shown in (c) and deceleration shown in (a) occur beginning in

frame 33. JMPF, denoted as pluses in plots, captures force drop but fails for orientation changes, resulting in inaccurate kinematic
estimation on velocity ((b) and (f)) in this case.

that occurs in frame 24, whereas GMTM captures the
drop (after a delay) due to the feedback constraints
between velocity and force in the generative model.
As a result, the GMTM velocity estimates shown in

Fig. 8(b) remain accurate, while the JMPF velocity
estimates first overshoot, then undershoot the ground
truth. Consequently, when the abrupt turn occurs in
frames 41 through 45, JMPF totally loses both the
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Fig. 8. Dynamic and kinematic estimation results for third simulated video sequence. (a) Force. (b) Velocity. (c) Orientation.
(d) Position. (e)—(h) Absolute error plots. Target exhibits strong acceleration in frame 22, with speed leveling out near maximum by

frame 30, see (a). There is an abrupt turn from frame 41 through 45 shown in (c). JMPF fails starting in frame 30 when velocity starts
to level out (see (b) and (f)), and totally loses tracks when abrupt turn occurs in frames 41 through 45, shown in (d) and (h), whereas

GMTM remains accurate.

orientation and position tracks, as shown in Fig. 8(c)
and (d), while GMTM delivers accurate simultaneous
estimates of both dynamics and kinematics throughout
the sequence.

3) Discussion: The results of the simulated
data tracking experiments given in Figs. 6—8 show
that the SMC-based GMTM inference algorithm
produces delayed estimates of force and velocity.
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Fig. 9. Dynamic and kinematic estimation results for fourth simulated video sequence. (a) Force. (b) Velocity. (c) Orientation.
(d) Position. (e)—(h) Absolute error plots. Significant changes in force occur only in final frames of sequence, shown in (a). Due to

inherent delay in state estimation, GMTM provides no advantage over JMPF. Both techniques fail to track abrupt force changes starting
from frame 45.

This may be understood in terms of the structure of
the generative model (depicted in Fig. 2), in which
the causative variables from the previous time step
induce the current effect variables and observations.
This implies that there is some delay in the state

estimation. In most cases, this delay is not expected
to compromise the overall tracking performance.
However, the GMTM algorithm fails to accurately
capture accelerations that occur in the last frames of
a sequence, as illustrated in Fig. 9(a). In such cases
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there are no subsequent observations by which to
correct the state estimation; consequently, GMTM
provides no tangible performance advantage compared
to JMPF for the final frames of a sequence.

B. Real Data Example

A typical tracking system is composed of two
complementary components, viz., a representation
of the expected target signature and a motion model
[21]. In many practical systems, the main approach
for maintaining performance in the presence of heavy
clutter, noise, and unknown motion patterns is to
devise a sophisticated target representation [5, 67].
By contrast, our emphasis in this paper has been on
the development of a sophisticated motion model. In
this section, we apply the proposed GMTM tracking
algorithm to a real-world video sequence depicting
an overhead view of a highly maneuverable radio
controlled tank. The tank exhibits abrupt turns with
substantial changes in orientation as well as rapid
decelerations. Although the sequence was acquired
with a commercial visible wavelength camera, we
inject substantial synthetic additive white Gaussian
noise to degrade the target SNR to 0 dB. We also
track the sequence with the CVCT model that assumes
the target moves with a constant speed and a constant
rate of turn up to uncorrelated drift noises [3]. Both
the GMTM and CVCT methods use the likelihood
function given by (12). The results suggest that the
combination of an elaborate motion model with a
simple target representation can provide accurate
tracking performance even in highly challenging
real-world scenarios where the simple motion model
performs poorly by comparison.
Fig. 10(a) shows the tracked position trajectories

obtained by GMTM and by the CVCT model against
ground truth, where the estimation errors are given
in Fig. 10(b). The GMTM and CVCT orientation
estimates are given in Fig. 10(c) with ground truth,
and the respective absolute errors are shown in
Fig. 10(d). We manually labeled four vertices of the
target region in each frame and derived the ground
truth of the target position (centroid) and orientation.
Finally, the GMTM and CVCT velocity estimates are
given in Fig. 10(e), where no ground truth is readily
available in this case. Representative video frames
are shown in Fig. 11, where a closeup view of the
noise-free target is inset in the lower left of each
frame. The estimated track gates delivered by the
CVCT method are shown overlayed on the closeup
target views in Fig. 11(a). Likewise, the GMTM
estimated track gates are shown in Fig. 11(b). The
proposed GMTM method provides robust tracking
throughout the sequence, producing accurate position
and orientation estimates even as the target executes
abrupt turns and accelerations in severe noise. By
contrast, the CVCT orientation estimates begin to

fail almost immediately. In frame 180, which is
marked by a heavy dot in Fig. 10(a), there is a sudden
deceleration accompanied by an abrupt turn. As
shown in Figs. 10 and 11, the GMTM algorithm
maintains accurate tracking through this maneuver
while the position and orientation estimates of the
CVCT method rapidly degrade. It is interesting to note
that the GMTM algorithm occasionally misclassifies a
portion of the target shadow as being part of the target
itself, as shown, e.g., in frame 150 of Fig. 11(b).
This problem, which generally perturbs the position
and orientation estimates, could be ameliorated by
incorporating a more sophisticated observation model
than the one given by (12).

VII. CONCLUSION

In this paper, we considered the problem of
tracking a highly maneuverable object with unknown
dynamics. Based on the principles of Newtonian
mechanics, we introduced a new GMTM where the
target is considered to be a rigid body as opposed to
a point mass. This approach enabled us to develop
a new generative graphical model incorporating
useful constraints in the form of explicit coupling
between the linear and angular velocities and explicit
feedback of the kinematic state variables to the
evolving dynamics. This model also incorporates
realistic velocity-force constraints based on the fact
that the engine output power of any practical ground
vehicle is limited; thus, e.g., large increases in velocity
are unlikely when the vehicle is operating near
maximum speed. Based on the generative graphical
model, we formulated probabilistic relationships
between the kinematic state variables, including
position, velocity, and orientation, here considered
to be effect variables, and the causative dynamic
state variables, including forces and torques, in a
Bayesian estimation framework. We developed an
SMC inference algorithm embedded with an MCMC
step to estimate both the target kinematics and the
maneuvering dynamics simultaneously.
Performance of the proposed GMTM algorithm

was evaluated on several simulated video sequences
designed to highlight the unique features of the
approach and demonstrate the specific differences
between GMTM and the popular JMPF method.
In particular, we demonstrated that the explicit
incorporation of velocity-force constraints and
coupling between the linear and angular velocities can
lead to tangible improvements in tracking performance
for highly maneuverable targets. Robustness of the
GMTM approach was also demonstrated on a real
video sequence depicting an overhead view of a
highly maneuverable radio controlled tank.
Our focus in this paper was on dynamic

modeling for target tracking, specifically on the
dependencies between latent kinematic and dynamic
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Fig. 10. Kinematic tracking results for real video sequence. (a) Position. Estimates delivered by GMTM and CVCT are shown along
with ground truth in pixel coordinates. (b) Absolute errors in position estimates delivered by GMTM and CVCT expressed in units of
pixels. (c) Orientation estimates delivered by GMTM and CVCT with ground truth. (d) Absolute errors in orientation estimates.

(e) Velocity estimates delivered by GMTM and CVCT. There is no ground truth in this case.

variables. Other measurement models that describe
the relationships between the observations and
the latent variables, such as Poisson models [4]
for example, could also be incorporated into
the proposed graphical model in order to track

targets in other modes or in multiples modes [42].
In a multi-mode tracking system, for example,
radar sensors could provide direct observations
of velocity or speed, which could improve the
accuracy of the velocity estimation by explicitly
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Fig. 11. Tracking results on 8 representative frames obtained by (a) CVCT model and (b) GMTM. Inset in lower left corner of each
frame shows estimated track gate (white box) overlayed on closeup of target (black dash) without injected noise. Position and

orientation estimates delivered by GMTM are clearly superior, as expected.

treating the likelihood function of the velocity
variable. With such additional observations, one
could generate more probable force hypotheses
based on the velocity-force constraint from
the model proposed here, thereby improving
both the velocity and position estimates. In
addition, since the GMTM is developed based
on rigid body motion dynamics in the context
of a 3D body frame, the technique could be
generalized to track ground vehicles from any
perspective by incorporating a 3D camera model
and a 3D target appearance model [68, 69].
The GMTM technique could also be extended
for multiple target tracking by incorporating
data association techniques for appearance
modeling, such as the joint probability data
association (JPDA) method that has been used
successfully with other multiple-model approaches
[70, 71].
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