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Abstract

We present a fully unsupervised parametric modulation
domain technique for segmenting textured images. Textured
regions in the image are modeled as multicomponent sums
of nonstationary AM-FM functions. The dominant modula-
tions at each pixel are estimated using a technique called
DCA and used to construct modulation domain feature vec-
tors. The overall feature space is regarded as a mixture of
Gaussians, where the modulations within each texture class
are modeled by a single multivariate normal distribution.
Although this model is somewhat unrealistic, it leads to a
robust segmentation algorithm that is able to operate in a
Sfully unsupervised mode. An EM algorithm is used to es-
timate the parameters of the Gaussian mixture so that ap-
proximate maximum-likelihood estimates of the pixel class
labels can be obtained. The proposed technique is demon-
strated on a variety of images constructed from juxtaposi-
tions of Brodatz-like textures.

1. Introduction

Despite intense research efforts, texture remains one of
the most poorly understood attributes of visual information.
AM-FM models [4, 5, 10, 11, 15, 16] provide a powerful
means of characterizing texture in terms of nonstationary
joint amplitude and frequency modulations and are also par-
simonious with certain plausible models of early process-
ing in biological vision systems [7,9,13,22]. They have
been used recently to develop modulation domain solutions
to a number of classical problems including shape from
texture [19], texture-based stereopsis [6], texture comple-
tion [1], and texture segmentation [20,21,23].

While the majority of AM-FM modeling techniques pre-
viously treated in the literature have been nonparametric
and distribution-free, parametric 1D models have been con-
sidered in a few cases [8, 14]. In this paper, we investi-
gate multivariate Gaussian mixture models for multidimen-
sional modulations for the first time and use them to per-
form fully unsupervised maximum-likelihood AM-FM tex-
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ture segmentation. We obtain high quality segmentations
with correct pixel classification rates consistently exceed-
ing 95% for simple juxtapositions of Brodatz-like textures.
This fortuitous result was somewhat unexpected since, in
the exploratory research presented here, we considered only
single multivariate Gaussians for describing the joint mod-
ulations within each texture class (resulting in a mixture
model for the modulations observed across the entire im-
age). The performance of this approach could almost cer-
tainly be improved by employing a Gaussian mixture model
for the modulations within each class. As we will discuss in
Section 3, however, it is unclear how such a strategy could
be made fully unsupervised.

2. Computing the Texture Features

Consider a digital image t(x) : D C Z2 — C. In order
for the image modulations to be well defined, we require
t(x) to be complex-valued; in applications where real im-
ages are of interest, we add an imaginary part equal to the
2D directional Hilbert transform of the image to obtain a
complex extension analogous to the 1D analytic signal [12].
We model textured regions in the image using nonlinear
AM-FM functions of the form a(x) exp{jp(x)]. For each
such function, the AM term a(x) describes the local texture
contrast while the FM term, or instantaneous frequency vec-
tor V(x) describes the local texture orientation, coarse-
ness, and granularity. Many nonstationary textures such
as a wood grain or a zebra’s stripes are well described by
a single AM-FM function. However, there are also many
textures of practical interest such as cobblestones, burlap,
a cloth weave, or a cross-hatch pattern that are inherently
multipartite in nature.

Although it is theoretically possible to model arbitrary
multipartite textures as single AM-FM functions, doing so
requires AM and FM functions that are not locally smooth.
This generally makes it impossible to estimate the unknown
modulating functions from the image pixel values, since all
known AM-FM demodulation algorithms involve approxi-
mations that often break down unless the modulating func-
tions possess local smoothness in a sense that can be quan-
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Figure 1. Block diagram of DCA.

tified by certain Sobolev-like derivative norms and smooth-
ness functionals [11]. Therefore, we model textured image
regions not as single AM-FM functions, but rather as sums
of AM-FM components each having locally smooth modu-
lations. This leads to the image model
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where each textured image region is modeled by one or
more components ¢, (x) for which ay(x) is zero outside the
region. }

Using a technique called DCA [11], we extract the mod-
ulations that dominate the local texture structure at each
pixel x € D. A block diagram of the DCA algorithm is
shown in Fig. 1, where ¢(x) is passed through a multiband
Gabor filterbank with channel frequency responses Gr,. On
a spatially local basis, the filterbank decomposes the im-
age into locally narrowband components such that, at each
pixel, the response of each channel is dominated by at most
a single component t;(x). In doing this, the filterbank
structure implicitly defines the componentwise image de-
composition in (1); it is not required, however, that the fil-
terbank isolate components from one another on a global
scale. i

For each x € D, spatially local discrete nonlinear de-
modulation algorithms are applied to each channel response
to estimate the modulating functions ax(x), Vi (x) of the
component that dominates the channel at the pixel. The
channe] containing the modulations from the component
that dominates the overall image texture structure at the
pixel is then identified using a spatially local channel selec-
tion criterion ¥(x) described in [11]. The dominant mod-
ulations ap(x) and Vp(x) are extracted on a pointwise
basis to construct modulation domain feature vectors

Z(x) = [A(x) R(x) Y(x) x]T, @
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where A(x) = ap(x), R(x) = |Vep(x)|, and T (x)
arg Vop(x).

3. Bayesian Segmentation

In [23], we described a nonparametric technique that ob-
tains texture segmentations by performing k-means cluster-
ing in a modulation domain feature space constructed from
the histogram of Z(x) in (2). This technique first normal-
izes the features by scaling and then utilizes novel data de-
pendent similarity measures in the clustering procedure. In
this section, we describe an alternative Bayesian approach
that performs unsupervised segmentation by using Z(x) to
compute maximum-likelihood (ML) estimates of the pixel
class labels.

In developing this approach, we made use of an unsuper-
vised Gaussian mixture modeling algorithm called “Clus-
ter” [2] that was designed primarily to facilitate supervised
SMAP segmentation of multispectral remote sensing im-
agery [3]. In normal use, the algorithm addresses the fol-
lowing problem: multispectral images are to be segmented
by assigning class labels to each pixel. Vector-valued ob-
servations of each class are available with class labels that
are known a priori. For each class, Cluster uses the la-
beled samples to compute the parameters of a multivariate
Gaussian mixture describing the class. It does this without
supervision by using the MDL criterion [18] to determine
the number of Gaussian components in each mixture. The
class parameters computed By Cluster are then used to su-
pervise the SMAP segmentation algorithm. The advantage
of this approach is that it uses mixtures of arbitrary numbers
of Gaussians which can closely approximate the unknown
true class distributions. The disadvantage is that pre-labeled
observations from each class are required.

To adapt the Cluster algorithm into an unsupervised tex-
ture segmentation approach, we assume that each texture
class is distributed according to a single multivariate Gaus-
sian. Z(x) in (2) may then be regarded as samples from a
mixture of an unknown number of these. Estimation of the
parameters of such a mixture is precisely the problem that
the Cluster algorithm was designed to solve.

Denote the number of classes by K and let 73, be the
probability that a pixel belongs to class k. Each class is
described by its mean p and covariance matrix Ry. The
mixture is then defined by parameter § = (w, 2, R), where
m=mom ... )T = po ... )7, and R =
[R1 Rz ... Ri)T. We induce an arbitrary 1D ordering on
the image domain D to obtain a set § = {s1, 82,...,8n} of
pixel sites where N = |D| and s, € D. § is used to map
the observed feature vectors (2)toasetz = {z, : n € S}
regarded as a sample of a random vector Z = {Z,, : n € §}.

Let the class label of pixel s,, which takes values in
[0, K — 1], be given by a random variable A, and let



A = {A, : n € 8}. The conditional density of Z, given
that A, = k is then
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Assuming that the variables Z,, are mutually independent
given K, 6, and A yields the log-likelihood function

N K
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with ML estimate § = maxg L(8) for the parameter. How-
ever, the joint ML estimate for K and 6 is not useful be-
cause (4) is a monotonically increasing function of the num-
ber of classes K.

In [2], an EM algorithm is given that approximates the
ML estimates &, § by minimizing a minimum description
length criterion MDL(K,, 6) that is equal to the negative of
the log-likelihood function (4) with an added term to penal-
ize solutions where K is large. The strategy is to initialize
K with a value K| that is much larger than the actual num-
ber of classes that are suspected to exist. The MDL crite-
rion is then iteratively minimized with respect to 6, where
659 denotes the estimate of @ at iteration i. To obtain
an initial value #(K0:1), the class probabilities 7y, are all set
equal to one another, the covariance matrices Ry, are all set
equal to the sample covariance computed globally over all
N samples in z, and K samples 2, are selected randomly
to initialize p.

For each n € § and each k € {0, K — 1], a soft member-
ship function giving the probability that z,, belongs to class
k is computed according to

ik f (2n)k, 0(K'i))
D £ (zn]m, 009
©)
The parameter estimate 5% and soft membership func-
tions are then alternately updated in an iteration until the
MDL is minimized.

The number of classes K is then reduced by one by
merging the two classes that are closest to one another
with respect to a distance metric given in [2] and, for this
new value K, the MDL is again minimized with respect
to 8. Normally, this procedure is repeated until K = 1,
whereupon the pair K ,§(:%) that produced overall the low-
est value of the criterion MDL(K, 6) is used to approxi-
mate the ML estimates X, 8. Labels argmax P(A, =
k|2, K, 89 can then be assigned to each pixel to obtain
an unsupervised segmentation.

There is a practical difficulty with this approach, how-
ever. Single Gaussians provide only rough approximations
to the true unknown class distributions. Thus, the MDL
criterion tends to significantly overestimate the number of

P(Ap = k|z,, K,0U69) =

K
m=1Tm
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classes K that are present. This problem can be overcome
by using a robust alternative method for estimating the num-
ber of classes that was given in [17] and applied in the mod-
ulation domain in [23]. With this alternative method, low
pass Gaussian filtering is applied to the histogram of Z(x)
to estimate the density of pixels about each point in mod-
ulation space. A gradient ascent technique is then used to
form clusters in the filtered result, where the number of clus-
ters K* accurately estimates the number of texture classes
present in the image. Our approach is to apply this alter-
native method prior to running the Cluster algorithm and
then terminate the Cluster algorithm after the MDL has been
minimized with respect to 8 for K = K*.

Postprocessing is required to refine the segmentations
delivered by the Bayesian segmentation approach described
in this Section since incorporation of the image domain po-
sition term x € D in the feature vectors Z(x) is not suffi-
cient to enforce a spatial correspondence constraint on the
resulting segmentation. As described in [20, 21], connected
components labeling with minor region removal is first ap-
plied to remove all but the K* largest components from the
image of labels in the segmentation. A morphological ma-
jority filter is then applied to the label image to smooth the
boundaries of the segmented regions.

4, Examples

Figure 2 illustrates several examples where the unsuper-
vised texture segmentation algorithm described in Section 3
is applied to juxtapositions of Brodatz or Brodatz-like tex-
tures. The original images are shown in Fig. 1(a), (c), (h),
(k), and (n). For the image in Fig. 1(a), the un-post pro-
cessed segmentation delivered by the modulation domain
k-means clustering technique described in [23], while the
result obtained by the technique described in Section 3 with-
out post processing is shown in Fig. 2(c). The final segmen-
tation result of the Bayesian approach presented in this pa-
per with post processing is shown in Fig. 2(d), where the
correct pixel classification rate is 98%. For comparison,
the final segmentation resulting from the k-means result in
Fig. 2(b) had a correct pixel classification rate of 98.23%.

For the images of Fig. 2(e) and (h), the un-post processed
results obtained from the Bayesian technique of Section 3
are shown in Fig. 2(f) and (i), respectively. Final segmenta-
tion results after post processing are given in Fig. 2(g) and
(j), where the correct pixel classification rates were 98.4%
and 97%, respectively.

Fig. 2(k) shows a natural scene from the MIT VisTex
database. The result obtained from the approach of Sec-
tion 3 prior to post processing is shown in Fig. 2(1), while
the final segmentation after post processing is shown in
Fig. 2(m). While ground truth is not available for this im-
age, the Segmentation in Fig. 2(m) is in excellent agreement



with our visual perception.

Finally, the synthetic image in Fig. 2(n) is a juxtaposi-
tion of five Brodatz textures. The un-post processed seg-
mentation is given in Fig. 2(0), while the final result ob-
tained from the approach described in Section 3 is shown in
Fig. 2(p). In this case, the correct pixel classification rate
is only 91%. With a large number of textures present in
the image, we believe that the fact that single multivariate
Gaussians only roughly approximate the true texture class
distributions leads to an increased probability of misclassi-
fications in this case.

5. Conclusion

A fully unsupervised modulation domain parametric ap-
proach for texture segmentation was presented. The EM
algorithm used to approximate the maximum likelihood pa-
rameter estimates was adapted from the “Cluster” algorithm
given in [2], most notably through the addition of a density-
based method for determining the number of texture classes
present. In both performance and computational complex-
ity, the proposed approach is comparable to the one given
‘in [23], where segmentations were obtained by applying
k-means clustering in a related modulation domain feature
space. .

The approach presented in this paper demonstrates that
modulation domain parametric techniques can be both
highly effective and robust against modeling errors. The
main issue that needs to be addressed by future research is
the development of a method permitting Gaussian mixtures
or other sophisticated distributions to be used for modeling
the individual texture class distributions that are present in
the image.
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Figure 2. (a) Original two-texture image WoodWood. (b) Initial segmentation obtained by applying the k-means clustering
approach of [23] without post processing. (c) Initial segmentation obtained by applying the Bayesian approach of of Section 3
without post processing. (d) Final segmentation obtained using the Bayesian approach of Section three with post processing.
Correct pixel classification rate is 98%. (e) Original two-texture image MicaBurlap. (f) Initial segmentation obtained by
applying the Bayesian approach of Section 3 without post processing. (g) Final segmentation result after post processing;
correct pixel classification rate is 98.4%. (h) Original two-texture image CorkFlowers. (i) Initial segmentation result obtained
by applying the Bayesian approach of Section 3 without post processing. (j) Final segmentation result after post processing;
correct pixel classification rate is 97%. (k) Original GrassPlantsSky.0005 image from the MIT VisTex database. (I} Initial
segmentation result obtained by applying the Bayesian approach of Section 3 without post processing. (m) Final segmentation
result after post processing; ground truth is not avallable for this image. (n) Original five-texture image. (o) Initial segmentation
obtained by applying the Bayesian approach of Section 3 without post processing. (p) Final segmentation result after post
processing; correct pixel classification rate is 91%.
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