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Abstract—We introduce a new, fully automatic vertebral
instance segmentation method to facilitate the extraction of
standard uptake values (SUV) from the medullary cavities of
individual vertebral bodies in joint 18 F-fluorothymidine (FLT)
PET/CT scans acquired from hematopoietic stem cell transplan-
tation (HSCT) patients at 28 days after transplant. Due to dosing
considerations, the CT voxels in these scans are characterized by
a large 5 mm axial slice thickness which significantly complicates
the vertebral body segmentation problem. The key ideas of our
method are to first apply an ensemble of U-Nets to obtain a binary
mask for the aggregated collection of vertebral bodies as a single
object without estimating the intervertebral boundaries, and then
leverage the relatively better 4 mm axial slice spacing in the PET
data to estimate a “best fit” axial coordinate to approximate
the break between each pair of vertebrae. This PET-CT fusion
approach results in an approximate vertebral body segmentation
where each estimated intervertebral boundary is, by construction,
restricted to lie in a single axial plane. However, because the
FLT uptake is well localized within the medullary cavities, our
results show that this approximate segmentation is sufficiently
accurate to enable FLT SUV data to be isolated for individual
vertebral bodies. Compared to traditional methods for assessing
engraftment based on single aspirate biopsies, this new technique
has potential to facilitate a significantly more comprehensive
assessment of the medullary compartment by providing fully
automated SUV data for a plurality of individual bones.

Index Terms—vertebra segmentation, PET/CT, HSCT, FLT

I. INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) is used in
the treatment of life threatening malignancies of the bone
marrow and blood. Post-transplant monitoring is critical for
assessing engraftment versus graft failure, predicting relapse,
and modulating therapy when needed. Assessment has tra-
ditionally been based on single aspirate biopsies. However,
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this traditional approach fails to provide a comprehensive
characterization of the marrow compartment and introduces
significant risk of potentially fatal infections [1]. Noninvasive
monitoring techniques based on '8F-fluorothymidine (FLT)
PET/CT imaging have emerged more recently and can provide
a substantially more comprehensive characterization of the
full-body marrow compartment [1]-[6]. But this generally
requires manual designation of a large number of regions
of interest (ROIs) by expert physicians which is both time
consuming and labor intensive. Development of an automated
procedure for reliably measuring FLT standard uptake values
(SUV) in the medullary cavities of individual bones could
resolve this issue and facilitate translation of the newer nonin-
vasive monitoring techniques to widespread clinical practice.
However, improved fully automatic 3D bone segmentation
algorithms are needed as a prerequisite for this to occur.

Here, we focus on fully automated vertebral body instance
segmentation as one step towards this goal. The problem of
vertebrae segmentation from CT data alone has been widely
studied [7]-[12]. State-of-the-art performance has generally
been established on good quality CT data with in-plane reso-
lution on the order of 0.35 mm to 1.00 mm and slice thickness
also on the order of 1.00 mm [8]. Yet, while Dice scores above
90% have been reported [9], [11], many existing methods
still produce relatively less accurate boundary segmentation
results [12]. Furthermore, comparatively fewer studies have
been reported for the case of low-dose CT. Low dose is an
important consideration in post-HSCT assessment due to the
inherent vulnerability of the patients after myeloablation [6]
and, in general, vertebral segmentation is significantly more
difficult in the low-dose case.

For example, Lessmann et al. [8] performed vertebra
segmentation on dedicated spine CT scans having in-plane
resolution varying from 0.31 mm to 0.36 mm with slice
thickness ranging between 0.7 mm and 1.0 mm and obtained
a Dice score of 95.8%. By comparison, they obtained a Dice
score of 92.1% on low-dose chest CT scans with in-plane
resolution between 0.54 mm and 0.82 mm and slice thickness
between 1.0 mm and 2.5 mm. Due to dose considerations, the
HSCT patient CT data we consider here were acquired at a
substantially larger voxel resolution of 1.17 mm x 1.17 mm
x 5.00 mm, making the vertebral body instance segmentation
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Fig. 1. Typical CT sagittal slice. (a) Patient 1 full sagittal slice; (b) detail
view illustrating poorly defined intervertebral boundaries.

problem challenging.

In this paper, we present a new method for fully automatic
vertebral body instance segmentation applicable to low-dose
FLT PET/CT scans of HSCT patients acquired as described
in [6]. The test set consisted of 13 patients out of a total cohort
of 23. Each patient was imaged on the day before transplant,
between five and 12 days post transplant, and on the 28th
day post transplant. As mentioned above, the CT data were
acquired with a voxel resolution of 1.17 mm x 1.17 mm X
5.00 mm due to dose considerations. A typical example of the
CT data is shown in the sagittal slice of Fig. 1, where poorly
defined intervertebral boundaries resulting from the 5.00 mm
axial resolution can be seen in the detail view in Fig. 1(b).
The corresponding PET data were acquired with a resolution
of 4 mm x 4 mm x 4 mm.

This data set presents several challenges including the small
cohort size, which severely limits the quantity of training data
available, as well as the coarse CT axial resolution — resulting
in the somewhat unusual circumstance that the PET volumes
actually provide better axial resolution as compared to the
CT volumes. The key idea behind our method is to apply a
novel, computationally efficient algorithm for integrating the
FLT SUV data within 2D axial regions obtained by intersecting
each PET axial plane with a 3D mask of the vertebral column
obtained by processing the CT data, thereby leveraging a data
fusion approach to exploit both the higher in-plane resolution
provided by the CT data and the higher axial resolution
provided by the PET data. This results in an approximate
vertebral body instance segmentation where each intervertebral
boundary is approximated by a “best-fit” axial plane as shown
below in Fig. 4(b). Consequently, our segmentation results

are not directly comparable to those reported in, e.g., [8]-
[12] because our method inherently restricts each approximate
intervertebral boundary to lie entirely within a single axial
plane. However, as shown below in Fig. 4(c)-(f), the FLT SUV
PET signature is typically well localized within the marrow
cavities; as a result our approximate vertebral body instance
segmentation is sufficiently accurate to enable per-vertebra
extraction of SUV measurements within the marrow cavities,
which is the clinically significant observation that is needed
for more comprehensive assessment of these HSCT patients.

II. METHODS

In this section, we describe the major stages of our approx-
imate vertebral body instance segmentation method, which in-
clude semantic segmentation of the CT volumes, postprocess-
ing of the resulting vertebral column binary mask, resampling
and masking of the FLT PET data, and intervertebral boundary
approximation.

More specifically, we train an ensemble of convolutional
neural networks (CNNs) to perform semantic segmentation on
the CT volumes, resulting in a binary mask for the vertebral
column as a single monolithic object. This approach avoids
the need to estimate the locations of the intervertebral bound-
aries from the CT data, thereby circumventing the problems
associated with CT dosing considerations and the relatively
large concomitant 5 mm CT axial voxel size. After 3D
postprocessing, we use the segmented binary vertebral column
object to mask the FLT PET modality axial slices where the
slice spacing is 4 mm (as opposed to 5 mm in the CT data). We
then approximate each intervertebral boundary with a “best-fit”
axial plane by filtering the PET data using a sliding window fil-
ter with an iteratively adjusted window size that is seeded with
an automatically determined anatomical measurement prior.
Using these detected approximate boundaries, we then obtain
the final approximate vertebral body instance segmentation
that may be used to extract FLT SUV measurements from
the marrow cavity of each vertebral body. As we discuss later
in Section IV, this method is effective when applied to patient
scans acquired at 28 days after transplant but is not expected
to work as well at earlier observation points when the FLT
PET signal is at a lower level.

A. Semantic Segmentation

To obtain the initial semantic segmentation of the vertebral
column we implement a convolutional neural network model
consisting of three independently trained U-Nets, slightly
modified from the original U-Net architecture [13] by the
addition of a batch normalization layer before each ReLU
activation. Following a “pseudo-3D” configuration similar to
that implemented in [9], each of the three U-Net models was
trained on a unique anatomical view corresponding to one
of the axial, sagittal, or coronal anatomical planes. During
inference, 3D prediction volumes were obtained by providing
each constituent U-Net with a sequence of images from the the
anatomical plane on which it was trained. After the inference



AXIALVIEW
U-NET

e
Mg, EF(E N
e Yoor

N
SAGITTALVIEW ey, e
UNET 1 vy, 2N
I el

o

Ry AL

f \'Eést‘t”a A
UNET N VE

mroeZmunzm

mroImunzm

Fig. 2. Block diagram of vertebral body semantic segmentation. Coronal,
sagittal, and axial slices from the CT data volume are input, respectively,
to an ensemble of three U-Nets trained on coronal, sagittal, and axial slices
with manually generated ground truth. Each U-Net produces a 3D prediction
volume of confidence scores for the vertebral body class. The 3D binary
prediction mask for the vertebral body class may then obtained by averaging
the individual U-Net prediction volumes or, alternatively, by considering a
single one of them, followed by thresholding at the naive value of 0.5.

was completed, vertebral class confidence scores for each U-
Net output were averaged voxel-wise and the results were
thresholded at p = 0.5 to obtain a binary segmentation mask
for the vertebral column. A block diagram illustrating this
approach is shown in Fig. 2.

Ground truth 3D segmentation masks were manually anno-
tated with four class labels (vertebral body, sternum, pelvis,
and background) at the native resolution of the CT input data.
The training set was composed of 14 CT image volumes from
eight patients and two ground truth volumes were reserved
for validation. The CT and ground truth mask volumes were
sliced along the axial, sagittal, or coronal plane prior to
training. Geometric data augmentations were used to increase
the diversity of the training dataset. Input images and their
target masks were scaled from —20% to +20%, random
rotation was applied from —45° to +45°, horizontal and
vertical translations were applied up to 20% of the image
height and width, and horizontal and vertical flipping were
applied. Training images were cropped to a size of 320 X
320 pixels, with mirror-image padding to account for missing
data that might arise from the geometric transformations.
All augmentations, excepting the final crop, were performed
randomly with a uniform distribution.

The training dataset is unavoidably class-imbalanced, with
the background class dominating 99.5% of all voxels. To
mitigate the effect of the severely imbalanced dataset on
model convergence during training, multi-class weighted cross
entropy was used as the loss function, with the background
class down-weighted to contribute only 10% of the loss, while
the three object classes (vertebral body, sternum, and pelvis)
each contributed 30% to the loss. The Adam optimizer [14]
(with default parameters 8 = 0.9, 82 = 0.999 and an
initial learning rate of 10~*) was used to update the learned
parameters during training. Models were trained over 32
epochs with each model seeing every 2D slice in the training
set in each epoch for a total of 2,579 training pairs per epoch in
the axial-view model and 7,168 input training pairs per epoch

in the sagittal- and coronal-view models. A minibatch size of
six was used. Validation was performed at regular intervals to
track convergence, and the learning rate was reduced by an
order of magnitude when the validation score failed to reach
a new maximum within eight epochs.

B. Semantic Segmentation Post Processing

Intervertebral boundaries are typically poorly detected in
the binary vertebral column mask obtained by semantic seg-
mentation due to the coarse axial resolution of the CT scans.
To overcome this problem, we fill in the gaps between adja-
cent vertebrae, thus obtaining a contiguous mask to facilitate
approximation of the intervertebral boundaries from the FLT
PET data. We accomplish this by applying a morphological
closing with a small spherical structuring element of radius
one followed by connected components labeling to select and
extract the largest contiguous object in the morphologically
closed CT mask volume. A typical resulting binary mask for
the vertebral body class as a single object is shown below in
Fig. 4(a).

C. Intervertebral Boundary Detection

We perform intervertebral boundary detection in the FLT
PET modality due to the finer axial resolution it provides rela-
tive to the CT data in these HSCT patient scans. Furthermore,
the FLT uptake is generally well localized in the medullary
cavities of the vertebral bodies, resulting in clear gaps between
adjacent vertebrae in the FLT PET volumes even when the
boundaries are difficult or impossible for a human observer to
localize in the CT modality alone, thus motivating our PET-CT
fusion approach.

We apply bicubic interpolation to resample each axial PET
slice to match the in-plane axial slice resolution of the CT
data. We then interpolate the axial resolution of the CT binary
mask to match that of the PET data using a global axial
coordinate provided by the joint PET/CT scanner for every
axial slice in both modalities. Pointwise multiplication then
produces a masked FLT PET volume with a voxel resolution
of 1.17 mm x 1.17 mm x 4.00 mm which we use to segment
the individual vertebral bodies from the vertebral column as
described below. A typical sagittal slice of the resampled and
masked FLT PET volume is shown in Fig. 3(a).

The resampled and masked FLT PET data is then averaged
in each axial slice to obtain a 1D signal

, 1 o
Iavg(l) = ﬁzpr,m(lvjak)a (1
1 ]7](7

where ¢, j, and k are the axial, coronal, and sagittal coordi-
nates, P, ,,, is the resampled and masked FLT PET volume,
and N, is the number of vertebral body class pixels in the ¢’th
axial slice of P, ,, (which is given by the number of 1’s in
the ¢’th slice of the interpolated mask). We then compute a
normalized 1D signal

~ . — Loy (7)
Lave (1) = max,, [Ijvg(m)]
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Fig. 3. Intervertebral boundary approximation. (a) Sagittal slice of resampled
FLT-PET data showing vertebral bodies isolated by applying the binary mask
obtained from semantic segmentation and post processing of the CT data; (b)
the normalized 1D signal Tavg(¢) used in detecting a “best-fit” axial plane
approximation for each intervertebral boundary. Detected boundaries for the
masked sagittal PET slice in (a) are shown with blue triangles in (b), although
it should be noted that parts (a) and (b) are not shown to scale.

where inversion facilitates detection of the intervertebral
boundaries as local peaks in I.(i) and scaling by
max, [luve (m)] normalizes variability between patients.

As shown in Fig. 3(b), the 1D signal ]A'avg(i) typically
contains spurious local maxima which preclude the use of
simple peak detectors for finding the intervertebral boundaries.
Instead, we implement a sliding window filter and adjust the
window size iteratively as vertebral boundaries are detected
along the vertebral column. The window size is initially seeded
with the axial span of the L5 vertebral body, denoted djs,
which is computed at run time for each patient without a priori
knowledge by leveraging the consistency with which the first
few peaks appear in the normalized signal I, (i). We take
115 to be the index of the first nonzero value in IAavg(i), which
corresponds to the axial coordinate of the beginning of the
segmentation mask and thus the inferior boundary of the L5
vertebra. A generic peak detector (e.g., Matlab findpeaks
with minimum peak height of —0.4 and minimum prominence
of 0.1) can then reliably detect the boundary 714 between the
L5 and L4 vertebrae and we initialize the L5 vertebral span
prior according to dps = ir4 — iLs.

Based on the detected index i1 4 of the boundary between the
L5 and L4 vertebrae, a window is constructed from which the
next boundary will be detected. To avoid multiple detections
of the previous boundary, the left edge of the window is

set at s + 3, where i, is the index of the last detected
boundary in I, (7). The right edge of the window is set at
t1ast Fround(1.2d),g ), where di,g is the last calculated vertebral
span. The index of the next boundary detection is then given
by R

lpext = argmax Iavg(i>7 3)

iEW

where W is the current window with left and right edges
set based on the last detected intervertebral boundary as
just described. The detection process terminates at the C2
vertebra, excluding C1 due to challenges with the CT-derived
segmentation mask in that region for many of the patients in
the data set. We use the detected boundary locations, which
are illustrated in Fig. 3(b) for a typical case, as “best-fit”
axial plane coordinates for approximating the intervertebral
boundaries and use them to segment the individual vertebral
bodies from the interpolated binary segmentation mask.

III. RESULTS

Testing was performed on 13 scans that were acquired
at 28 days post transplant from 13 patients and were not
used for training or validation. Semantic segmentation was
applied as shown in Fig. 2 and described in Section II-A to
label CT voxels belonging to the vertebral body class. Dice
coefficient results for this task are reported in Table I. The
constituent axial, sagittal, and coronal U-Net models were
scored individually and in the ensemble configuration. The
scores were obtained by using a classification threshold of
p = 0.5 on the 13 raw prediction volumes of the test set and
then comparing the resulting binary prediction volumes for
the vertebral body object class to the manually labeled ground
truth. In each row of Table I, the best result is shown in bold
and the second best is shown with underline.

Of the three constituent U-Net models, the axial-trained
model performed best on the test data with a mean Dice score
of 0.9222 on the vertebral body class. This result was unsur-
prising in view of the fact that the 5 mm axial slice thickness
of the CT data was expected to have a significant detrimental
effect on performance of the sagittal and coronal models.
Nevertheless, the sagittal model still performed reasonably,
achieving an average Dice score of 0.9017, while the coronal
model performed poorly relative to the other two, achieving
an average Dice score of only 0.8489. Also due in part to
the poor performance of the coronal model, the ensemble
method achieved a reduced performance relative to the axial
model alone, scoring an average Dice coefficient of 0.9139. We
attribute the fact that our pseudo-3D ensemble method failed
to achieve significant performance gains of the type reported
in [9] to two main factors: first, the thick 5 mm slices in our
low-dose CT data result in relatively poor resolution in the
sagittal and coronal views; second, we omitted implementation
of the “variational difference image” used as a second input
channel in [9]. Although the numerical Dice scores reported
here in Table I compare reasonably with those reported for
the VerSe challenge in [11], it must be kept in mind that these
results are not directly comparable due to the fundamental



TABLE I
DICE SCORE RESULTS FOR VERTEBRAL BODY OBJECT CLASS SEMANTIC
SEGMENTATION TASK RELATIVE TO MANUALLY LABELED GROUND
TRUTH. RESULTS SHOWN FOR PATIENTS IN THE TEST SET ONLY
(PATIENTS 1-6, 15, 20, 22, AND 23 WERE USED FOR TRAINING AND
VALIDATION IN THIS TEST).

U-Net Model

Patient | Axial Sagittal ~ Coronal  Ensemble (Avg)
7 0.9012 | 0.8836 0.7620 0.8967
8 0.9180 | 0.8725 0.7576 0.8924
9 0.9342 | 0.9094 0.9033 0.9303
10 0.9297 | 009113 0.8899 0.9255
11 0.9380 | 0.8925 0.8575 0.9207
12 0.9088 | 0.9074 0.7890 0.9047
13 0.9198 | 0.9003 0.8696 0.9097
14 0.9179 | 0.9046 0.8579 0.9075
16 0.9381 | 0.9212 0.8910 0.9311
17 0.9019 | 0.8799 0.8692 0.8952
18 0.9200 | 0.8962 0.8223 0.9082
19 0.9350 | 09171 0.8988 0.9323
21 0.9258 | 0.9261 0.8674 0.9263

mean | 0.9222 | 0.9017 0.8489 0.9139

differences in the evaluated task. Here, the Dice coefficients
reported in Table I are for segmentation of the vertebral body
class for the entire spine as a single monolithic object.

Approximate intervertebral boundary detection experiments
were conducted using our method described in Section II-C
and depicted in Fig. 3. For ground truth, an experienced
observer manually selected a single “best-fit” axial plane to
approximate the break between each pair of vertebral bodies
at the native resolution of the PET scans. In view of the
semantic segmentation results presented in Table I, we used
the vertebral column binary mask obtained from the axial-
trained U-Net model alone rather than the one obtained
from the pseudo-3D U-Net ensemble. Mean absolute errors
for the detected boundaries are reported in units of voxels
and millimeters in Table II for each patient in the test set,
averaged over intervertebral boundaries, and in Table III for
each intervertebral boundary, averaged over patients in the test
set. In Table III, the column labeled “L5 Inf” gives results for
the inferior boundary of the L5 vertebra, whereas the rest of
the entries are for the superior boundaries of the indicated
vertebrae.

While these results show that the algorithm described in
Section II-C achieved precise agreement with the manually se-
lected ground truth “best-fit” axial boundary plane for Patients
14, 17, and 18 and for several of the intervertebral boundaries,
the L5 inferior boundary error is attributed to inaccuracies
in the CNN-derived segmentation mask at the edge of the
vertebral column. The C2 boundary error is attributed to the
difficulty of filtering the averaged PET intensity signal in
that region of the spine; the expected vertebral span is short
(making the window harder to define) and the PET response
is generally less intense resulting in a lower signal to noise
ratio in this region. However, compared to the Kalman filter
used on the same dataset in [7], our sliding-window algorithm
presented here is able to detect the vertebral boundaries more

accurately.

Overall results for the approximate vertebral body instance
segmentation method we have proposed in this paper are given
in Fig. 4. The vertebral body class binary segmentation mask
obtained using the method described in Section II-A with post
processing as described in Section II-B is shown in Fig. 4(a).
This result segments the vertebral body class as a single
object without attempting to estimate the boundaries between
individual vertebrae. Figure 4(b) shows the final result for
approximate segmentation of the individual vertebral bodies
obtained by applying the boundary detection algorithm of
Section II-C. This result is approximate in the sense that each
estimated intervertebral boundary is inherently restricted to
lie in a single axial plane. Finally, Figs. 4(c)-(f) show the
clinically important FLT SUV measurements overlaid on the
approximate individual vertebral body segmentations obtained
for four patients. From the results shown in Figs. 4(c)-(f),
it may be seen that the approximate segmentation method
presented here is sufficiently accurate to enable extraction
of SUV measurements from the medullary cavities of the
individual vertebral bodies of this data set, thereby achieving
our overall signal processing goal.

IV. DISCUSSION AND LIMITATIONS

Hematopoietic stem cell transplantation (HSCT) is an im-
portant procedure in the treatment of certain bone marrow and
blood malignancies including leukemia and multiple myeloma.
Post-transplant monitoring is critical for assessing engraft-
ment, predicting relapse, and planning therapy modulations in
these patients and has traditionally been performed via single
aspirate biopsies drawn, e.g., from the pelvis. Recent research
suggests that identification of transplant complications can be
improved through joint FLT PET/CT imaging (see, e.g., [6],
[15]). However, this new approach is both labor intensive due
to the need to designate and evaluate many regions of interest
within the joint volumetric data, making automation highly
desirable, and challenging due to the need for low-dose CT
imaging to accommodate the inherent vulnerability of HSCT
patients. In this paper, we presented an approximate vertebral
body instance segmentation method capable of automatically
extracting FLT SUV measurements from the individual ver-
tebral bodies by leveraging the PET data to overcome poor
axial resolution characteristic of the low-dose CT scans in our
HSCT patient data set. The key idea of our method is to detect
approximate intervertebral boundaries by integrating the PET
data within axial slices. This method is approximate in the
sense that each detected boundary is restricted by construction
to lie in a single axial plane. Nevertheless, as demonstrated
in Figs. 4(c)-(f), our method is accurate enough to facilitate
extraction of FLT SUV measurements from the individual
vertebral bodies in the HSCT patient scans acquired 28 days
after transplant that were considered here.

In our ongoing research, we are seeking improved tech-
niques to solve three main limitations of the method proposed
in this paper. First, the boundary detection method described
in Section II-C relies on the FLT PET data capturing a strong



TABLE II
MEAN ABSOLUTE ERROR IN DETECTED VERTEBRAL BOUNDARIES BY PATIENT. ERROR IS DEFINED AS THE ABSOLUTE DIFFERENCE IN AXIAL
COORDINATES BETWEEN THE BEST-FIT AXIAL BOUNDARY PLANES DETECTED BY OUR PROPOSED METHOD AND DESIGNATED BY AN EXPERIENCED
OBSERVER. ERRORS ARE AVERAGED OVER VERTEBRAL BOUNDARIES FOR EACH PATIENT IN THE TEST SET. PATIENTS 1-6, 15, 20, 22, AND 23 WERE
USED FOR TRAINING AND VALIDATION IN THIS TEST.

Patient 7 8 9 10 11 12 13 14 16 17 18 19 21
MAE, voxels | 0.000 | 0.583 | 0.042 | 0.083 | 0.083 | 0.167 | 0.042 | 0.000 | 0.125 | 0.000 | 0.000 | 0.125 | 0.042
MAE, mm 0.000 | 2.332 | 0.168 | 0.332 | 0.332 | 0.668 | 0.168 | 0.000 | 0.500 | 0.000 | 0.000 | 0.500 | 0.168

TABLE III

MEAN ABSOLUTE ERROR IN DETECTED VERTEBRAL BOUNDARIES BY VERTEBRAE. ERROR IS DEFINED AS THE ABSOLUTE DIFFERENCE IN AXIAL
COORDINATES BETWEEN THE BEST-FIT AXIAL BOUNDARY PLANES DETECTED BY OUR PROPOSED METHOD AND DESIGNATED BY AN EXPERIENCED
OBSERVER. ERRORS ARE AVERAGED OVER 13 PATIENTS IN THE TEST SET FOR EACH VERTEBRAL BOUNDARY.

L5 L5 L4 L3 L2 L1 T12 TI11 T10 T9 T8 T7
Boundary inf sup sup sup sup sup sup sup sup sup sup sup
MAE, voxels | 0.682 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 | 0.000 | 0.000
MAE, mm 2.728 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
T6 TS T4 T3 T2 T1 C7 C6 C5 C4 C3 C2
Boundary sup sup sup sup sup sup sup sup sup sup sup sup
MAE, voxels | 0.000 | 0.000 | 0.000 | 0.045 | 0.045 | 0.000 | 0.000 | 0.000 | 0.091 | 0.182 | 0.273 | 0.864
MAE, mm 0.000 | 0.000 | 0.000 | 0.180 | 0.180 | 0.000 | 0.000 | 0.000 | 0.364 | 0.728 | 1.092 | 3.456
FLT signature. Fig. 5 shows typical PET data acquired at one REFERENCES
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Fig. 4. Typical segmentation results for scans acquired at 28 days after transplant. (a) Binary mask for vertebral body class voxels obtained from CT data
after semantic segmentation and post processing; (b) final approximate vertebral body instance segmentation obtained by our proposed PET-CT data fusion
method. Note that each approximate intervertebral boundary is restricted to a single axial plane; (c)-(f) overlay of FLT SUV measurements calculated from
PET data onto the approximate vertebral body instance segmentations obtained by the proposed method.
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Fig. 5. Typical FLT PET data for the spine acquired at one day before, 5 days after, and 28 days after transplant illustrating dramatically increased FLT
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