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Abstract - Useful approximations to the responses of
discrete linear systems and certain discrete nonlinear
systems are developed for input complex AM-FM signals
of the form s(m) = a(m) exp [j¢(m)]. These are used
to derive limits on simple AM-FM demodulation
mechanisms related to the Teager-Kaiser operator.

1. INTRODUCTION

We develop useful approximations to the responses of
certain discrete linear systems and related discrete nonlinear
systems to complex AM-FM signals of the form

s(m) = a(m) eJ¥™) ¢y

where a: Z —» R are samples of a continuously
differentiable amplitude modulation (AM) function a(t),
and ¢: Z — R are samples of a continuously twice-
differentiable frequency modulation (FM) function ¢(z).
We also supply tight approximation bounds stated in
terms of the smoothness of a(m) and ¢(m) as
expressed by certain (Sobolev) norms, and also in terms of
the duration of the involved linear system function(s).

AM-FM functions of the form (1) have recently been
effectively used to model nonstationary, yet locally
coherent structures in speech signals, images and other
multidimensional signals. For example, they have been
successfully used in the analysis of textured images when
combined with Gabor wavelet image decompositions [1]-
[3] and/or certain nonlinear energy operators [4], [S].
Models of the form (1) have also been extensively applied
to the analysis of speech formation [6]-[8].

In these applications it is often of interest to pass the
signal of interest through a linear system, such as a
bandpass filter or a bank of filters [3], in order to extract
local frequency structure that the model (1) captures.

In the next section, theorems are given that
approximate the responses of arbitrary square-summable
discrete linear systems to inputs of the form (1), and also
to (nonlinear) products of such responses. Although the
results are general, we will be most interested in systems
having impulse responses of the form

h(m) = w(m) eJPcm [03)
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where w(m) is a real-valued low-pass function.

These results culminate in Section III to establish
theorems that give approximations on certain nonlinear
AM-FM demodulation mechanisms related to the Teager-
Kaiser operator [4]-[10].

II. APPROXIMATIONS TO LINEAR SYSTEM
RESPONSE AND PRODUCTS OF RESPONSES

In the first main result, we approximate the response

5,(m) = h(m) * s(m) = z h(P) s(m - p) 3)
peEZ

of a square-summable discrete linear system A: Z — C to
an input of the form (1). The approximation is given by

5 ,(m) = s(m)-H[e j#tm)]

= a(m) e Jm). [e j‘i’("‘ )] @)
with
d0m) =L ¢ (m)
and where

Hel®= Y. hmeI°"

meZ

is also denoted h(m) <> H(e/?). The approximation
(4), when valid, has considerable potential for the analysis
of discrete linear systems that decompose AM-FM signals
of the form (1), since it takes the same general form as the
response of the system to a monochromatic signal

s(m) = AeJS¥ 6))

except that in (4), the argument of the system function
H(-) is time-varying. Indeed, for a monochromatic signal
(5), the approximation is exact. In all other cases, the
error in (4) will be bounded in Theorem 1, which will
require the following definitions:

Gmax = Sup la(m)l,
meZ
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AR ={ Y m2"|h(m)|2]”2

mel

n
=\/_1_I Ly(ejw) 2dw
2n . da)"
and
Na; m)=l&(m)l+mj \a(s)l ds
where

- 124,
¥ E,N (p) 1.644934

is Riemann's Zeta function. The functionals Ag(h)
measure the temporal localization of the filters h(m), or
equivalently, of the low-pass equivalents w(m) in (2),
since Ax(w) = Ag(h). The smoothness functionals
9Xa; m) are time-dependent Sobolev (derivative) norms;
the approximation error bounds expressed by the
Theorems generally contain terms imposing smoothness
of this type on both a(m) and on ¢(m).

Theorem 1: Let e (m) = s, (m) - g,,(m)L Then
e.(m) < Ay(h) Da; m) + gy o (k) DXG; m).

Thus, the approximation error is bounded by expressions
of the temporal localization of the filter h(m) and the
smoothness (or lack thereof) of a(m) and ¢(m). The
bound becomes tight as s(m) becomes monochromatic
in the sense of small Xa; m) and Z(¢; m).

Next, we develop an approximation to the products of
linear system responses. This has application for the
analysis of nonlinear systems that incorporate square-law
devices and other product nonlinearities. Denote the
product of response and conjugate response (where
superscript ' * ' denotes complex conjugate)

Sey = [A1%S]-[hpxs]*

of square-summable discrete linear systems h: Z — C,
hy: Z — C to an input (1). The approximation is

5, (m) = a¥(myH 1Le jotm Hyle j9tm )], ®

where hp(m) < Hyle j®) k = 1, 2. While (6) is not
unexpected in view of (4) and the bound in Theorem 1, it
is not possible to develop a useful bound on the error
from the result of Theorem 1. However, the following
Lemma does supply such a bound. First define:

k=Y, W
peZ
Lemma 1: Let €,,(m) = |5,4(m) - 5 ,,(m)l. Then
< Gmax [;lAl(hZ) + il_zAl(hl)] Xa; m)
+ abax [11A9(ho) + h pAg (k)] DX; m).

€ (m)

III. APPLICATION TO A NONLINEAR AM-FM
ENERGY OPERATOR

We now explore some interesting applications that are
of general utility in the analysis of nonstationary signals.
For example, it follows from Lemma 1 that for a filtered
signal s«(m) given by (3)

Is, ()2 = a2(m)-| e 10 ] P

for sufficiently smooth a(m) and ¢ (m) and localized
h(m). We now apply these results to obtain limits on
the discrete nonlinear operator

®{s,(m} = |s.om)|2-Re{s,m+Ds,(m-1}.

Note that we are applying the operator ® (-} to filtered
versions of s(m); from the more general result, bounds
on unfiltered approximations can be obtained.

A real-valued version of the operator ®{-}, in fact
identical to @{-} if the input is real, was first developed
by Teager [9] and subsequently investigated by Kaiser
[10], [11), is effective for AM-FM demodulation [6]-[8].
The complex operator ®{-} was first introduced in a
multidimensional form in [4]. In practical applications it
is generally necessary that the energy operator @ be
preceded by a linear filter (usually bandpass) in order to
counteract the effects of noise [12], [13]. We have:

& {5,0m)) = 202(m) [sin 4(m]? |atle 391 |

The error in this approximation is bounded by the
following theorem, where hy(m) = h(mt1).

Theorem 2: Let eg(m) = [@{5,(m) } - ) {s,em}l.
Then _
eqp(m) < Bmaxh [Ay(h)¥281(R)+Ay(h)] Dla; m)
+ aduax 1 [Bg(hy Y280y +8(h )] DXg; m)
This approximation ;I; (-} of ®{-} and accompanying

error bound complement the results given in [8] for the
(real-valued) Teager-Kaiser operator.
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Example 1: Suppose h(m) = 8(m) (no filter). Then
|H(ei®)| = 1 for w € [0, 27] and so:
& {stm)} = &{stm)} = 2a%m) [sin d(m)])> ()
By Theorem 2, the approximation error is bounded by:
eqp(m) <2 amax[i)(a; m) + Gax ﬂcﬁ; m)].
Example 2: Next we approximate the energy ®{-}ofa

difference signal: take h(m)= 8(m+1)-8(m-1). Then
|H(ej®)| = 2lsin ol and the approximation is:

~ & {s(m+1) - s(m-1)}
= 84%(m) [sin ¢ (m)]* ®

From Theorem 2, the error in (8) is bounded above by:

<I>{s(m+l) - s(m-1) }

24a.,.4[ DXa; m) + 3amax ™9: m)].

By combining (7) and (8), a(m) and ¢'(m) can be
estimated via an energy separation algorithm [6]-[8]:

2
s (m+1)-s(m-1)}

a

©

[siné(m)]zztb{s(mﬂ)-s(m-l)} a0
4(I>{s(m)}

Results similar to (9), (10) can be obtained for filiered
signals. Instead we explore an even simpler algorithm
where filtering is also analyzed - an optimal class of filters
is derived using a discrete uncertainty principle criterion
recently developed by Doroslovacki, Fan, and Djuric [14].

IV. APPLICATION TO A DISCRETE MULTI-BAND
AM-FM DEMODULATION SCHEME

Suppose that the signal (1) is passed through a set of
bandpass filters hp(m); 2 =1 ,..., N, yielding outputs

Sp(m) = hn(m) * s(m).

While the frequency tesselation will not be explored here,
the filters 4,(m) are assumed unit-energy and to sample
the spectrum [0, 7] sufficiently densely that a large
response is assured at each m; see, e.g., [11-[3], [12],
[13]. At each time m, the maximum-amplitude response

ym)= max  Sa(m) amn
1<n<N

is found; let the maximizing channel be h(m). Thus
h(m) captures a large percentage of local AM-FM signal
energy. To estimate this information, first define

2(m) = = [ym+K) + y0m-K0] 12)
which is equivalent to filtering with
g(m) = L [1(m+K) + hm-0)]. (13)
A simple AM-FM demodulation algorithm is then:
; ~ov oL oosl| A
¢ (m)=¢(m)= X Cos [ m) ] (14)
and
A _ym
a(m)=a(m) = ~ . 15)
H [e j¢(m)]

In (12)-(15) a 2-point difference, rather than average of

filter outputs can also be used. However, calculating ¢ in
(14) then requires finding an unambiguous interpretation
for sin-! on [0, z). For K < 1, (12) also has the
advantage that it resists high-frequency (noise), which is a
problem with operators of this type [12], [13].

Approximations (14), (15) are supported by the
following. By Theorem 1, z(m) =  (m), where

2 (my = s(m) cos [Ké(m)) Hlei®m)]  (16)
with an error bounded above by

e,m) = lz(m) - 2 (m)|

< Ay(g) DAa; m) + amax Ax(g) TX: m).

Note that since |Ae 9 + Be 74| <¥2 |A + B|, then

a®) < V2 A { £ [wim+k) + w(m-50] }

={2—ak,K(w)
where
Ll jon |2
O x(w) = Py L; v cos(Ko)W (e J?)| dw.

and w(m) & W(eJ?). Selecting w(m) so that
9y x(w) is small is a localization criterion controlling
the accuracy of (16). In fact, Bk,K(w) = 0 for the
solutions of the difference equation

w(m+K) + w(m-K) = C-8(m)
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given by W(e/®) o< sec(Kw). Imposing smoothness

criteria on a(m) and/or ¢ (m) results in more interesting
solutions, a strategy supported by the assumption that the
(14), (15) compute smooth modulation components. A
similar approach was taken in [3], where the AM-FM
estimates were made smooth (via a variational strategy) by

forcing D(a; o) and ﬂd’; ; o0) small.

Since Z(m) and ¢ (m) are computed in a rather direct
manner from y(m), a simple approach is to minimize

LY lhmsk) - oI

meZ
<¥Z 89 { 3 [wim+K) - w(m-K)] }
=12 ex(w),
where
n
ex(w) = ﬁj sin2(K@) | W (e /9)|%do .
-

Simultaneously forcing o kKW) and Ex(w) to be

small [for unit-energy w(m)] are conflicting goals as
expressed by a form of the Doroslovacki-Fan-Djuric
uncertainty relation [14], which states that for K = 172,

3 kW) - Ex(W) 2 ¢ an

The filters that uniquely achieve the lower bound in
(17) have the form (p > -1/2) [14]:

W(ei®) = B(p) [2 cos (wr2)]". (18)
where
Bp) =L@+ 19)
T 2p +1)

yields unit energy. The optimal filters (18) maintain
localized low-frequency energy while simultaneously de-
emphasizing high-frequency energy. These filters approach
a Gaussian characteristic as p — oo [14], hence the optimal
channel filters

H(ei®) = Bp) {2 cos [(@ap2]}*.  (20)

resemble Gabor functions {11-[31, {51, [12]-[14] for large
p, in agreement with the continuous formulation.

V. CONCLUDING REMARKS

AM-FM models such as (1) that capture physically
meaningful signal nonstationarities are finding increased

applications. New analysis techniques, expanding on those
given here, will help to exploit the power of the approach.
Currently, we are studying extended models of the form:

s(m) = 2 ai(m) e’ $rlm), (19)
k
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