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Abstract

We combine an adaptation of the steerable image pyramid sub-
band decomposition with a spline-based perfect reconstruction de-
modulation algorithm to obtain an invertible AM-FM image trans-
form. For the first time, we achieve perceptually-based signal pro-
cessing goals by applying filtering operations directly to the com-
puted subband amplitude and frequency modulations. The results
are dramatic and would be difficult or impossible to obtain by lin-
ear processing. In our most interesting example, a simple AM-FM
filter succeeds in smoothly and naturally removing the bands from
the hat in the well-known Lena image.

1. Introduction

The Fourier series and integral represent a signal in terms of
a sum of complex-valued sinusoids each having an amplitude and
frequency that are everywhere constant. We refer to the Fourier
components as stationary in this sense. Linear translation invariant
(LTI) filters perform signal processing by multiplying each input
Fourier component by a complex eigenvalue. For a real impulse
response, the effects are twofold: for each component, the ampli-
tude is scaled by the magnitude of the eigenvalue and the phase
is shifted by the angle of the eigenvalue. The collection of eigen-
values is called the frequency response and is given by the Fourier
transform of the impulse response. In designing an LTI filter, one
specifies the frequency response to achieve a desired signal pro-
cessing goal.

In many applications, however, the desired signal processing
goal is based on human perception of the input and output sig-
nals. In such cases, it may not be straightforward to express the
goal directly in terms of stationary Fourier amplitudes and fre-
quencies. For example, consider the Trio from Bach’s first Bran-
denburg Concerto. There are two oboes and a bassoon. We hear
this piece as a superposition of the three musical lines played by
the individual instruments. Each line is a sequence of notes char-
acterized by a fundamental frequency, a weighted overtone series,
and an amplitude envelope. Thus, our aural perception is more
naturally related to nonstationary notions of amplitude and fre-
quency than to any stationary interpretation in terms of sinusoids
with amplitudes and frequencies that remain constant throughout
the entire movement.

There is strong psychophysical and physiological evidence that
biological vision systems also respond directly to spatially and

This work was supported in part by the U.S. Army Research Labora-
tory and the U.S. Army Research Office under grant W911NF-04-1-0221.

spectrally localized bundles of amplitudes and frequencies [4, 5,
10, 11]. The idea of analyzing images in terms of nonstationary
amplitude and frequency was introduced in [1, 2] and developed
in [6, 7, 12], resulting in the multicomponent AM-FM model

t(x) =

MX
m=1

am(x) cos[ϕm(x)] (1)

for an image t : R
2→R. In (1), the image is interpreted as a sum

of M nonstationary AM-FM components

tm(x) = am(x) cos[ϕ(x)]. (2)

Intuitively, the AM function am characterizes the local contrast
or envelope of tm, while the FM function ∇ϕm characterizes the
local orientation and granularity of the visible patterns.

Estimation of the AM and FM functions from the image is a
problem that is difficult and ill-posed on several levels [9]. First,
there is the question of how many components there should be and
how they can be obtained from t(x). Even if the individual compo-
nents tm could be observed directly, the demodulation problem is
ill-posed in the sense that, for any given tm, there are an uncount-
able infinity of functions am and ∇ϕm satisfying (2). Biologi-
cally motivated filterbanks of one type or another have typically
been used to isolate the components, but closed form expressions
for the AM and FM functions in terms of the filter responses can-
not usually be obtained. Demodulation algorithms such as those
given in [7,12,14] are based on approximations yielding estimates
for the AM and FM functions that are demonstrably useful in a
variety of applications but that generally preclude the possibility
of reconstructing the image t from the computed AM-FM model.

We first proposed the idea of a perfect reconstruction AM-FM
image model for performing modulation domain signal processing
in [9, 17, 18]. This concept is illustrated in the block diagram of
Fig. 1. Although perfect reconstruction was achieved in [9,17,18]
with the Signal Processing block of Fig. 1 set to the “do nothing”
operation, we did not succeed in demonstrating any perceptually
relevant modulation domain image processing. The main reason
is that we were unable to design a perfect reconstruction filter-
bank capable of delivering components tm with sufficient local
coherency [2,7] to provide good correspondence between the com-
puted AM and FM functions and visual perception of the salient
image structure.

In this paper, we replace the nonseparable wavelet filterbank
used in [9,17] with an adaptation of the steerable pyramid decom-
position given in [15, 16] to obtain a model (1) in terms of per-
ceptually relevant, locally coherent components (2). We use this
model to perform perceptually motivated image processing in the
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Figure 1. System block diagram for performing
AM-FM image processing.

modulation domain for the first time. A striking example is given
in Fig. 2(h), where we have used AM-FM filtering to erase the
bands from Lena’s hat – a result that would be difficult or impos-
sible to obtain with LTI processing.

2. Invertible AM-FM Image Model

In this section, we discuss the techniques we have used to re-
alize the block diagram of Fig. 1 subject to the following: 1) the
signal processing operation is set to the “do nothing” operation, 2)
the AM-FM transform is invertible in the sense that the input and
output images look the same, and 3) the AM and FM functions are
relevant to visual perception of the image.

2.1. Demodulation

As we mentioned in Section 1, the problem of associating a
pair of modulating functions am and∇ϕm to a real-valued image
component (2) is ill-posed because the solution is not unique. By
contrast, the AM and FM functions of any complex-valued com-
ponent zm : R

2→C are unique up to equivalence classes of func-
tions that agree a.e. with respect to Lebesgue measure. Therefore,
to disambiguate the problem of demodulating the real-valued com-
ponent (2), we construct a complex extension

zm(x) = tm(x) + jqm(x) = am(x) exp[jϕm(x)], (3)

where, with x = [x1 x2]
T , qm(x) is given by the partial Hilbert

transform [8]

qm(x) = p.v.
1

π

Z
R

tm(x1 − ξ, x2)
dξ

ξ
. (4)

With this approach, the complex analytic image zm admits many
but not all of the attractive properties of the 1-D analytic signal.1

The AM and FM functions of the complex-valued component (3)
may be obtained by [7]

∇ϕm(x) =
∇zm(x)

jzm(x)
, (5)

am(x) = |zm(x)|. (6)

1In general, the analytic image zm(x) fails to satisfy the multidimen-
sional Cauchy-Riemann equations.

Unfortunately, approximations must be applied to dis-
cretize (5), and hence a corresponding exact discrete demodula-
tion algorithm is not known. Here, we adopt the solution that was
given in [17, 18]. We apply the approximate discretization of (5)
given in [7] to obtain an initial estimate of the frequency field. This
estimate is used to perform 2-D phase unwrapping on the complex
component (3). We fit the unwrapped phase with a cubic tensor
product spline and differentiate analytically to obtain ∇ϕm(x).
The AM function is calculated according to (6). Since the Hilbert
transform (4) is linear, it may be applied directly to t(x) in (1) to
at once generate all M complex components (3) according to

z(x) = t(x) + jq(x) =

MX
m=1

tm(x) + jqm(x). (7)

2.2. Decomposition into Components

A major difficulty with obtaining perfect reconstruction (or
approximately perfect reconstruction) from the AM-FM models
given in [7, 13] is that the Gabor filterbanks used to isolate com-
ponents in those approaches fail to admit compact frequency sup-
port. Hence, Gabor filters cannot be used to formulate a perfect
reconstruction filterbank. Nevertheless, Gabor filters admit many
attractive properties. They are C∞ and they uniquely realize the
Heisenberg-Weyl inequality limit on joint time-frequency local-
ization in L2(R2) [5]. Gabor filterbanks tend to deliver locally
coherent components that correspond well to human visual per-
ception. The obvious question is: how can one construct Gabor-
like filterbanks that retain the desirable properties but also provide
approximate perfect reconstruction?

In [9,17–19], we constructed cartesian-separable perfect recon-
struction QMF filterbanks with good joint localization properties.
As a consequence of separability, each filterbank channel was sup-
ported in all four quadrants of the 2-D frequency plane. Hence the
resulting components (3) contained multiple orientations and were
not locally coherent [3, 20]. However, we showed that each sepa-
rable channel admits loci of zeros in the frequency plane that can
be utilized to divide it into a number of nonseparable subchannels
that are orientation selective. Nevertheless, three main difficul-
ties prevented this approach from working well in practice. First,
the required number of nonseparable subchannels is large, on the
order of 500 for a 2562 image. Second, there are always some
channels that are low pass in one dimension only and hence con-
tain multiple approximately orthogonal orientations that cannot be
further decomposed. Third, the interband aliasing that occurs in
the synthesis filterbank makes it difficult or impossible to reliably
predict the effects of modulation domain signal processing opera-
tions performed between the analysis and synthesis banks.

Here, these problems are overcome by adapting the steerable
pyramid decomposition developed in [15,16]. The steerable pyra-
mid decomposes an image into scale and orientation selective sub-
bands based on polar-separable directional derivative operators.
Because the analysis channels are self inverting, interband aliasing
is effectively eliminated in the synthesis filterbank. Although the
steerable pyramid does not provide perfect reconstruction, the re-
construction errors are typically incoherent and small in L2 norm,
and thus visually insignificant.

We implemented the steerable pyramid as described in [15,16]
with four radial frequency channels at each of k = 16 orientations
for a total of 64 subbands in the recursive subsystem of the decom-
position. Since the high pass channel (denoted H0(ω) in [15]) is
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not orientation selective, we further decomposed it into 16 orien-
tation selective subchannels. In the notation of [15], the frequency
responses of these subchannels are given byBi(ω) = A(θ−θi) =
cos15(θ − θi), 0 ≤ i ≤ 15. The frequency response of the i = 4
subchannel is shown in Fig. 2(a). The adapted steerable pyra-
mid thus consists of 81 subbands including 16 orientation selective
high pass channels, 64 orientation and radially selective recursive
channels, and one low pass residual. Demodulation, AM-FM fil-
tering, and AM-FM reconstruction were performed between the
analysis and synthesis filterbanks.

3. Perceptually-Based AM-FM Image Filtering

In this section, we demonstrate for the first time nontriv-
ial AM-FM image filtering including both analysis and synthe-
sis of the signal processing result. The AM-FM image model
{am,∇ϕm}m∈[1,81] was computed between the analysis and syn-
thesis filterbanks as described in Section 2.1. Filtering was applied
to the AM and FM functions to achieve perceptually-based signal
processing goals. AM-FM reconstruction was performed using the
filtered modulating functions. The resulting processed subband
image components were then input to the reconstruction filterbank
to obtain the signal processed image.

In discussing the experiments, we denote the filtered AM and
FM functions by {bam,∇bϕm}m∈[1,81]. The unfiltered FM func-

tions are given in polar form by rm = |∇ϕm| and ψm =
arg∇ϕm. Likewise, in polar form the filtered FM functions are

given by brm = |∇bϕm| and bψm = arg∇bϕm.

Example 1: Orientation Selective Attenuation of Structure in
a Synthetic Image. Fig. 2(b) shows an isotropic synthetic radial
chirp image where the phase is a quadratic function of the distance
from the center of the image. The signal processing goal was to
perform orientation selective attenuation along the main diagonals
where the orientation is an odd multiple of π/4. With δm(x) =
|(|ψm(x)| − π/4)|, the AM-FM filtering operation is given by

bam(x) =

j
16δm(x)am(x)/π, δm(x) < π/16,
am(x), otherwise

(8)

and ∇bϕm(x) = ∇ϕm(x). The modulation domain notch fil-
ter (8) may be intuitively understood as follows: for subband pix-
els zm(x) with an orientation ψm(x) that differs from an odd mul-
tiple of π/4 by π/16 or less, the AM function am(x) is multiplied
by a gain that is linear in δm(x). Thus, the amplitude is zeroed if
δm(x) = 0 and is multiplied by one if δm(x) ≥ π/16. The result
is shown in Fig. 2(c), where it is clear that the perceptually-based
signal processing goal has been achieved.

Example 2: Orientation Selective Attenuation of Structure in a
Natural Image. The natural wood grain texture image Tree given in
Fig. 2(d) bears strong similarity to the synthetic chirp in Fig. 2(b).
The experiment of Example 1 was repeated on this image, but with
a more aggressive notch of half-width π/8 in order to attenuate a
wider band of orientations. The result is given in Fig. 2(e) where
it may again be seen that the perceptually-based signal process-
ing goal has been achieved. The effect of this AM-FM filtering is
clearly visible in the left upper and lower quadrants of the image.
Interesting subtle effects are also present. For example, careful ex-
amination of the center of the original image in Fig. 2(d), just to
the right of the knot of the wood grain, reveals a small “hook” that

is oriented along the main diagonal. Consistent with the process-
ing goal, this hook is smoothly but totally obliterated in the result
image of Fig. 2(e).

Example 3: Isotropic AM-FM Contrast Sharpening Based on
Frequency Magnitude. Using again the Tree image of Fig. 2(d),
the signal processing goal in this case was to perform contrast en-
hancement and sharpening by selectively amplifying the AM func-
tions am for a high pass band of magnitude frequencies rm. With
T = 2 rad/pix, the AM-FM filtering operation is given by

bam(x) =

j
am(x) exp[rm(x)/2], rm(x) > T ,
am(x), otherwise

(9)

and ∇bϕm(x) = ∇ϕm(x). The result is shown in Fig. 2(f) where
it is clear that the perceptually-based signal processing goal has
once again been achieved.

Example 4: Spatially Selective Removal of Oriented Structure
from a Natural Image. The signal processing goal was to remove
the bands from Lena’s hat. The original image is given in Fig. 2(g).
Let X denote the interior of the black rectangle shown superim-
posed on Fig. 2(g). AM-FM filtering was applied to the compo-
nents zm(x), but only for x ∈ X. With δm(x) = |ψm(x)−π/4|,
the AM-FM filtering operation is given by

bam(x) =

j
0, δm(x) < π/8 and x ∈ X,
am(x), otherwise

(10)

and ∇bϕm(x) = ∇ϕm(x). As shown in Fig. 2(h), the
perceptually-based signal processing goal was achieved with a
smooth, natural appearance. There are a few unwanted artifacts
that result from the fact that we were quite imprecise in our spec-
ification the spatial region X desired for processing. For example,
the central portions of the upper and lower edges of the hat brim
were attenuated, as were certain orientations in the upper portion
of the feather, and a slight shadow was induced on Lena’s fore-
head. Interestingly, the shadow appearing on the upper portion
of the hat was virtually unaffected. All of the unwanted artifacts
could be avoided by specifying the region X more precisely, but
doing so would require increased effort in designing the filter.

4. Conclusion

For the first time, we demonstrated AM-FM image filtering in-
cluding an analysis transform, signal processing in the modulation
domain, and a synthesis transform. We designed simple AM-FM
filters that were highly effective in achieving perceptually-based
signal processing goals that would be difficult or impossible to ob-
tain with LTI filters. Important remaining open problems include
the investigation of more sophisticated AM-FM filter algorithms
and amelioration of the singularity in the partial Hilbert transform
which perturbs the frequency estimates lying near the vertical axis
of the 2-D Fourier plane.
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