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Abstract—We proposed an automatic nonlinear texture-
cartoon decomposition based on the frequency behavior of
texture and cartoon across different scales. We measured
the ratio of gradient magnitude across modulation domain
components and used this ratio to classify the texture and
cartoon pixels. The algorithm computed the modulation do-
main component where texture and cartoon are separated. Our
simulation results showed that the proposed algorithm is able
to extract meaningful texture and cartoon components from
images efficiently.
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I. INTRODUCTION

We consider the problem of decomposing an image into a

structural component and textural component. The structural

portion, which is referred to as cartoon, carries broad infor-

mation about an image and is usually piece-wise smooth

curves. The texture component, subsequently referred to as

texture, describes oscillating patterns of image textures and

noise [1], [2]. For example, when we look at a striped T-

shirt, the cartoon consists of lines in the borders of the shirt

and the texture are the stripes within the shirt.

A successful texture-cartoon decomposition can lead to

improvements for subsequent image processing operations

such as compression, edge detection, and image inpaint-

ing. For instance, higher overall compression gain can be

obtained by decomposing the image into different types of

signals and designing optimized encoders to compress these

type of signals separately [3]. The cartoon-texture decompo-

sition can eliminate extraneous edges that can partially due

to noise or unimportant objects [1], [2]. Such decomposition

can retain important edges in image denoising [4].

The texture-cartoon decomposition is, however, an ill-
posed problem. As texture and cartoon are loosely defined,

image features can be considered as texture in one scale, but

they can be cartoon at another scale. For example, when we

look at a tree at a far distance, leaves can be classified as

textures. However, we can consider these leaves as cartoon

at a closer viewing distance. In addition, human judgement

can also play an important role in deciding whether an object

is part of texture or not.

Most works in the texture-cartoon decomposition are in

the partial differential equation (PDE) setting. The texture
and cartoon are modeled to lie in different functional spaces.

The solution is found by solving a convex regularized opti-

mization problem [4]–[7]. The quality of texture and cartoon

decomposition depends on signal models used to describe

them and the regularization parameter. Despite approaches to

find suitable values for the regularization parameter [7], [8],

the cartoon edges often bleed into the texture components.

Meyer, Averbuch and Coifman [3] proposed an image

compression scheme where an image is decomposed into

multi-layered components such as texture and cartoon. The

authors used a suitable basis for each each layer of signal

in order to increase compression gain. Stark, Elad, and

Donoho drew ideas from [3] and [6] to create a hybrid

approach that used total variation regularization and basis

matching. They designed two dictionaries, each of which

contains basis functions that are tuned for either cartoon or

texture. The texture and cartoon were subsequently extracted

by projecting the image onto these basis functions.

Apart from the PDE and basis representation approaches,

Buades et al. [1] proposed a nonlinear texture-cartoon de-

composition. They observed that the total variation of texture

and cartoon features behave differently before and after a

lowpass filtering. A weight assignment scheme were then

used to classify texture and cartoon features. While the

algorithm produced good texture and cartoon separation, the

results depended on the bandwidth parameter of the lowpass

filter.

In this paper, inspired by the work of Buades et al. [1],

we proposed an automatic nonlinear texture-cartoon decom-

position algorithm. In particular, we measured the ratio of

gradient magnitude across modulation domain components

and used this ratio to determine the component where the

change between cartoon and texture of a pixel is most likely

to occur. Once the component is determined, we used a

hard threshold strategy to classify texture and cartoon pixels

to obtain a weight matrix. The texture component is then

obtained by multiplying the original image with the weight

matrix. The cartoon is the difference between the original

image and the texture component.

II. BACKGROUND

Let f : R
2 → R be a continuous image. Let u : R

2 → R

be the cartoon component. Let v : R
2 → R be the

texture component. The cartoon-texture decomposition aims
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to extract u and v as

f = u + v. (1)

A. Total variation regularization approaches

Most of the the texture-cartoon decomposition approaches

are formulated in the partial differential equation setting,

we will give a short description of the underlying models.

Readers can refer to [4], [6], [7] for deeper analysis.

Rudin, Osher, and Fatemi [4] solved (1) in the context

of a denoising problem. They assumed that the cartoon u
belongs to a class of bounded variation (BV) functions and

the texture v is a finite energy function. Both u and v are

solved simultaneously in the convex minimization setup

arg min
u∈BV,v∈L2

(∫
|Du| + λ||v||2L2

)
, (2)

where λ is a positive tuning parameter and the integral of

Du measures the total variation of signal u. The computed

texture v, however, contains cartoon edges. Meyer [5] pro-

vided an alternative model for the texture component in (2).

Instead of being L1 or L2, v belongs to functions in a Banach

space featured by a G-norm model which allows features to

have high oscillation but can still retain low energy norm.

Many successful texture-cartoon decomposition algorithms

have been derived from the Meyer formulation, e.g., [6],

[7].

B. Traditional filtering approaches

1) The Linearized Meyer Model: Buades et al. [1] ob-

served that a linearized version of the original Meyer model

is indeed the classical highpass-lowpass filtering problem.

Let Kσ be a lowpass filter; the texture-cartoon decompo-

sition problem can be viewed as a problem of designing a

suitable lowpass filter Kσ to capture u and v as

u = Kσ ∗ f

v = f − Kσ ∗ f, (3)

where σ is the scale parameter that determines the filter

bandwidth and ∗ denotes the convolution operator.

Intuitively, the bandwidth parameter σ controls the

amount of high frequency features that will be retained.

Therefore, this model can not separate the texture and

cartoon features when their frequencies are overlapped.

2) Nonlinear texture-cartoon classification: Buades et
al. [1] observed that the local total variation (TV) of texture

features and cartoon features behave differently when filtered

by a lowpass filter Kσ . The ratio of local TV before and after

the lowpass filter Kσ is applied tends to be lower in the

texture region than that in the cartoon region. Based on this

observation, the authors used a nonlinear mapping similar to

soft-thresholding to classify pixels into the two categories.

Even though the decomposition algorithm does not com-

pute solutions that converge to those of the TV regularization

approaches [1], it produces good quality texture-cartoon sep-

aration with a non-iterative implementation. The solutions

of this method, however, depend on the selection of the

bandwidth σ of the lowpass filter Kσ . Without a properly

tuned σ, the solutions can change drastically.

III. TEXTURE-CARTOON DECOMPOSITION

We represent the image f as a sum of K non-stationary

amplitude modulation (AM) functions and frequency mod-

ulation (FM) functions

f =
K∑

k=1

fk =
K∑

k=1

ak cos(ϕk), (4)

where ak : R
2 → R

+ is the AM function and ϕk : R
2 → R

is the phase modulation function [9]. Both ak and ϕk are

assumed to be locally smooth. The FM functions are given

by the gradient of ϕk, i.e., ∇ϕk = [ϕkx ϕky]T , where the

second subscript denotes partial differentiation. The discrete

AM and FM functions are computed using the demodulation

algorithm in [10]. We arranged the K AM-FM components

in ascending order based on the magnitude of the FM vector

in (4), i.e., f1 carries low-frequency components and fK

contains high-frequency components.

The key ingredient the cartoon-texture separation in [1] as

well as in this paper lies in the computation of image gra-

dient. For 1D AM-FM signal representation, the derivative

of component fk is obtained as

f ′
k = a′

k cos(ϕk) − ϕ′
kak sin(ϕk). (5)

We performed an approximation to (5) to make it more

robust to noise. Since the AM function ak is locally smooth,

we estimated the 1D derivative of fk in (5) as

f ′
k ≈ −ϕ′

kak sin(ϕk). (6)

Extended the 1D derivative in (6) to 2D, we computed a

metric T� to quantify the gradient magnitude of the first �
AM-FM components according to

T� ≈

√√√√( �∑
k=1

ϕkxak sin(ϕk)

)2

+

(
�∑

k=1

ϕkyak sin(ϕk)

)2

(7)

In (7), T1 is the approximated gradient magnitude of the

lowest frequency component while TK is the approximated

gradient magnitude of the image f .

Similar to Buades et al. [1], we defined the gradient

magnitude ratio at every pixel as

D� =
TK − T�

TK
, (8)

where 1 ≤ � ≤ K. At a pixel (m, n) in the image

grid, D�(m, n) measures the relative difference between the

gradient magnitude of the whole image and the gradient
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magnitude of the first � components. D� is maximum when

� = 1 and decreases monotonically towards 0 as � increases.

We defined fβ to be the AM-FM component where the

change between texture and cartoon is likely to happen at

each pixel. We first created a mask M such that M(m, n) =
α if Dα > 0.25 and M(m, n) = 0 otherwise. The index β
is then estimated according to

β = median(M). (9)

Finally, we applied a hard threshold strategy to create a

weight matrix w where a weight of one means texture and

a weight of zero means cartoon

w =

{
1, if Tβ ≥ 0.25,

0, if Tβ < 0.25.
(10)

The cartoon and texture are then computed as

u = w · f,

v = f − u. (11)

IV. SIMULATION RESULTS

We ran the proposed algorithm on the Kodak image

dataset and standard test images. The results are shown in

Fig. 2. For each test image, the texture-cartoon decompo-

sition results are demonstrated by row. The original image

is in the left column, the cartoon component u is in the

middle column, and the texture component u is on the right.

Fig. 2(b) and Fig. 2(c) show the cartoon and the texture

component of the image kodim05. We can see that the overall

structure of the image is retained in the cartoon, while the

fine textures in the roofs and windows are extracted into the

texture. Fig. 2(e) and Fig. 2(f) depict the cartoon and the

texture component of the fingerprint image. The algorithm

is able to extract most of repeating curves in the original

image and put into the texture component. The cartoon con-

tains mostly low-frequency residual. Fig. 2(h) and Fig. 2(i)

illustrates the cartoon and the texture component of the Lena
image. Oscillating patterns in her pant, shirt, and in the table

are successfully extracted to the texture. The edges in her

hands and table are still kept in the overall structure of the

image.

Figure. 1 illustrates the texture and cartoon obtained from

the linearized Meyer model discussed in Sec. II-B1 and the

Buades et al. [1]. Notice that the linearized Meyer model

includes strong edges in the texture component in Fig. 1(e).

We also see the variation of results by the Buades et al. [1]

in Fig. 1(b),(c),(f),(g). These decomposition results vary

according to the selection of the filter bandwidth σ. The

results of the proposed method are shown in Fig. 1(d) and

(h). The proposed algorithm is able to separate the texture

and cartoon automatically.

V. CONCLUSION

We proposed an automatic nonlinear texture-cartoon de-

composition based on the frequency behavior of texture and

cartoon across different scales. We measured the ratio of

gradient magnitude across modulation domain components

and use this ratio to classify the texture and cartoon pixels.

Our simulation results demonstrated that the proposed algo-

rithm is able to extract texture and cartoon components from

images efficiently. While this work followed a similar path

as Buades et al. [1], our results do not depend on the lowpass

filter bandwidth which is critical to the separation process.

Currently, we set the threshold parameter in the hard thresh-

old process empirically to 0.25. We are experimenting with

machine learning techniques to overcome this limitation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Texture Cartoon Decomposition Examples of Barbara. (a) Cartoon obtained by linearized Meyer model. (b) Cartoon obtained by Buades et
al. [1] with σ = 1.0. (c) Cartoon obtained by Buades et al. [1] with σ = 3.0. (d) Cartoon otained by our method. (e) Texture obtained by linearized
Meyer model. (f) Texture obtained by Buades et al. [1] with σ = 1.0. (g) Texture obtained by Buades et al. [1] with σ = 3.0. (h) Texture obtained by
our method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Texture Cartoon Decomposition Examples. (a) Original kodim05 from Kodak. (b) Cartoon component of (a). (c) Texture component of (a). (d)
Original fingerprint. (e) Cartoon component of (d). (f) Texture component of (d). (g) Original Lena. (h) Cartoon component of (g). (i) Texture component
of (g).
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