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Abstract

This paper addresses a specific multi-aspect target de-
tection and tracking problem where the dynamics of the
target’s aspect is modeled by an affine model following a
first-order Markov process. We are interested in how to
achieve robust and accurate Monte Carlo estimation in a
high-dimensional state space with poor target visibility by
re-visiting two recent improvements to particle filters, i.e.,
“boosting” and “adapting”. The impetus of this work is a
tracking indicator that estimates the tracking performance
based on the observation model and may trigger either one
of two actions when it is necessary. One is “boosting”, i.e.,
the detector specified by the tracker’s previous output is in-
volved to induce more promising particles, and the original
idea of “boosting” is extended here by encouraging pos-
itive interaction between the detector and the tracker. The
other is “adapting”, i.e., the system model can self-adjust to
enhance the tracking capability. We compare two methods
in the context of affine-invariant target tracking and with
respect to their contributions to improve the particle qual-
ity. Experiments on simulated image sequences with real in-
frared background show that both techniques can improve
the tracking performance by balancing the focus and the
diversity of particle distribution.

1. Introduction

Target tracking is usually formulated as an estimation
problem of a dynamic state-space system, where the state
stores the target’s kinematic characteristics and two mod-
els are involved, i.e., the system model and the observation
model. Given a probabilistic state-space formulation, the
tracking problem is well suited for the recursive Bayesian
approach which attempts to construct the posterior proba-
bility density function (PDF) of the state based on all state
and observation information available. Recently particle fil-
tering has received more and more attention because of its

ability and flexibility to deal with nonlinear/non-Gaussian
estimation problems by approximating a continuous den-
sity as a discrete one [8]. The key idea is to represent
the required PDF by a set of weighted particles and to es-
timate the state based on these weighted particles. A re-
cursive Bayesian filter can be implemented by Monte Carlo
simulations to continuously update particles and associated
weights. Also, it is important to control the quality of par-
ticles, i.e., the balance between diversity (having multiple
distinct samples) and focus (having multiple copies of sam-
ples with large weights) [7].

State estimation in high-dimensional systems requires
the particle number to increase exponentially. There are two
different but relevant methodologies to improve the qual-
ity and efficiency of particles, “bottom-up” and “top-down”.
The bottom-up methods control the particle quality via di-
rect particle modifications, e.g., particle re-weighting/re-
sampling [7], the kernel based particle filter [5, 9], the
hybrid particle filter and mean-shift tracker [11], and the
annealed particle filter [6]. The top-down methods focus
on the problem formulation, i.e., the system model (the
prior) and the observation model (the likelihood). On the
one hand, the target is assumed to follow a certain motion
model, e.g., a white noise acceleration model [2] or a ran-
dom walk model [4]. Adaptive motion models were also
developed which can be learned from the arrival of the new
observations, e.g., [17, 11]. The Adaboost particle filter
[14] incorporates the detection hypothesis in the proposal
distribution where the detector is involved as an indepen-
dent process to track new targets. On the other hand, the
observation model mainly depends on target descriptions
and/or sensor models. For a constant target template, the
function of Sum of Squared Distance (SSD) in intensity is
minimized to determine the likelihood. Other features are
also employed to describe targets/objects, such as edges or
histograms in a region of ellipses [5] or rectangles [9] with
a varying scale and a fixed aspect ratio. When the geometric
contour is used [16], the boundary of an object evolves as
an active contour, and the likelihood function is derived by
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minimizing an image-based energy function. Moreover, the
affine model was used in many trackers to support robust
and accurate tracking for deforming targets [17, 16].

Most of the aforementioned approaches are mainly for
optical images where the objects of interest usually have
relatively high visibility and large sizes. In the context of
small target tracking in infrared image sequences or other
remotely sensed imageries with low SNRs, poor target vis-
ibility and unknown dynamics of the target’s aspects make
the tracking problem more challenging. More prior knowl-
edge about system/observation models are needed to ensure
robust tracking performance. For example, the one pro-
posed in [3, 4] assumes that the sensor clutter is modeled
as the first-order Gaussian Markov Random Field (GMRF)
and a finite set of multi-aspect target signatures are given
and represented by discrete-valued indices in the state vec-
tor. High tracking performance was reported in [3] on sim-
ulated infrared image sequences under low SNRs ranging
from 7dB to -5.7dB. Two key elements in [3, 4] are the
highly selective likelihood function derived from the GRMF
and the pre-defined multi-aspect target templates as well as
their transition probabilities. Motivated by previous work,
we consider a more general multi-aspect tracking problem
for infrared image sequences by involving a continuous-
valued affine model to accommodate dynamics of target’s
aspect, e.g., rotation and scaling. Specifically, we assume
that the affine model follows the first-order Markov chain
and is incorporated into the state/observation models. With
this formulation, we can describe more realistic target mo-
tion and aspect dynamics. However, due to the compli-
cation of the state space (two additional continuous state
variables), the traditional particle filtering algorithms, such
as Sequential Importance Re-sampling (SIR) and Auxiliary
Particle Filter (APF) discussed in [3] fail to provide satis-
factory results under the new formulation.

In this work, we will re-visit two recent improvements to
particle filters, “boosting” and “adapting”. The former one
is often used to involve an independent process for adding
new tracks [14]. The latter one is able to adjust the sys-
tem/observation models upon the arrival of new observa-
tions [17]. Both techniques are proven efficient for object
tracking in optical images with relatively high object visi-
bility, and here we are interested in how to achieve robust
and accurate Monte Carlo estimation in a high-dimensional
state space with poor target visibility. The impetus of this
work is a tracking indicator that estimates the tracking per-
formance based on the observation model and may trigger
either one of two actions when necessary. One is “boost-
ing”, i.e., the detector specified by tracker’s previous out-
put is involved to induce more promising particles, and the
original idea is extended here by encouraging positive in-
teraction between the detector and the tracker. The other
is “adapting”, i.e., the system model can self-adjust to en-

hance the tracking capability. We compare two methods in
the context of affine-invariant target tracking and with re-
spect to their contributions to improve the particle quality,
i.e., the balance between focus and diversity.

2. Problem formulation
We first briefly discuss system and observation models

that are detailed in [2], then we extend the formulation by
introducing the affine-invariant target model.

2.1. System and Observation Models

Let Δ denote the time interval between two consecutive
observation frames. The state vector at instant t = kΔ
(k ∈ N) of a target typically consists of position (xk,yk)
and velocity (ẋk,ẏk), of its centroid in a 2D Cartesian coor-
dinate system: xk = [xk ẋk yk ẏk]T . The position and ve-
locity in two directions are assumed to be independent and
evolve over time according to the white noise acceleration
model [3], and the state is updated according to,

xk = Fxk−1 + wk−1 . (1)

Let the transitional matrix along x and y dimensions be
Fx = Fy = [1 Δ; 0 1], then F = [Fx 0; 0 Fy] and the
process noise wk is assumed to be white and zero-mean
Gaussian.

The observation matrix zk collects the observations
{(i, j)|1 ≤ i ≤ L, 1 ≤ j ≤ M} at instant t = kΔ:

zk = H(xk) + vk . (2)

This observation model is generated by adding a noise field
vk with a template of a specific intensity distribution. H is a
function of the state vector xk which produces a noise free
template of the target with the exact position and velocity
specified by xk.

We assume that wk in the state model is statistically in-
dependent with vk in the observation model [4]. The clut-
ter frames {vk|k ∈ N} are assumed to be independent,
identically distributed (i.i.d.) Gaussian random sequences
with zero mean and non-singular covariance matrices. Each
frame is described by the first order Gaussian Markov Ran-
dom Field (GMRF) given in [13]:

vk(i, j) = βc
v[vk(i − 1, j) + vk(i + 1, j)] + βc

h

·[vk(i, j − 1) + vk(i, j + 1)] + εk(i, j) , (3)

where the unknown parameters βc
v and βc

h are, respectively,
the vertical and horizontal predictor coefficients, and εk is
the prediction error such that [2]

E[vk(i, j)εk(l, r)] = σ2
c,kδi−l,j−r . (4)

We can estimate the GMRF parameters, i.e., β̂h, β̂v and σ̂2
c ,

for each frame zk via a suboptimal approximate maximum
likelihood (AML) algorithm in [12].
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2.2. Affine Invariant Target Model

In [2], a set of target templates with different aspects are
used for multi-aspect target tracking, and an aspect index
is introduced in the state vector, i.e., xk, to account for
the aspect variability. In this work, we want to generalize
multi-aspect tracking by introducing the continuous-valued
affine model which is often used to track deforming objects
[17, 16]. Hereby, we incorporate the affine model to ac-
count for target’s various aspects in each time step, which is
formulated by applying a 3 × 3 affine transformation Ta to
every pixel (x, y) of the base template of the target.

Ta =

⎡⎣ 1 α −αy
0 1 0
0 0 1

⎤⎦⎡⎣ sx 0 (1 − sx)x
0 sy (1 − sy)y
0 0 1

⎤⎦
·
⎡⎣ cos θ sin θ (1 − cos θ)x − (sin θ)y

− sin θ cos θ (1 − cos θ)y + (sin θ)x
0 0 1

⎤⎦ , (5)

where α, sx, sy and θ are the shearing, scaling along x-axis,
scaling along y-axis and rotation parameters, respectively.
All of these are continuous-valued random variables which
follow a first order Markov chain with equal transition prob-
ability (i.e., 1/3) of increasing, decreasing by a quantiza-
tion step (Δα, Δsx

, Δsy
, Δθ), or staying at the same value

in each time instant. A process noise (γα, γsx
, γsy

, γθ)
is added to each random variable to reduce the quantiza-
tion effect. For example, the transition probability function
p(θk|θk−1) for the rotation angle θ is represented as:

p(θk|θk−1) =

⎧⎨⎩
1/3 when θk = θk−1 − Δθ + γθ,
1/3 when θk = θk−1 + γθ,
1/3 when θk = θk−1 + Δθ + γθ.

(6)
Therefore, we can define a new augmented state vector as:

xk = [xk ẋk yk ẏk sk
x sk

y αk θk]T . (7)

The clutter free target frame H(xk) in the observation
model is obtained by performing a specific affine transform
on the original target template. It is worth mentioning that
the computation of H(xk) involves linear interpolation of
the original target template under the affine model. For sim-
plicity, we set the shearing factor α = 0 and s = sx = sy

in our simulations to avoid unrealistic distortion. It should
be noted that although the above formulation seems to be a
straightforward extension of the previous one, the complex-
ity of the high dimensional state space makes conventional
particle filters unsatisfactory in practice. Particularly, the
continuous-valued affine parameters make the target detec-
tion/tracking problems more challenging at low/moderate
SNRs. We are interested in how to remedy the limitation of
traditional particle filters for this extended formulation.

2.3. Likelihood Functions of Observation

The likelihood function is rooted in the structured nature
of the sensor noise in infrared images which can be modeled
as a first-order GMRF [13]. Let Zk and h(xk) be 1D repre-
sentations of the observed frame zk and the clutter free tar-
get frame H(xk) in (2), obtained by reading a frame row by
row and stacking the rows as one long vector. Similarly, let
Vk denote the 1D vector representation of the clutter frame
vk defined in (3). Then the likelihood function is given by

p(Zk|xk) ∝ exp

[
2λ(Zk) − ρ(xk)

2σ2
c,k

]
, (8)

where ρ(xk) is the energy term depending on the current
target template (with certain rotation and scaling factors) as

ρ(xk) = hT (xk)(σ2
c,kΣ−1

v )h(xk), (9)

and λ(Zk) is the data term depending on observation Zk

and target state xk,

λ(Zk) = ZT
k (σ2

c,kΣ−1
v )h(xk). (10)

λ(Zk) is the match filtering result between the observed
frame (zk) and a scaled/rotated target template (H(xk)).
Both the likelihood function and the data term are a function
of three continuous variables, i.e., the position, the rotation,
and the scaling factors. We compare their sensitivity and
selectivity with respect to every two variables in Fig. 1. It
is seen that the likelihood function is much more sensitive
and selective than the data term.

An ideal likelihood is suggested to have three character-
istics in [10]. (1) It should have a flat peak area to provide
enough robustness for the small difference between parti-
cles close to the true state. (2) There should be a signifi-
cant difference between good particles and the bad ones. (3)
Those truly bad particles should get equal weights to avoid
being trapped in a local maximum of background clutter.
As shown in Fig. 1, the likelihood function defined in (8)
is highly selective with a very strong peak in the true state,
and this warrants high accuracy and sensitivity of target de-
tection/tracking under low SNRs [2]. However, when the
state space is complicated by adding more continuous state
variables, this characteristic may have some drawbacks. It
is as if a person (Monte Carlo estimation) is looking for a
needle (the optimal target state) in a big dark room (a high-
dimensional state space) using a torch with needle-aperture
(a highly selective likelihood function). Then particle filter-
ing tends to be highly computationally expensive and could
be easily trapped into a local optimum. In this work, we do
not want to change the highly selective nature of the like-
lihood function to warrant high precision (sub-pixel) track-
ing. However, we need to introduce some new strategies to
improve the robustness and efficiency of target tracking.
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Figure 1. The likelihood function in (8) with respect to rotation-scaling (a), position-rotation (b) and position-scaling. The response of the
data term defined in (10) with respect to rotation-scaling (d), position-rotation (e) and position-scaling (f).

3. Boosted and Adaptive Particle Filters
3.1. Particle Filters for Tracking

We will briefly review the particle filtering theory and
details can be found in [1]. From the Bayesian perspective,
the tracking problem is to recursively calculate some degree
of belief in the state xk at time k, given the observation z1:k

up to time k. Thus, it is required to construct p(xk|z1:k)
which may be obtained in two stages. With the Markov
assumption, the prediction stage uses the system model to
obtain the prior PDF of the state at time k as

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1,

(11)
where p(xk|xk−1) is given in the system model (1). Then
the update stage modifies the prior via Bayes’ rule based on
the new observation zk:

p(xk|z1:k) ∝ p(zk|xk)p(xk|z1:k−1), (12)

where p(zk|xk) is the likelihood function defined by the ob-
servation model in (2). The recursive relationship between
(11) and (12) form the basis of the optimal solution.

Sequential Importance Resampling (SIR) is the basic
particle filtering algorithm with resampling applied at every
time step to reduce the degeneracy problem. Also, the prior
p(xk|xi

k−1) is used as the importance density for draw-
ing samples. Since the optimal importance density relies
on both the previous state (xk−1) and the present obser-
vation (zk) which is not considered in the SIR, the sam-

pling process is not very effective in SIR. The Auxiliary
Particle Filter (APF) involves a two-step sampling so that
the present observation is considered during sampling [15].
First, we draw samples from the prior and compute weights
ŵj

k, j = 1, 2, ..., Np and Np is the particle number. Then
we draw an auxiliary sample indices kj from {1, 2, ..., Np}
with p(nj = i) = ŵi

k. This helps us identify those promis-
ing particles at time k − 1 that will propagate with larger
weights at time k. This information is stored in the auxil-
iary index table nj , based on which we will re-draw samples
by propagating those “promising” particles more times.

Unfortunately, we found that both SIR and APF algo-
rithms cannot provide satisfactory results for the tracking
problem in (5) due to two possible reasons: (1) The highly
selective likelihood function requires high computational
load in higher-dimensional state estimation; (2) The white
noise acceleration model cannot accommodate the velocity
drifting problem over time. These motivate us to improve
the APF algorithm for this specific tracking problem.

3.2. Boosted APF (BAPF) Algorithm

We will extend the idea of “boosting” by introducing a
match filter-based detector to facilitate the tracker. Unlike
the one in [14] where the detector and the tracker are two
independent processes, here we want to encourage positive
interaction between them. One the one hand, detector’s
template needs to be specified by the tracker output. On
the other hand, the tracker is able to mix particles generated
from both the tracker and the detector for state estimation.
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First, we want to monitor the tracking performance over
time. Inspired by the error function used in [17], we intro-
duce a tracking indicator that estimates the tracking perfor-
mance based on particles’s data terms and weights,

φk =
Np∑
j=1

wj
kλj

k, (13)

where λj
k and wj

k are the data term and the weight, respec-
tively, of particle j at time k. φk is the mean estimate of
the data term for all particles. A large φk indicates that the
tracker is working well at time k and vice versa. The reason
we use the data term in (10) rather than the likelihood func-
tion in (8) is because that the shape of λ(Zk) is more like an
ideal likelihood discussed in [10], and the high selectivity
of p(Zk|xk) may not be good for a stable and comparable
estimation of the tracking performance.

The initialization plays an important role in most parti-
cle filtering algorithms, especially when the state space is
complicated. To initialize all four state variables (position
and aspect) at the first frame, we generate a number of tar-
get templates with different rotation and scaling parameters,
i.e., θ and s, which are uniformly drawn from [θmin, θmax]
and [smin, smax] respectively. Given template G(s, θ), we
can compute a similarity map M(s, θ) whose values are as-
sumed to be proportional to the possibility of the presence
of the template. We also need to remove the structured clut-
ter by convolving the first frame z1 with the template of the
GMRF model K = [0 − βv 0; − βh 1 − βh; 0 − βv 0].
M(s, θ) is defined as,

M(s, θ) = [z1 ∗ K] ∗ G(s, θ). (14)

A set of initial particles are selected from M(s, θ) and each
particle is assigned with an initial affine model and position
in accordance with the specification of M(s, θ). Actually,
this initialization also plays the role of target detection.

As we mentioned before, we want to boost the tracking
performance by incorporating some contribution from the
detector if the tracking indicator φk deteriorates at time k.
That means the target detection process is specified by the
tracking output at time k−1, i.e., detector’s template at time
k is constrained by (θ∗k−1, s

∗
k−1) and the search neighbor-

hood is located in a small window centered by (x∗
k−1, y

∗
k−1).

Thus this operation can dramatically reduce the computa-
tional load of the boosting part. According to the dynamics
of the target’s aspect, we could believe that the target aspect
at time k will be within a range near (θ∗k−1, s

∗
k−1), i.e.,

θk ∈ [θ∗k−1 − 2Δθ, θ
∗
k−1 + 2Δθ],

and
sk ∈ [s∗k−1 − 2Δs, s

∗
k−1 + 2Δs].

Then we can uniformly draw samples from above regions to
set detector’s template that is convolved with a small win-
dow centered by (x∗

k−1, y
∗
k−1) in frame k, i.e.,

(xk, yk) ∈ [x∗
k−1 ± Δx, y∗

k−1 ± Δy],

where Δx and Δy are specified by the target’s motion model
in (1). Usually, the window size is small and the additional
computational load is negligible. A set of boosting particles
can be selected from the match filtering results whose veloc-
ities are assigned based on the position change from frames
k − 1 to k. All boosting particles whose number could be
constant or variable, depending on φk, are then mixed with
tracker’s particles for state estimation. The pesudo-code of
the boosted APF filter (BAPF) is shown below.

1. Initialization:
For j=1,· · · , Np

Draw Xj
0 ∼ M(s, θ) and set wj

0 = 1/Np.
End

2. For k=1,· · · , t
For j=1,· · · , Np

Draw μ̃j
k ∼ p(Xk|Xj

k−1) and
compute ŵj

k ∝ p(yk|μ̃j
k) · wj

k−1

End
Normalize such that

∑Np

j=1 ŵj
k = 1.

For j = 1, · · · , Np

Draw nj ∼ {1, 2, ..., Np} such that
p(nj = i) = ŵi

k, (i = 1, 2, ..., Np)
Draw X̃j

k ∼ p(Xk|Xnj

k−1)

compute wj
k ∝ p(yk| ˜X

j
k
)

p(yk|μ̃nj
k

)
and λj

k

End
Normalize such that

∑Np

j=1 wj
k = 1.

Compute φk =
∑Np

j=1 λj
kwj

k according to (13).
If φk < Tλ(poor tracking),

� A local detector specified by the previous state
estimation induces Nd boosting particles;

For j=1,· · · , Np + Nd

compute wj
k ∝ p(yk|X̃j

k)
End
Normalize such that

∑Np+Nd
j=1 wj

k = 1;
Compute the mean value of state;
Do re-sampling to keep Np particles.

Else (good tracking)
Compute the mean value of state.

End
End

Table 1. Pseudo-code of the Boosted APF (BAPF) algorithm.

φk triggers boosting when it is necessary. Threshold Tλ

can be obtained from the first few frames where the track-
ing is usually stable and reliable, or it can be pre-defined
according to the target template and the sensor noise. It was
found that, for BAPF, an appropriate Nd value is usually
around 2% − 5% of Np, the initial particle number.
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3.3. Adaptive APF (AAPF) Algorithm

We found an interesting phenomenon of affine-invariant
target tracking using the standard SIR and APF algorithms,
i.e., the tracking performance is usually good at the begin-
ning, and starts to deteriorate as time goes. We hypothesize
that it is due to the drifting problem of the white noise ac-
celeration model, i.e., the actual velocity may deviate from
the motion model over time. That means the tracker may
not propagate particles properly in the prediction stage. We
could increase the noise variances of both the position and
the velocity that control the particle diversity to accom-
modate the drifting problem. However, the computational
complexity (the particle number) is increased and the track-
ing accuracy is reduced. Therefore, we want to adjust the
system model appropriately. An appearance-adaptive parti-
cle filter was proposed in [17] to realize robust object track-
ing. The key idea is to make the observation model learn-
able from the new observations. Moreover, the adaptive-
velocity motion model with adaptive noise variance and an
adaptive particle number are developed. For simplicity and
without loss of generality, we here only consider the adjust-
ments of the two noise variances in the motion model (1)
as well as the particle number by a constant scaling factor
when it is necessary as indicated by φk. For AAPF, s can
be a variable that is dependent on φk or a constant.

1. Initialization: (the same as BAPF)
2. For k=1,· · · , t

Do the normal APF and compute φk (the same as BAPF)
If φk < Tλ (poor tracking),

� Set N̂p = Np ∗ s;
� Make a set X̂l

k−1 of N̂p particles by making
s copies of each Xj

k−1, (j = 1, 2, ..., Np) and

assign corresponding weight W l
k−1 as

w
j
k−1
s

,
(l = 1, .., N̂p);

� Draw μ̂l
k from padp(Xl

k|Xl
k−1) where the noise

variances are increased by s times, and
assign weights as Ŵ l

k = p(yk|μ̂l
k) · W l

k−1;

� Normalize weights such that
∑N̂p

l=1 Ŵ l
k = 1;

� Using Ŵ l
k to obtain another set of particles X̂l

k as in
the 2’nd step of the APF, using padp(Xl

k|Xnl

k−1), and

assign weights as W̃ l
k ∝ p(yk| ̂Xl

k)

p(yk|μ̂nl
k

)
;

� Normalize weights such that
∑N̂p

l=1 W̃ l
k = 1;

� Compute the mean value of state;
� Reduce the particle set to Np by choosing the

highest Np valued particles as Xj
k and their

corresponding weights as wj
k, (j = 1, 2, .., Np);

� Normalize weights such that
∑Np

j=1 wj
k = 1.

End
End

Table 2. Pseudo-code of the Adaptive APF (AAPF) algorithm.

3.4. More Discussions

It is interesting to see what kind of effects are introduced
by the two APF algorithms in terms of the balance of par-
ticle distribution. Balancing the diversity and the focus of
particles is essential to minimize the chance of particles be-
ing trapped into local minima, and this issue is more perti-
nent in the higher dimensional state space. The concept of
the effective sample size is introduced to measure the de-
generation problem, and it is defined in [1] as

Neff =
1∑Np

j=1(w
j
k)2

. (15)

A relatively small value indicates a diversified sample set
where the particle weights have a large variance, and a rel-
ative large value means a focused sample size where the
particle weights have a small variance. A good tracking per-
formance requires a balanced particle distribution [7], and
this could be indicated by a balanced value of Neff . When
φk < Tλ, the tracking performance deteriorates, which can
be explained as a consequence of an unbalanced particle
distribution, i.e., an unbalanced value of Neff (relatively
too large or too small). We expect both BAPF and AAPF
will have positive effects on the balance of particle distribu-
tion, as shown by the comparison of Neff before and after.
This fact can be elucidated by the improvement to φk after
boosting or adapting, as shown in the following.

4. Simulation Results
To test our algorithms, we generated simulated infrared

image sequences of 30 frames (sampling rate Δ = 0.04)
by adding GMRF noise fields with a real infrared image of
200 × 200 pixels. Then the base target template (15 × 35
pixels) is added to the simulated sequence whose centroid
moves according to the white noise acceleration model with
initial velocity of (2,0.3) (pixel/frame) and whose aspect
(rotation and scaling) varies according to the first-order
Markov model. The simulated peak target-to-clutter ra-
tio (PTCR) is 5.6dB with poor target visibility. Even for
the largest scaling factor, the target is very small compared
with the size of the observation. Additionally, the first-order
Markov models of time-varying rotation and scaling are pa-
rameterized as follows. The rotation angles vary within
[−30◦, 30◦], and Δθ = 2◦ with an additional uniform pro-
cess noise depending on the step size. The scaling factors
are changing within [0.5, 1.5], and Δs = 0.05 with an ad-
ditional uniform process noise depending on the step size.
The experiments on simulated videos allow us to quantita-
tively and objectively evaluate the tracking performance for
different particle filter implementations under the GMRF
noise assumption and motion/template models. Unfortu-
nately, the standard APF and SIR algorithms, such as the
ones in [2], are unable to handle this tracking problem.
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Figure 2. The tracking performance of BAFP (above) and AAFP (below) averaged over 30 Monte Carlo runs. (a) The improvements to
the tracking indicator φk defined in (13), (b) BAFP’s average tracking error is 0.65 pixel and that of AAFP is 0.64 pixel, (c) comparison of
actual rotation angles and estimated ones, and (d) comparison of actual scaling parameters and estimated ones.
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Figure 3. (a) The changes of Neff before and after BAPF (a) The
changes of Neff before and after AAPF.

In this work, the BAPF involves 1000 particles from the
tracker and additional 20 (2%) particles from the detector
when it is necessary, and the AAPF uses either 500 or 5000
particles (s = 10). It is expected more intelligent parti-
cle number settings can make the two algorithms more effi-
cient, as the one discussed in [17]. Given a pre-defined Tλ,
nearly half of 30 frames involves “boosting” in the BAPF
or “adapting” in the AAPF. Therefore, the average parti-
cles involved in the BAPF is slightly more than 1000, and
that in the AAPF is around 2500. In order to examine the
BAPF and the AAPF in terms of their capabilities of ad-
justing the balance of particle distribution, we compare the
values of Neff before and after in Fig. 3. We can see that
both BAPF and AAPF can effectively balance the diversity
and the focus of particle distribution, which is the key to
the good tracking performance. The detailed simulation re-
sults of target tracking are shown in Fig. 2 and Fig. 4, where
it is shown both algorithms are able to handle the affine-
invariant target tracking problem with similar tracking per-

formance, as shown by the improved tracking indicator φk.
Moreover, the BAPF is more efficient than the AAPF due
to the fact that less particles are involved. In addition to the
accurate and stable estimation of rotation and scaling pa-
rameters, the tracking errors of position are comparable to
the one in [2] where a finite set of multi-aspect target tem-
plates are involved. However, we are currently unable to
handle very low SNRs due to the complicated state space.

5. Conclusions

We have discussed a specific multi-aspect target track-
ing problem, where we addressed the challenges of high-
dimensional state estimation with poor target visibility.
Specifically, we have re-visited two recent improvements
to particle filters, i.e., “boosting” and “adapting”. Experi-
mental results show that both the boosted-APF (BAPF) and
the adaptive-APF (AAPF) algorithms can handle the affine-
invariant tracking problem appropriately by adjusting the
balance of particle distribution. Compared with the AAPF,
the BAPF is more efficient by involving less particles. This
work also provides some experimental tools to further en-
hance the performance of particle filtering for multi-aspect
target detection and tracking in a challenging environment.
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Figure 4. Tracking results (top row: the observed sequence, SNR=5.6dB; middle row: the BAPF tracking results; bottom row: the tracking
results without consideration of multi-aspect motion). The dark dots represent the initial particle distribution in the first frame.
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