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ABSTRACT 

We compute multi-component AM-FM representations 
for images using a new statistical component model. 
Consistent with processing known to occur in biolog­
ical vision systems, the individual components of a 
multi-partite image are isolated on a spatio-spectrally 
localized basis using a multiband filterbank compris­
ing frequency and orientation selective channels. Esti­
mates of the modulating functions of each component 
are derived from the channel responses using localized 
nonlinear operators followed by optimal MMSE estima­
tors. We also demonstrate image reconstruction from 
the representation. 

1. INTRODUCTION 

The efficacy of AM-FM modeling techniques for analyz­
ing and characterizing nonstationary images has been 
well established [1-3]. These techniques are most use­
ful when t(x), the images ofinterest, may be accurately 
represented as the real part of a sum of locally coher­
ent components of the form sex) = a(x) exp[jcp(x)], 
where x = (Xl, X2), and a, cp : ]R.2 ~ R Individu­
ally, these components may be demodulated using a 
localized nonlinear operator [1]. However, int the pres­
ence of multiple components, this approach fails due 
to cross-component interferece. To circumvent this, a 
bank of wavelet-like Gabor filters is used to separate the 
components prior to demodulation. The design of such 
a filterbank is described elsewhere [3]. Demodulation 
is then accomplished using the approximate filtered al­
gorithm 

Vcp(x) ~ 't"'7~() = R [Vtm(X)] 
v cp x e. () , Jtm x 

(1) 

a(x) ~ I tm(x) I ~ a(x) = Gm [Vi,O(x)J ' (2) 
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where tm(x) = t(x) * gm(X) is the response of the mth 
channel, gm(x) is the mth channel filter, with Fourier 
transform Gm [.J. The approximation errors in the nu­
merator and denominator of (1) are tightly bounded by 
a quasi-eigenfunction theorem [1,2] involving certain 
functional norms of gm(x), a(x), and Vcp(x). Byapply­
ing (1), (2) to the responses of all filterbank channels, 
estimates of the modulating functions of all compo­
nents are produced at all pixels. 

2. STATISTICAL STATE-SPACE 
COMPONENT MODEL 

Given an initial phase sample, components are deter­
mined by their amplitude a(x) and horizontal and ver­
tical frequencies cp:Z: (x) = ::z: cp(x) and cpY (x) = : cp(x). 
We introduce an artificial temporal causality refation­
ship between points in the sampled image domain by 
mapping them to a discrete 1D lattice according to 
a path function 0 : x I---t k. This reparamateriza­
tion maps the modulating functions of a component ac­
cording to a(x) ~ a(k), cp:Z:(x) ~ cp:Z:(k), and cpY(x) 
~ cpY (k). Each of the modulating functions can then 
be expanded in first-order Taylor series about a lattice 
point k. The series for a(k) is 

l k EJ2 
a(k)=a(k-1)+a'(k-1)+ (k-P)82a(p)dp 

k-l p 
(3) 

and the series for cp:Z: (x), cpY (x) are similar. 
Modeling the integral in (3) as a noise process U a 

(similarly for ucp:z: and uCPy)' we arrive at the component 
state-space model 

X(k + 1) [~~ ~ 1 X(k) + luCk) (4) 
o 0 A 

Y(k) = C(k)X(k), (5) 

where the state vector X(k) 
cp:Z:' (k) cpY (k) cpY' (k) f, 

A= [~ i], (6) 



u(k) = [0 ua(k) 0 u<px(k) 0 U<py(k)]T, Y(k) = 

raCk) cpX(k) cpY(k)]T, and C(k) is the output gain 
matrix. We relate the quantities in the state-space 
model output vector Y(k), which are the exact modu­
lating functions, to the observations obtained from the 
filtered demodulation algorithm (1), (2) by modeling 
the estimation errors with additive uncorrelated noise 
processes na (k), n<px (k), and n<py (k). 

Hence we describe the estimates of each compo­
nent's modulating functions as noisy observations of 
an affine function of the state vector of a linear sys­
tem driven by white noise, and can therefore design 
Kalman filters to obtain optimal estimates of the mod­
ulating functions of each component as the image is 
traversed along the path O. These filters produce un­
biased estimates a(k), cpx(k), cpY(k), which are optimal 
in the MMSE sense over the class of linear estimators. 
A block diagram of the complete multi-component de­
modulation algorithm including the Kalman-based track 
processor is shown in Figure 1. 

3. EXAMPLE 

In Figure 2, we compute the multi-component AM­
FM representation of a synthetically generated two­
component image exhibiting significant 2-D nonstation­
arity, and then reconstruct. The original image is shown 
in the (a) part ofthe figure. To avoid edge effects from 
the channel filters, tracking and reconstruction were 
not performed on the outside 16 rows and columns of 
the image. The presence of two components was cor­
rectly identified by the track processor. The recon­
structed components were summed to obtain the re­
constructed image shown in Figure 2 (b). Note that 
the reconstruction is visually indistinguishable from the 
original. 

4. FUTURE WORK 

Important future work remaining in this area includes 
overcoming the extremely difficult problems in treat­
ing complicated natural images. In particular, this 
will involve developing an approach for tracking many 
components closely spaced in frequency over irregularly 
shaped regions of support, and fully characterizing the 
classes of images which can be represented. 
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Figure 1: System for computing the 
multi-component AM-FM representa­
tion. 

(a) (b) 

Figure 2: Multi-component AM-FM representation 
and reconstruction of a synthetic image. (a) Nonsta­
tionary two-component synthetic image. (b) Recon­
structed image. 
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