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ABSTRACT

We present a new texture retrieval algorithm that, for the first time,
performs content-based image retrieval (CBIR) in the modulation
domain by computing powerful low-level texture features based on
computed AM-FM image models. Performance of the new algo-
rithm is analyzed with respect to competing methods where tex-
ture features are computed from Gabor filter magnitude responses.
Qur experimental results show that the new algorithm achieves a
significant performance advantage. We describe how the new al-
gorithm will be used for the texture component of a novel CBIR
service called DIRECT, which is designed to provide image based
searches in distributed digital libraries without the need for manual
entry of annotations and image metadata.

_ 1. INTRODUCTION
" In large, distributed, and heterogeneous libraries that may contain
tens of thousands of images or more, search engines based on text
annotations or other manually extracted metadata are infeasible be-
cause of the need for librarians to laboriously catalog and index
the images and compile the annotations. Thus, there is a critical
need for content-based image retrieval (CBIR) services capable of
searching for images based on automatically extracted visual infor-
mation without the requirement for manual intervention. Although
a relatively small number of systems have made progress toward
bridging the semantic gap discussed in [1] between low-level fea-
tures and interpretive descriptions of image meaning, the vast ma-
jority of practical, currently deployable CBIR systems search for
images that are simiiar in terms of low-level color, shape, and tex-
" ture features.

In this paper wé present a new texture retrieval algorithm that,
for the first tifne, uses computed AM-FM models for performing
CBIR in the modulation domain. This algorithm is being devel-
oped as the texture component of a decentralized CBIR service for
distributed digital libraries. We test the performance of the new al-
gorithm against a database of 17,408 textured image tiles and find
that the modulation domain approach offers a significant perfor-
mance gain relative to competing techniques,

! 2. BACKGROUND
In order to obtain a' meaningful performance comparison between
various texture retrieval techniques, we restrict our attention to a
well-defined retrieval task that has been investigated by others {2~
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6]. We begin with a set of Ny homogeneous texture images referred
to as the original images. Each original image is partiticned into
Nr smaller disjoint tiles to generate an image database containing
N X Ny images of the smaller size. Typically, Nr = 16. A query
image is then selected from this database. The task is to retneve
the Ng images fiom the database that are most similar to the query
image, where Ng > Nr.

Retrieved images that came from the same original image as
the query image are considered to be correcr matches, whereas
those that came from a different original image are considered
to be incorrect matches. Let N denote the number of correct
matches retrieved. The retrieval rate is then defined by Re =
Ne/Nr. Since the query image and the other Nr — 1 images that
came from the same original as the query image are always present
in the database, we have for any texture retrieval algorithm that
limpg-+N, <Ny Re = 100%. Intuitively, the retrieval rate Rc may be
interpreted as the answer to the following question: the database
contains N images that came from the same original as the query
image (including the query image itself); what percentage of these
were among the top Ng matches returned by the algorithm?

Tt is well-known that texture features computed from the mag-
nitude responses of 2 bank of Gabor filters provide excellent per-
formance in this retrieval task, but do sc at a computational cost
that is generally greater than the cost of other methods [2, 3, 5-71.
For original images that are Brodatz or Brodatz-like textures, the
retrieval technigue proposed in [3] has rarely been beaten. We re-
fer to this technique as the Manjurath-Ma algoridun.

In the Manjunath-Ma algorithm, each image in the database
is filtered with a bank of M complex-valued Gabor filters in a po-
lar spectral tessellation, where any two adjacent filters intersect
at their half-peak frequencies. For an image A, let ¥,(x) be the
complex-valued response of the nf? filter, where x € R? and m €
[0,M —1]. With ,u,(;') and cﬂf) the mean and standard deviation of
Wi (x)], the texture feature vector describing the image A is

I

Let s be the standard deviation of the feature psnx) computed over

all images X in the database and let 55, be the standard deviation of

the feature ct',(,fr ), also computed over all images X in the database.
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In the image retrieval task, the algorithm returns the Nz images
from the database that are closest to the query image in the sense
of the metric (2). Thus, the features used in the Manjunath-Ma
algorithm are the first moments and second central moments of
the Gabor filter magnitude responses; these are often referred to as
Gabor texture features. In [2], these features were found to per-
form better than similar moments computed from orthogonal and
biorthogonal wavelet transform coefficients of both the standard
and tree-structured types. Similarly, they were found to signifi-
cantly outperform Tamura features and edge histograms in [4], as
well as tree-structured and pyramid-structured wavelet transform
features in [3,4].

Only in a few instances have competing methods delivered
performance equal to or better than these Gabor texture features,
In [3], features computed on MRSAR model parameters [8] in
conjunction with the Mahalanobis distance achieved a retrieval
rate within 1.5% of that delivered by the Gabor texture features.
In [4], the MRSAR features actually performed slightly better than
Manjunath-Ma against 2 database of images from Corel photo gal-
leries. However, Manjunath-Ma performed slightly better on a
database of Brodatz textures. For a set of images from the MIT
VisTex database, certain complex wavelets used in conjunction
with a novel Bayesian distance metric achieved a retrieval rate ap-
proximately 3% better than the Gabor texture features [5]. These
data make it clear that for the texture retrieval problem introduced
in this section, the Gabor texture features of the Manjunath-Ma al-
gorithm consistently achieve a retrieval rate that is better than or
within & very few percent of the best known competing methods.
Moreover, a series of psychophysical experiments in [7] found that
texture similarity as measured by {2) agreed well with human tex-
ture perception.

3. MODULATION DOMAIN ALGORITHM

For a real-valued image s : B2 — R, a single-component AM-FM
image model is given by s(x) = a(x)cos[p(x)] [9-11]. This AM-
FM model provides a rich description of the Jocal texture structure.
The AM function a(x) captures the local texture contrast and in-
tensity. The FM function is the vector field Vg(x). It’s orientation
and magnitude describe, respectively, the local texture orientation
and coarseness (or granularity). For a real image s{x}, the AM and
FM functions are not unique. In analogy to the 1-D analyiic signal
popularized in communication theory, we disambiguate this situa-
tion by applying the directiona! 2-D Hilbert transform #{ described
in {12] to construct the analytic image 1{x) = s(x} + jH [s(x)}. As
is true for any complex-valued signal, the AM and FM functions
of t{x) are unique.

One computes an AM-FM image model by performing de-
modulation to estimate the unknown modulating functions a{x)
and V(x). All practical image demedulation algorithms involve
approximations that may suffer from large errors if the modulat-
ing functions are not locally smooth in a certain sense described as
local coherency [9, 11]. Therefore, while single-component AM-
FM medels exist for all images in theory, it is generally impossi-
ble to compute them. In practice, we circumvent this difficulty
by considering the image to be a sum of AM-FM components
wherein each component admits locally ccherent modulating func-
tions. This results in the multi-component AM-FM image model
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s(x) = M 5;(x) and associated analytic image

1(x) = s(x) + jH]s(x)] = 25: +Jﬂs,(1)]

Jexpligi(x)].  (3)

= Za,

Direct access to the AM-FM components f(x) =
x)exp[jg;(x)] in (3) is generally unavailable. Estimation
of the modulating functions #;(x) and Ve;(x) may be accom-
plished by analyzing #(x} with a multiband filterbank to isolate
the components from one another on a jointly localized basis in
space and spatial frequency. Since joint localization is clearly
required, filterbanks comprising sampled complex-valued Gabor
functions have been used often for this purpose. The demodu-
lation problem then becomes one of estimating the component
modulating functions from the filterbank channel responses. At
some particular x € RZ, suppose that component £(x) dominates
the response vy, (x) of filterbank channel m and let G, and gn,

- be the channel frequency response and impulse response, so

that ym(X) = 1(X) « gm(X) =~ 1(x) * gn(x). Then the AM and
FM functions of #(x) are estimated using the spatially local
demodulation algorithms

Vi

Vo) ~ Re| T2, @)
~ J’m(x)

alx) ~ 'G,,,[V(p,(x)]' ®)

Detailed bounds on the approximation errors inherent in these al-
gorithms and also in their discrete versions were developed in [11].

The M pairs of modulating functions a;(x) and Vg;(x) in (3)
estimated via (4) and (5) provide a dense and powerful description -
of the local texture structure at a fundamental level that forms the
basis for a plausible theory of texture perception in biological vi-
sion systems [9, 13-15]. Now consider the relationship between
the AM-FM model described in this section and the Gabor tex-
ture features utitized by the Manjunath-Ma algorithm described in
Section 2. The Gabor magnitude responses may be regarded as
course approximations of the true image amplitude modulations
a;{(x). The frequency modulations Vg;(x} are not explicitly con-
sidered in the Manjunath-Ma algorithm. However, a large magni-
tude response in a given channel indicates the presence of a strong
component in the image with orientation and granularity that are
coarsely approximated by the channel center frequency. Hence,
we argue that the Gabor texture features of the Manjunath-Ma al-
gorithm are coarse approximations of the image modulations and
that this, in fact, explains the success that they have achieved. It
then stands to reason that significant performance gains should
be realizable by incorporating explicit estimates of the AM and
FM functions into the technique. We express the FM functions
in terms of their magnitudes R;{x) = |V@;(x)| and orientations
6;(x) = arg Ve:(x). For each ﬁlterbank channel, we then compute
the first and second central moments of the modulating functions
to obtain a six-element vector

S = [ta Oq ptr Or 115 G, (6)

where y,; and o, are the mean and standard deviation of the AM
function g;(x) in (5) and the moments of the FM function are de-
fined analogously. The modulating function moments in the vector



Fig. 1. Spectral depiction of the filterbank used for the proposed
modulation domain CBIR algorithm.

N

Jfir characterize the image component £{x) in (3) that dominates
the response of filterbank channel m. The vectors f, are then ¢on-
catenated to obtain an overall modulation domain feature vector

=GV e Ll 7

that describes the texture content of the image s(x). The distance
between two such feature vectors is defined in the same spirit
as (2) it is an £1.norm where each component of the difference
is normalized by -its standard deviation computed over the entire
database. ‘

The Gabor filterbank used for the modulation domain algo-
rithm described in this section is depicted in the spatial frequency
plane in Fig. 1, where the frequency origin is located at the center,
the positive horizontal frequency axis points right, and the positive
vertical frequency axis points down. This figure shows the log-
magnitude spectra of all channels. Special nonlinear scaling has

" been applied for display to accentuate the intersections between

filters. Design of biologically motivated filterbanks of this type is
described in great detail in [16]. The filterbank of Fig. 1 comprises
twenty channels at five orientations. At each orientation, the filter
radial center frequencies begin at 8.5 cycles per image and follow
a geometric progression with common ratio 1.9, All of the filters
in the bank have a half-peak bandwidth of 1.5 octaves, There are
three significant differences between this filterbank and the one
used by the Manjunath-Ma algorithm. First, the filters in Fig. 1 are
all circularly symmetric. Second, with the modulation domain al-
gorithm proposed here, the input images are always floating point
images normalized to have zero mean and extremes in the range
[—1,+1]. Thus, there is no need to zero the DC response of the
channel filters. Finally, the filterbank of Fig. 1 is much denser than
the one used in the Manjunath-Ma algorithm. In the filterbank
of 3], the half-peak contours of any two adjacent filters intersect
at a single frequency. For the filterbank of Fig. 1, the half-peak
contours of any four adjacent filters intersect at a single frequency.
While this complicates the filterbank design as described in [16],
it provides a tangibly improved coverage of the frequency plane.
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4. EXPERIMENTAL RESULTS

The experimental framework was described in some detail in Sec-
tion 2 so that the relative performance of several existing texture
retrieval techniques could be discussed with regards to a specific,
well-defined, and well-studied retrieval task. In particular, we
pointed out that, for Brodatz and Brodatz-like texture images, the
Manjunath-Ma algerithm given in [3] consistently achieves a re-
trieval rate that is either the best known or is within 5% of the best
known performance. Therefore, in this section we construct a spe-
cific set of experiments to test performance of the modulation do-
main algorithm described in Section 3 against the Manjunath-Ma
algorithm. Both algorithms were implemented in ANSII C under
the GNU g++ compiler.

The original images were a set of N = 1,088 homogeneous
grayscale texture images of size 512 x 512, These included im-
ages from the MIT VisTex database, Brodatz texture images, and
other Brodatz-like images organized into the general categories
brick, flowers, water, buildings, food, leaves, bark, fabric, and
grass. Each original image was partitioned into Ny = 16 disjoint
tiles to obtain a retrieval database of 17,408 images of size 128
x 128. The number of these images falling into each category is
given in the second column of Table 1.

For each query image, the top Ng = 16 matches from the entire
database were returned by each algorithm, where N was set equal
to the number of these 16 that came from the same 512 x 512 origi-
nal image as the query image. The retrieval rate for each algorithm
was then calculated according to Rc = N /16 x 100%. Every one
of the 17,408 images in the database was used as the query image
and retrieval rates were averaged within each image category. Re-
sults for the proposed modulation domain algorithm are given in
column three of Table 1, while those for the Manjunath-Ma algo-
rithm are given in column four.

As can be seen from Table 1, the performance advantage ob-
tained by uvsing the full AM-FM model was significant and ranged
from 9% to 30%. This performance gain is largely due to the ex-
plicit consideration of the FM magnitude and orientation in the
proposed algorithm. With regards to all of the competing tech-
niques considered in Section 2, it should be kept in mind that, for
this retrieval task, only the MRSAR features of [8] and the com-
plex wavelet features of [5] have ever been found to outperform
the Manjunath-Ma Gabor texture features, and both of these did
so by margins of less than 5%. Thus, from the data in Table 1,
we may infer that, for this task, the modulation domain texture re-
trieval algorithm proposed here may be expected to outperform all
of the techniques discussed in Section 2 by margins of at least 5%
- 25%. Results for a typical run of the experiment are depicted in
Fig. 2.

In [2-6), the retrieval rate R was also studied as a function of
the number of returns Ng. For the modulation domain texture al-
gorithm of Section 3, some limited, preliminary results of this type
are given in Table 2. The experiment was repeated for a reduced
set of only Ny = 75 original 512 x 512 images from the VisTex
database. Again with Ny = 16, this provided a database of 1,200
images of size 128 x 128. Twenty-five queries were run against
this database for Ng = 16, 20, and 23. Retrieval rates R¢ for the
modulation domain algerithm and the Manjunath-Ma algorithm
are given in columns two and three of Table 2, respectively, where,
despite the reduced size of the experimental data set, the results are
seen to be quite consistent with those in Table 1. Finally, it should
be noted that the results we have obtained for the Manjunath-Ma



Retrieval Rate (R¢)
| Category | No.Images | Proposed Alg. | Competing Alg.
Bark 3072 64.5% 51.7%
Brick 1536 75.4% 60.8%
Buildings 256 87.9% 57.4%
Fabric 2816 94.2% 85.2%
Flowers 1792 75.9% 57.9%
Food 2560 75.4% 62.2%
Leaves 3584 65.7% 49.8%
Water 1792 68.2% 55.9%

Table 1. Experimental retrieval rates for the proposed modulation
domain algorithm and the competing algorithm of [3].

Retrieval Rate (R}
Proposed Alg. | Competing Alg.

{[ No.Returns (Ng)

16 84.0% 70.5%
20 89.5% 74.8%
23 91.0% 77.3%

Table 2. Preliminary data giving the retrieval rate as a function
of the number of returns Ng for the proposed algorithm and the
competing algorithm given in [3].

algorithm in Tables I and 2 are in remarkably close agreement with
the performance figures onginally published in [3].

5. DEPLOYMENT IN THE DIRECT CBIR SERVICE

The main features of DIRECT, the Decentralized Image Retrieval
Jor Education system, are summarized in this section. DIRECT is
a service that provides search by query CBIR functionality for dig-
#al hbraries using existing interfaces and without imposing new
standards, protocols, or behaviors on content providers. Thus, DI-
RECT may be configured for interoperability with, e.g., the NASA
JOINed Dhgital Library (JDL), the Digital Library for Earth Sys-
tem Education (DLESE), and the National Science Digital Library
(NSDL). The DIRECT concept of operations provides a global
mode where retrieval is performed on whole images using color
and texture features and also a local mode where it is performed
on image segments. For the local mode, segmentation is per-
formed automatically when the images are acquired and indexed,
and Fourier shape descriptors are used as an additional feature set.

A DIRECT prototype was launched in the JDL in December,
2002, where only the global mode was implemented. For each
image, DIRECT computes a quantized sixteen-élement histogram
for each color in the RGB color space, where the quantization is
performed using a table that exploits the color discrimination of
the human visual system [17]. This results in a 48-element color
feature vector for each image. The distance between a pair of color
feature vectors computed from twe images is defined using the in-
tersection distance. The texture algorithm currently deployed in
the prototype is wavelet-based. The RMS values of the wavelet
coefficients at each scale are concatenated to construct texture fea-
ture vectors. The distance between texture vectors is computed
using the usual Euclidean metric. This algorithm will be replaced
by the modulation demain approach introduced in this paper. The
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similarity between images is quantified by a weighted sum of ap-
propriate distance metrics on the color and texture feature vectors.
Users have the capability to specify the weights at query time.

In a heterogeneous library, DIRECT runs autonomously from
the individual collections and provides a metwork of services by
creating a brokered peer-to-peer sysiem where portals function
as clients, collections function as service providers, and the DI-
RECT index and CBIR algorithm suite function as both clients
and service providers. In this sense, DIRECT is analogous to and
combines the strengths of file sharing systermns such as Gnutella,
the Freenet project, and Napster. Structurally, the DIRECT index
looks very similar to the Napster centralized index and exhibits
similar performance. However, DIRECT is a peer service as in
Gnutella and Freenet, and must gather the information it needs
through mechanisms already provided by the collections. Portals
that use DIRECT (such as DLESE’s graphical user interface) can
dictate the mode in which the service is administered.

When a new collection is added to the hbrary or when an ex-
isting collection adds new resources, DIRECT searches the collec-
tion and acquires metadata for the new resources using the same in-
terface that would be used by a portal. These metadata are used to
1dentify image and web page resources and to obtain their URL’s,
Image resources are acquired and processed immediately. For web
page resources, DIRECT crawls the pages to gather any images
that were not independently cataloged. Feature vectors for per-
forming CBIR are computed from all acquired images.

6. CONCLUSION

We presented a new, high-performance modulation domain tex-
ture retrieval algorithm that is significant because it is the first to
use computed AM-FM image modeis for performing CBIR. In ad-
dition to estimating the local texture amplitude, this new algorithm
also explicitly estimates the image frequency modulations, thereby
obtaining a powerful characterization of the local texture orien-
tation and granularity. This provides a substantial performance
gain compared to existing techniques where the texture features
are generally based on Gabor magmtude responses alone.

Indeed, many established image processing techniques that
utilize Gabor filter magnitude responses and their moments may
be interpreted as coarsely approximating computed AM and FM
functions. We have found that a petformance advantage can of-
ten be achieved by estimating the modulations explicitly. Another
advantage of this approach is that the demodulation algerithm (4},
(5) estimates properties of the input signal and is essentially inde-
pendent of the particular filterbank structure. In theory, this im-
plies that medulations from images or image segments of different
sizes and shapes can be directly and meaningfully compared de-
spite the fact that their computation will generally require differ-
ing filterbank implementations, thus overcoming one of the long
standing limitations characteristic of current techniques based on
filterbanks, wavelets, and related transforms.
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