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ABSTRACT

We introduce a multicomponent invertible AM-FM image transform
and use it to define new nonlinear AM-FM filters for perform-
ing modulation domain image processing. The key elements of
the transform are analysis and synthesis filterbanks based on the
steerable image pyramid and perfect reconstruction demodulation
algorithms based on analytic differentiation of continuous cubic
tensor spline models fit to the unwrapped phase samples of a digital
image. We demonstrate spatially and spectrally localized orientation
and frequency selective filtering, simple image restoration, and im-
age fusion in the modulation domain. These results are also among
the first to demonstrate high fidelity image reconstructions from
computed multicomponent AM-FM models.

Index Terms— AM-FM image models, AM-FM image filters,
modulation domain signal processing, multicomponent models

1. INTRODUCTION

Multicomponent AM-FM image models [1–4] represent an image
t : R

2→R as a sum

t(x) =
KX

k=1

tk(x) =
KX

k=1

ak(x) cos[ϕk(x)] (1)

of nonstationary AM-FM functions

tk(x) = ak(x) cos[ϕk(x)], (2)

where x ∈ R
2, ak(x) ≥ 0, and ϕk(x) : R

2→R. Given the im-
age t(x), a computed AM-FM model consists of estimates of the K
AM functions ak(x) which provide a dense local characterization of
the local texture contrast and the K FM functions ∇ϕk(x) which
provide a dense characterization of the local texture orientation and
pattern spacing.

Such models have been used with great success in a variety of
image analysis applications, including texture segmentation, 3-D
shape from texture, texture-based stereopsis, fingerprint classifica-
tion, content-based retrieval, and regeneration of occluded and dam-
aged textures [5], as well as for infrared target tracking [6] and in
the analysis of (2-D) spectrograms of human speech signals [7]. To
date, however, they have been considerably less successful in appli-
cations requiring image synthesis in addition to analysis (to the best
of our knowledge, reconstruction from a computed AM-FM model
has been attempted previously only in [3, 8, 9]). The reason is that
some means must be devised for decomposing the image into a sum
of components (2) that are locally coherent [3, 4] and for isolating
these components from one another on a jointly localized basis in
space and spatial frequency prior to demodulation. Because of their
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Fig. 1. Perfect reconstruction AM-FM model for performing image
processing in the modulation domain.

excellent joint localization properties, banks of Gabor or Gabor-like
bandpass filters have been used almost universally for this purpose.
Unfortunately, the very properties that make these filters attractive,
viz., localization and smoothness of the impulse and frequency re-
sponses simultaneously, also imply that they cannot provide perfect
reconstruction [5].

Our goal is to formulate a new perfect reconstruction (or ap-
proximately perfect reconstruction) AM-FM image model and use it
to perform signal processing in the modulation domain, as depicted
schematically in Fig. 1. Here, the AM-FM model plays a role analo-
gous to that of the Fourier transform in traditional LTI filter theory;
in particular, it is a clear requirement that the input and output im-
ages be visually indistinguishable when the signal processing block
in Fig. 1 is set to the “do nothing” operation.

Previously, we achieved perfect reconstruction in [10] by replac-
ing the typical Gabor filterbank with a nonseparable, orientation se-
lective perfect reconstruction wavelet filterbank. But there were two
inherent difficulties with using this approach to formulate practical
AM-FM image filters. First, a very large number of filterbank chan-
nels was required to generate locally coherent image components tk,
on the order of K = 500 for a 256× 256 image. Second, due to the
aliasing that invariably occurs in a critically sampled wavelet filter-
bank [11], it proved difficult to define signal processing operations
on the modulating functions ak and ∇ϕk that would lead to pre-
dictable, visually meaningful changes in the output image relative to
the input.

In this paper, we introduce a new invertible AM-FM image
transform where the analysis and synthesis filterbanks are based on
an appropriate adaptation of the steerable image pyramid decom-
position [11, 12]. The steerable pyramid admits several desirable
properties that make it attractive for computing AM-FM image
models. The bandpass channels are Gabor-like and orientation
selective, leading to locally coherent image components that corre-
spond well to visual perception of the significant image structure.
Moreover, because the steerable pyramid is essentially alias free and
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self-inverting, it naturally facilitates the intuitive design of AM-FM
filters capable of achieving visually meaningful, perceptually mo-
tivated signal processing goals. We briefly describe computation
of the invertible AM-FM transform in Section 2, while practical
examples of AM-FM image filters are given in Section 3.

2. INVERTIBLE AM-FM TRANSFORM

A number of good approaches have been proposed for computing
continuous and discrete domain multicomponent AM-FM image
models, including approximate techniques based on the multidimen-
sional Teager-Kaiser energy operator [2] and on a multidimensional
extension of the 1-D analytic signal [3], as well as emerging new
techniques based on Max-Gabor analysis over local patches [7] and
on the empirical mode decomposition [13]. Here we focus on the
analytic signal-based approach because, for a complex extension
zk(x) = tk(x) + jH[tk(x)] = ak(x) exp[jϕk(x)] of a continuous
domain AM-FM image component tk given by (2), where H[·]
is the partial Hilbert transform, it leads to an exact demodulation
algorithm [3]

∇ϕk(x) = Re

»∇zk(x)

jzk(x)

–
(3)

ak(x) = |zk(x)| (4)

that is free of approximation errors. Moreover, provided that bound-
ary conditions on the phase of each component are saved as part of
the AM-FM model, the component tk can be recovered exactly from
the modulations (3) and (4) by integrating to recover the phase and
then reconstructing according to (2).

To isolate the individual components tk(x), we implement the
steerable pyramid as described in [11, 12] to a depth of four lev-
els with a non-orientation selective high-pass filter H0 and non-
orientation selective low-pass filters Ln for 0 ≤ n ≤ 3. For each
of L0, L1, and L2, the response is partitioned into eight orientation
selective channels using oriented bandpass filters Bp, 0 ≤ p ≤ 7.
Although this construction completes the usual implementation of
the steerable pyramid, it is not optimal for AM-FM modeling be-
cause the high-pass and low-pass residuals delivered by the channels
H0 and L3 are not orientation selective and hence not locally coher-
ent. Therefore, we adapt the steerable pyramid by further decom-
posing the responses of H0 and L3 into eight orientation selective
channels using oriented filters [−j cos(θ − pπ/8)]7, 0 ≤ p ≤ 7,
obtained by discarding the magnitude characteristic B(ω) from the
right-hand side of equation (5) in [12]. The residual remaining in
channels H0 and L3 after this decomposition tends to be small in
magnitude and generally contributes little to visual perception of the
image; we therefore discard it. This results in an adapted steerable
pyramid decomposition with 40 channels delivering K = 40 AM-
FM image components tk.

We apply AM-FM demodulation between the analysis and syn-
thesis filterbanks. For each component, the discrete versions of (3)
and (4) given in [3] are first applied to obtain the AM functions ak

and estimates of the FM functions ∇ϕk. The estimated FM func-
tions are then used to guide a multidimensional phase unwrapping
algorithm as described in [14]. The unwrapped phase is fit with cu-
bic tensor product splines that we differentiate analytically to obtain
the frequency field ∇ϕk [10, 15].

3. EXAMPLES

To define AM-FM image filters, we apply signal processing to the
computed modulating functions expressed in polar coordinates ac-
cording to rk = |∇ϕk| and ψk = arg∇ϕk. The filtered image is
then obtained by first reconstructing the filtered image components
from the processed modulations according to (2) and then subjecting
the filtered components to the synthesis filterbank. By effectively re-
alizing the modulation domain signal processing paradigm depicted
in Fig. 1, this approach opens the door to an entirely new class of
nonlinear image filters that we have only begun to investigate. We
present a few examples in this section, where we denote the pro-
cessed modulations by bak(x) and ∇bϕk(x).

A synthetic radial chirp image is shown in Fig. 2(a). By con-
struction, the amplitude is constant and the phase is quadratic along
radials emanating from the center of the image. Our signal process-
ing goal is to attenuate nonstationary structure that is oriented at odd
multiples of π/4. As a baseline for comparison, we implemented
an LTI notch filter with frequency response given in Fig. 2(b). The
output of this filter is shown in Fig. 2(c) and exhibits undesirable ar-
tifacts as expected: the LTI filter attenuates Fourier components on a
spatially global scale, which achieves the desired result but also de-
grades the subtle constructive and destructive interference between
Fourier components that creates the image structure at orientations
other than odd multiples of π/4. This is demonstrated by Fig. 2(d),
which gives the residual between the original image in Fig. 2(a) and
the LTI processed image in Fig. 2(c). We define an AM-FM notch
filter by

bak(x) =

j
16δk(x)ak(x)/π, δk(x) < π/16,
ak(x), otherwise

(5)

and ∇bϕk(x) = ∇ϕk(x), where δk(x) = |(|ψk(x)| − π/4)| is an
amplitude scaling factor equal to the radian angular distance between
ψk(x) and ±π/4 (because the partial Hilbert transform has action
in the horizontal direction, ψk(x) is restricted to quadrants I and IV
of the frequency plane). The resulting processed image is given in
Fig. 2(e), where it may be seen that the signal processing goal has
been achieved. Moreover, because the AM-FM filter is capable of
attenuating oriented structure on a spatially local basis, it delivers a
result that is free of the undesirable artifacts seen in the LTI filter
output.

In addition to orientation selective processing, AM-FM filters
can also be used to perform spatially local amplification and atten-
uation based on magnitude frequency. To amplify a band of radial
frequencies, we implemented a frequency selective filter according
to

bak(x) =

j
2ak(x), 0.2 < rk(x) < 0.35,
ak(x), otherwise

(6)

and ∇bϕk(x) = ∇ϕk(x), where rk(x) is given in units of cycles per
pixel. The AM-FM filtering result is given in Fig. 2(f).

Simplistic AM-FM image restoration is illustrated in Fig. 2(g)-
(j). The original image is given in Fig. 2(g), while the image in
Fig. 2(h) was obtained by applying a low-pass linear blur and adding
Gaussian white noise. As a baseline comparison, the result of a
naı̈ve high-pass LTI filter approximating the pseudo-inverse is shown
in Fig. 2(i). The design concept for the AM-FM restoration fil-
ter combines elements similar to both wavelet shrinkage and un-
sharp masking. The noise power is distributed widely throughout
the steerable pyramid channels resulting in a relatively small con-
tribution to the individual AM functions ak, whereas the coherent
image structure tends to be jointly localized resulting in strong con-
tributions to the AM functions, particularly in the vicinity of edges.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2. Examples. (a) radial chirp image. (b) LTI notch filter frequency response. (c) Output of LTI notch filter. (d) Difference image between
(a) and (c) showing lack of spatial localization in the LTI filtering operation. (e) Orientation selective attenuation performed by AM-FM
notch filter. (f) Frequency selective enhancement performed by AM-FM bandpass filter. (g) Original Lena image. (h) Corrupted by linear
blur and additive noise. (i) Result of naı̈ve LTI high-pass restoration filter. (j) Result of elementary AM-FM enhancement/restoration filter.
(k),(l) Clocks input image pair. (m) AM-FM image fusion result. (n),(o) Registered CT and MR images (imagefusion.org). (p) AM-FM
image fusion result.
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We applied a simple threshold to the amplitude modulations com-
puted from Fig. 2(h) to attenuate the noise, reconstructed, and then
applied the same high-pass filter that was used in Fig. 2(i) to gen-
erate a high-pass mask. This mask was added back to the degraded
image in Fig. 2(h) to obtain the enhanced/restored result shown in
Fig. 2(j).

Finally, elementary examples of AM-FM image fusion based on
local contrast are given Fig. 2(k)-(m) and Fig. 2(n)-(p). The main
idea is that sharp intensity edges are associated with local AM val-
ues ak(x) that are relatively large, whereas defocused surfaces are
associated with AM values that are relatively smaller than those of
their in-focus counterparts. Thus, for a problem like the well-known
pair of clock images shown in Fig. 2(k) and (l), a fused image show-
ing both clocks in focus can be obtained as follows. We first compute
a multicomponent AM-FM model for each of the two input images
shown in Fig. 2(k) and (l). For each pixel btk(x) of component k in
the fused image, we take bak(x) and ∇bϕk(x) directly from the input
image for which ak(x) is larger on a pixel-by-pixel basis. The fused
image result is given in Fig. 2(m). An identical AM-FM algorithm
was used to obtain the result shown in Fig. 2(p) by fusing the CT im-
age of Fig. 2(n) and the MR image of Fig. 2(o) (CT and MR images
courtesy of imagefusion.org).

4. CONCLUSION

In this paper, we introduced an invertible AM-FM image transform
based on an adapted steerable image pyramid in combination with
powerful perfect reconstruction joint demodulation algorithms. We
used this transform to develop new nonlinear AM-FM filters for per-
forming image processing in the modulation domain. Compared to
LTI filtering, the advantages of AM-FM filters are that they are ca-
pable of performing spatially and spectrally localized processing di-
rectly in terms of the visually important nonstationary image struc-
ture. The results given here represent an entirely new class of nonlin-
ear image filters that we have only begun to investigate. We demon-
strated several simple AM-FM filters, including notch and bandpass
filters for amplifying and attenuating spatially local structure based
on orientation and granularity (i.e., magnitude frequency) and an el-
ementary AM-FM image restoration filter. We also applied AM-FM
filtering to perform image fusion based on local contrast in two typ-
ical scenarios. Compared to previous AM-FM image analysis tech-
niques, these results are significant in that they are among the first
to demonstrate high fidelity AM-FM image reconstructions and in-
tuitive, practical modulation domain filter design.

Most of the filters considered here relied heavily on AM-based
processing. FM-based processing is generally more difficult due
to the line singularity associated with the partial Hilbert transform,
which tends to perturb the computed frequencies moreso than the
amplitudes. We are currently developing strategies for rotating the
Hilbert transform on a component-by-component basis to steer the
singularity away from the instantaneous frequency vectors ∇ϕk. It
will also be interesting to investigate a wide variety of AM-FM filter-
ing techniques, including the application of LTI and nonlinear spatial
filters directly to the computed modulations.
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