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ABSTRACT

We examine two paradigms for computing mul-
ticomponent AM-FM image models. In channelized
components analysis, estimates for one AM-FM com-
ponent are extracted from each channel of a multi-
band filterbank. Tracked multi-component analysis
represents an image using fewer components by track-
ing the estimated modulating functions of each com-
ponent across filterbank channels. While both ap-
proaches work well for synthetic images, they have
difficulty with natural images that contain phase dis-
continuities. We show that phase discontinuities lead
to wideband frequency excursions that make the com-
putation of AM-FM models difficult and can also
severely degrade the quality of image reconstructions
obtained from the models. We use postfilters to ame-
liorate the effects of the frequency excursions and
compute AM-FM models for two natural images.

I. INTRODUCTION

Intense recent research has been focussed on mod-
elling images as finite sums of AM-FM functions [1-5].
Whereas the 2D Fourier transform represents an im-
age as a linear composition of sinusoidal gratings each
having constant amplitude and frequency, AM-FM
functions are nonstationary sinusoids admitting in-
stantaneous amplitudes and phases that are permit-
ted to contain smooth, wideband variations across the
image domain. Thus, each individual component in
a computed AM-FM image representation is capable
of capturing significant nonstationary structure. In
principle, therefore, it should be possible to represent
many natural images accurately using only a small
number of computed AM-FM components.

Computed AM-FM image models are of great
practical interest for at least two reasons. First, the
inherently nonstationary character of the approach
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tends to lead naturally to representations in terms of
local nonstationary image structures. This facilitates
the analysis of images in terms of their nonstationar-
ities, which are often information rich. For example,
computed AM-FM image models have been used suc-
cessfully for image segmentation, stereopsis, and 3D
surface reconstruction [1,6-8]. Second, while com-
puted AM-FM models are inherently lossy, we have
demonstrated that high-quality image reconstructions
can often be obtained from the estimated amplitude
and frequency modulations in a computed AM-FM
representation [5]. Frequently, the modulating func-
tions in such a representation are exceedingly smooth;
we are currently investigating techniques for com-
pressing the computed modulations to develop AM-
FM based image coding strategies.

A block diagram of the Channelized Components
Analysis, or CCA, paradigm for computing multicom-
ponent AM-FM image models is shown in Fig. 1. In
CCA, the image is first analyzed with a linear multi-
band Gabor filterbank. Fig. 2 depicts the filterbank
in the frequency domain. Estimated modulating func-
tions for one image component are then computed
from each filterbank channel response using the de-
modulation algorithms described in [4] and briefly in
Section III. Thus, the number of components in a
CCA AM-FM image representation is always equal to
the number of channels in the multiband filterbank.

The block diagram of another computational par-
adigm called Tracked Multicomponent Analysis, or
TMCA, is shown in Fig. 3. Like CCA, TMCA begins
by analyzing the image with a multiband Gabor fil-
terbank. The difference between the two approaches
is that TMCA seeks to represent the image using a
number of AM-FM components that is smaller than
the number of filterbank channels. Thus, in TMCA, a
single image component is permitted to lie in different
filterbank channels at different points in the image.
As described in [4], Kalman filters are used to track
the AM-FM image components across the filterbank
channel responses.

Both the CCA and TMCA approaches tend to



Figure 1: Block diagram of CCA, the Channelized

Components Analysis paradigm.

Figure 2: Frequency domain depiction of multiband
Gabor filterbank.

work well when applied to synthetic images that do
not conatain phase discontinuities. However, natural
images and video may be expected to contain large
numbers of phase discontinuities arising from a whole
host of factors including occlusions, surface discon-
tinuities, deformations and defects in surface topol-
ogy, surface reflectance, shadows, specularities, and
noise [1]. We have observed that natural images con-
taining phase discontinuities tend to be problematic
for the CCA and TMCA approaches. The computed
modulations often exhibit large, localized amplitude
spikes that severely degrade the quality of the re-
construtions delivered by both approaches, as well as
wideband frequency excursions that can cause TMCA
to fail altogether.

In this paper, we discuss why phase discontinu-
ities are problematic for CCA and TMCA. We show
that the discontinuities generally lead to wideband
frequency excursions which tend to be accompanied
by large scale amplitude variations of the type we have
observed experimentally. Finally, we develop postfil-
ters to smooth the frequency excursions and to com-
pute high-quality reconstructions of natural images
from their computed AM-FM representations.
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Figure 3: Block diagram of TMCA, the Tracked Mul-
ticomponent Analysis paradigm.

II. PHASE DISCONTINUITIES AND
FREQUENCY EXCURSIONS

In both the CCA and TMCA paradigms, the in-
stantaneous amplitude and frequency of each compo-
nent in a multicomponent image are estimated from
bandpass filterbank channel responses. In this sec-
tion, we examine the nature of simple phase discon-
tinuities and investigate their effects on the instanta-
teous frequency of a bandpass filtered AM-FM com-
ponent. Suppose that

ti(z,y) = ai(z,y) expljpi(z,y)] (1)

is one component of a multicomponent image t(z,y).
By definition, a;(z,y) and Ve;(z,y) are the instanta-
neous amplitude and frequency of component t;(z, y).
Suppose further that g,,(z,y) is the impulse response
of a 2D bandpass filter and that component ¢;(x,y)
dominates the filter response

t(z,y) * gm(z,y)
ﬁm(x, y) eXp[jwm(zay)]’ (2)

where the symbol £ indicates that the second line
of (2) defines ¥, and ®,,. Then, under reason-
able assumptions, it may be shown that the instan-
taneous frequency Vi, (x, y) of the response yn(z,y)
closely approximates the true instantaneous frequency
Vei(z,y) of the component ¢;(z,y) [4,9].

Ym(z,y)

il

A. 1D Analysis

Note that the gradient operator V operates inde-
pendently in each dimension. Hence, in studying how
the effects of phase discontinuities in ;(z,y) are man-
ifest in the instantaneous frequency, it suffices to con-
sider the dimensions independently. For simplicity,
we will therefore restrict the discussion in this section
and in Section II.B to the one-dimensional case.




Consider the simplest instance of a single compo-
nent 1D AM-FM signal that admits a phase disconti-
nuity:

#(z) = exp { 7 [z + Tu(z)] } 3)

The phase discontinuity in #(z) occurs at the point
z = 0, where T € [0,2x] is the magnitude of the
discontinuity and u(z) is the unit step function. The
instantaneous frequency of ¢(z) is given by

¢'(z) = Qo + Ti(z), (4)

where the Dirac delta §(-) is best interpreted in the
sense of distributions. Thus, ¢'(x) is equal to §}g ev-
erywhere except at the point z = 0, which is a set of
Lebesgue measure zero.

If the signal (3) is applied to the 1D Gabor channel
filter

9(2) = 3= =% /40% gift0z (5)

then the filter response is given by

y(@) = t(z)*g(z) = V8ro2el"

(EAEH TR

where &,(z) is the error function

®,(z) = ~&/2ge, ()

1 T
—= e
Ver /_oo
The instantaneous frequency of the response (6) is

given by

1 o
1/”(1')=QO+W3 z? /40

sin Y .(8)
1-2(1 —cosY) [‘I)e (ﬁg) - q)g(mm/i)]

Far away from the site of the discontinuity, y(z) is
effectively sinusoidal and

X

: !
With regards to the estimation of ¢'(z) at points other
than z = 0, the remaining terms in (8) may be inter-
preted as errors induced by the presence of the phase
discontinuity in ¢(z) and by filtering.
Near the discontinuity we have that

tan I, (10)

1
o/m 2
and the instantaneous frequency of the filtered sig-
nal (6) generally contains a wideband excursion which

. 1 -
i%’/’ (z) = +
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may be of either sign. For values of T near w, this
frequency excursion can be unbounded in magnitude.
The support of the region over which the frequency
excursion is si§niﬁ2cant is determined by the exponen-
tial factor =% /4" in (8), the rate of decay of which
is in turn governed by the Gabor filter time constant
o. For filters admitting wide temporal support, the
interval where the frequency excursion is significant
can be large.

B. The Discrete Case

Images are almost always acquired and processed
as discrete signals. Suppose that t(k) is a discrete
signal containing the samples of (3) and let g(k) be a
discrete Gabor filter equivalent to (5) with a half-peak
bandwidth of one octave. Denote the filter response
by y(k) = t(k) = g(k). The frequency estimates ob-
tained by applying the discrete frequency demodula-
tion algorithms given in [5,10,11] to y(k) exhibit ex-
cursions similar to those discussed above for the con-
tinuous case. In the discrete case, however, a closed
form expression analogous to (8) cannot be obtained.

Consider a signal of the form (3) with Qg = 37/5
rad/secand T = 37 /4. After sampling with respect to
a unity sampling interval, the Hertzian equivalent to
Qo is fo = 0.3 cycles/sample. A half-octave discrete
Gabor filter with center frequency 0.1 cycles/sample
was applied to £(k). The frequency estimates obtained
by demodulating the filter response y(k) are shown
in Fig. 4(a), and exhibit a pronounced positive-going
frequency excursion.

Similar results for a signal with Q¢ = 7 /5 rad/sec,
fo = 0.1 cycles/sample, and T = 57/4 are given in
Fig. 4(b) for a half-octave Gabor filter with center
frequency equal to 0.1. In this case, the frequency
estimates exhibit a negative-going excursion. Finally,
Fig. 4(c) shows the frequency estimates obtained for
a signal with Qg = #/5 rad/sec and T = 37 /4, where
fo is again equal to 0.1 cycles/sample. The Gabor
filter center frequency was also 0.1.

C. General Discontinuities

Generally, the AM-FM components encountered
in natural images and video are substantially more
complicated than the signal (3). Nevertheless, the
foregoing arguments can still be applied approxi-
mately to analyze the types of frequency excursions
that may be expected to occur.

Consider the phase ¢;(z,y) of the image compo-
nent t;(z,y) in (1). For practical applications, we
may assume that o;(z,y) is finitely supported and
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Figure 4: Discrete frequency estimates for a sinusoidal
signal with frequency fo and a phase discontinuity of
magnitude Y. (a) fo = 0.3, T = 3n/4. (b) fo = 0.1,
Y =5n/4. (c) fo=0.1, T = 3n/4. '

bounded. Furthermore, since the image will almost al-
ways be sampled in practice, we assume that ¢;(z,y)
contains no isolated singularities or wild, erratic local
behavior. Under these reasonable and practical as-
sumptions, we may write @;(z,y) = 0(z,y) + A(z,y),
where 8(z,y) is continuous and A(z,y) is a sum of
discontinuous steps.

The instantaneous frequency of #;(z,y) is then
given by Vé(z,y) + VA(z,y), where V8(z,y) exists
as an ordinary function almost everywhere. The term
VA(z,y) will generally contain frequency excursions
in the vicinity of the discontinuities. A detailed anal-
ysis of how these excursions are manifest in the fil-
ter response (2) is difficult and beyond the scope of
this paper. However, to within errors inherent in the
quasi-eigenfunction approximation given in [10], the
instantaneous frequencies Vi;(z,y) and Vi, (z,y)
are approzimately equal. Generally, frequency excur-
sions in Vi), (z,y) may be expected to have increased
spatial extent and be smeared as compared to those
in Vy;(z,y) as a consequence of filtering.
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III. COMPUTATIONAL IMPLICATIONS

Consider once again that t;(z,y) in (1) is one com-
ponent of a multicomponent image t(z,y) and sup-
pose this time that ¢;(z,y) dominates the response
ym(Z,y) in (2) at the point (zo,%). It was shown
in [9] that the instantaneous frequency V;(z,y) may
be estimated using the approximate demodulation al-
gorithm

Vi(Zo,yo0) = V&i(zo, yo)

Re [ Tinle)]

Jym(@,y) an

(z,y)=(z0,y0)

The instantaneous amplitude a;(z,y) may then be es-
timated by

ai(Zo,y0) ~ @i(2o, Yo)
Ym (2, y)
Gm [V@z (ZL', y)]

.(12)
(=,y)=(z0,y0)

In the neighborhood of a frequency excursion,
both the demodulation algorithms (11) and (12) and
their discrete equivalents discussed in [10] can suffer
from large approximation errors. Furthermore, be-
cause Gabor filter frequency responses fall off rapidly
outside the passband, modest to severe errors in the
frequency estimates can cause the amplitude algo-
rithm (12) and its discrete equivalent to deliver ab-
surdly large estimates.

Even if frequency estimation errors do not occur,
the fact that the instantaneous frequency can lie sub-
stantially outside the channel filter passband in the
vicinity of an excursion can lead to numerical insta-
bility in the amplitude estimation, which again may
result in absurdly large amplitude estimates. In ei-
ther case, the erroneously large amplitude estimates
can severely degrade the quality of the reconstructed
images obtained from CCA and TMCA representa-
tions. Even more disastrous consequences can arise
in TMCA, where frequency excursions often render
the Kalman filters depicted in Fig. 3 unable to track
individual image components at all. When this oc-
curs, the approach fails altogether.

IV. POSTFILTERING SOLUTION

Our approach to ameliorating the effects of wide-
band frequency excursions is to process the modu-
lating function estimates delivered by each filterbank
channel with low-pass Gaussian postfilters having en-
velopes and bandwidths that are simply related to the
channel filters. This postfiltering tends to suppress
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Figure 5: Postfiltered channel model.

excursions in the estimated frequency and to stabi-
lize the amplitude estimation procedure. In TMCA,
it also enables the Kalman filters to maintain compo-
nent tracking across frequency excursions.

Each postfilter is most conveniently expressed in
terms of a coordinate system that is rotated with re-
spect to the orientation of the corresponding channel
filter. Let vm be the orientation of the filter g,,(z,y)
and let 8 = vy, — §. Define the rotated coordinates

¢1 and ¢ by

G cosf sinfB| |z
[C:}_[—sinﬁ cosﬂ] [y} (13)

The impulse response of the postfilter for filterbank
channel m is then given by

pm(x’ y) =

e[ (44 4)]. s

4K Kp02, 402, \k? k%))’
where o, is the space constant of g,,,(z,y) and k; and
kg are scaling factors that govern the relative amount
of smoothing performed in the (; and ¢, directions.

The postfiltered channel model is shown in Fig. 5,

where the initial frequency estimates computed us-
ing (11) are postfiltered. These postfiltered frequen-
cies are then used in the amplitude algorithm (12),
and the resulting amplitude estimates are themselves
postfiltered.

V. EXAMPLES

The image Raffia is shown in Fig. 6(a). A re-
construction of the image obtained from a CCA AM-
FM representation computed without postfiltering is
shown in Fig. 6(b), and is of extremely low quality
due to the presence of wideband frequency excursions.
Numerous instances of absurdly large amplitude esti-
mates are clearly visible and cause the dynamic range
of the reconstructed image to grossly exceed the 8
bits used for display. The high-quality reconstruction
given in Fig. 6(c) was obtained from a CCA AM-FM
representation computed using postfilters.
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Fig. 6(d) shows the image Burlap. A high-fidelity
CCA reconstruction of the image computed with post-
filtering is given in Fig. 6(e). Without postfiltering,
the TMCA approach was unable to successfully track
any components in the Burlap image due to the pres-
ence of frequency excursions. With the postfilters, 8
components were tracked and an 8-component TMCA
representation was successfuily computed. A recon-
struction obtained from this representation is shown
in Fig. 6(f), and is of remarkable quality for such a
small number of components.

VI. CONCLUSION

Wideband frequency excursions generally cause
substantial difficulties in the computation of multi-
component AM-FM image models. With the TMCA
approach, the Kalman filters used to track image
components across channels in the multiband filter-
bank often fail when frequency excursions are present.
Even if tracking is maintained in the vicinity of an ex-
cursion, the wideband variations in the instantaneous
frequency tend to make multiple image components
difficult to resolve from one another. This typically re-
sults in severe cross-component interference that can
produce significant errors in the computed modulat-
ing function estimates. For both the CCA and TMCA
paradigms, frequency excursions lead to amplitude es-
timates that are absurdly large in magnitude. These
erroneous amplitudes severely degrade the quality of
the images reconstructed from the computed repre-
sentations.

The fact that phase discontinuities generally pro-
duce wideband frequency excursions is significant
since the phases of natural images may be expected
to contain large numbers of discontinuities. Postfilters
may be used to smooth the associated frequency ex-
cursions and ameliorate their deleterious effects. Fur-
thermore, high-quality image reconstructions can be
obtained from postfiltered AM-FM models.
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