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Abstract

We present a modulation domain technique for segment-
ing textured images modeled as 2-D multicomponent AM-
FM functions. A Gabor filterbank is used to derive es-
timates of the dominant modulations at each image point
and statistical clustering is then performed with respect to
a similarity measure based on modulation domain entropy.
Post processing is applied in the image domain to regularize
the solution and enforce spatial correspondence. Several
synthetic and natural examples are presented.

1. Introduction

The unsupervised segmentation of images into disjoint,
connected regions corresponding to objects in the imaged
scene has long been recognized as a problem of fundamen-
tal importance in computer vision and image understand-
ing [9,24]. It is a difficult problem, and no general solution
has yet been formulated [19]. However, many good solu-
tions have been proposed for specific classes of segmenta-
tion problems. Among such classes, the problem of seg-
menting textured images is particularly challenging. A pri-
mary reason for this is that a well-posed definition of texture
has only begun to emerge. Many recent successful tech-
niques have been based on multiband filtering [7,15,25,26]
or on purely stochastic models [1,4,17,19,21,27].

In this paper, we take a distinct approach by character-
izing texture in terms of nonstationary amplitude and fre-
quencymodulations. We model textured images as sums
of nonstationary AM-FM functions, orcomponents, of the
form t(x) = a(x) exp[j'(x)]. By definition, the instanta-
neous amplitudea(x) is the AM function oft(x) and the
instantaneous frequencyr'(x) is the FM function oft(x).
Using a recently developed theory of AM-FM image mod-
eling [12], we compute estimates of the modulating func-
tions of the multiple components in an image to arrive at
a modulation domain representation. We then address the
segmentation problem in modulation space.

Our solution is a partially unsupervised feature-based

segmentation algorithm — the number of image regions
must be known, although noa priori information about the
region characteristics is required. While feature-based seg-
mentation techniques have been investigated extensively in
the literature, our approach is significant for two reasons.
First, we believe that this is the first case where an image
processing problem of substantial practical interest has been
formulated and systematically solved directly in the modu-
lation domain. Second, the quality of the results we obtain
is competitive with the best results that have been reported
in the literature to date. Our AM-FM image model is in-
troduced in Section 2 and feature extraction techniques for
estimating the dominant image modulations on a spatially
local basis are described in Section 3. In Section 4 we de-
tail our segmentation approach, which utilizes a statistical
clustering algorithm in the modulation domain followed by
image domain post processing. Examples and conclusions
are presented in Section 5.

2. Image Model

Modulation domain representation of a real-valued im-
ages(x), x 2 R

2 , derives from considering thats(x) is a
sum of locally coherent (i.e., locally smooth) nonstationary
AM-FM functionssk(x):

s(x) =

KX
k=1

sk(x): (1)

The reason for considering a multicomponent model such
as the sum (1) is that it is generally impossible to compute
accurate modulating function estimates unless the individ-
ual AM-FM functionssk(x) are locally coherent almost ev-
erywhere [12]. Most images of practical interest contain
complicated, nonstationary texture structures and may also
be inherently multipartite. Thus single component AM-FM
representations with locally smooth modulations simply do
not exist, and it becomes a computational necessity to seek
multicomponent models of the form (1) wherein each in-
dividual AM-FM component admits modulations thatare
locally smooth.



The AM-FM componentssk(x) in (1) are real-valued;
their instantaneous amplitude envelopes (AM functions)
and instantaneous frequency vectors (FM functions) are
therefore not unique. By way of analogy to the well known
1-D analytic signal, we use the directional 2-D Hilbert
transform to disambiguate the demodulation problem by as-
sociating withs(x) a complex-valued imaget(x) = s(x)+
jq(x) where, withx = [x y]T ,

q(x) = p.v.
1

�

Z
R

s(x� �; y)
d�

�
: (2)

Since the Hilbert transform (2) is linear, for any given de-
composition ofs(x) into components we then have the
complex model

t(x) =

KX
k=1

tk(x) =

KX
k=1

ak(x) exp[j'k(x)] (3)

wherein the AM functionsak(x) and FM functionsr'k(x)
are unique [14, 22]. A method for discretizing (2) and (3)
was given in [10].

3. Feature Extraction

Feature extraction involves computing dense, pointwise
estimates of the unknown modulating functionsak(x) and
r'k(x) in (3). Our approach for doing this is to first isolate
the components from one another locally in space and fre-
quency by applying a multiband linear filterbank and then
subsequently to apply a spatially local nonlinear demodula-
tion algorithm to the filterbank channel responses for esti-
mating eachak(x) andr'k(x). While it is not necessary
for the filterbank to isolate components on a global scale,
i.e., a single channel response may be dominated by differ-
ent components in different spatial regions, what is required
is that each channel response be dominated by at most one
component at each point in the spatial domain. This re-
quirement is satisfied automatically in practice, because the
structure of the filterbank will determine the multicompo-
nent decomposition of the image as indicated in (1) and (3).

Let gi(x) andGi(
) be the impulse response and fre-
quency response of a particular one of the filterbank chan-
nels, and suppose that, at a particular pointx, the channel
responseyi(x) is dominated by image componenttk(x), so
that

yi(x) = t(x) � yi(x) � tk(x) � yi(x): (4)

We estimate the AM and FM functions of componenttk(x)
at the pointx using the local nonlinear algorithms [13]

r'k(x) � Re

�
ryi(x)

jyi(x)

�
; (5)

ak(x) �

���� yi(x)

G[r'k(x)]

���� : (6)

Rigorous derivations of (5), (6) and their discrete equiva-
lents are given in [12]. It should be noted that the multidi-
mensional Teager-Kaiser operator [20] could also be con-
sidered as an alternative to (5) and (6).

The features of interest for modulation domain image
segmentation are those modulationsaD(x), r'D(x) that
dominate the image spectrum on a spatially local basis.
Since different components in (3) are expected to be dom-
inant in different image regions, the dominant modulations
will come from different components at different points.
ThusaD(x) andr'D(x) are expected to be neither ho-
mogeneous nor locally coherent, and this fact is the impe-
tus behind applying statistical clustering in the modulation
domain to perform segmentation.

For each pointx, we define the dominant component as
the one that maximizes the channel selection criterion

	i(x) =
jyi(x)j

max
 jGi(
)j
: (7)

As explained in [12], this criterion tends to select high-
amplitude components with frequency vectors lying near
the maximum transmission frequency of the channel,
thereby reducing demodulation errors due to noise and
cross-component interference. Computed estimates of
aD(x) andr'D(x) are extracted by applying (5) and (6) to
the response of the channel that maximizes (7) on a point-
wise basis.

Although our segmentation algorithm is independent of
the particular filterbank that is used, the filterbank design
is nevertheless a critically important issue: it should be de-
signed to yield componentstk(x) in (3) that admit locally
coherent modulating functions so that approximation errors
in the estimators (5) and (6) will be as small as possible.
Furthermore, the filterbank must cover the right frequency
half-plane where the complex image (3) has support with a
tessellation of filters that are spatially localized to capture
nonstationary spatial structures in the componentstk(x)
and simultaneously spectrally localized to resolve the mul-
tiple components from one another.

The efficacy of using Gabor channel filters, which in
the continuous-domain case uniquely realize the uncertainty
principle lower bound on joint spatio-spectral resolution,
has been rigorously studied and well established [2, 3, 15,
23]. We typically employ a bank of one-octave isotropic
unity L2-norm Gabor filters similar to the filterbanks de-
scribed in [3, 11]. Such filterbanks generally provide good
performance across a wide variety of images and image
types. In situations wherea priori samples of the expected
region types are available, it should be noted that improved
performance can be obtained by using techniques similar to
those described in [7,26] to design an optimal or near opti-
mal set of filters.



4. Segmentation

We have found that improved segmentation performance
is obtained by transforming the Cartesian dominant fre-
quency vectorr'D(x) to a polar representation. Thus,
switching now to an explicitly discrete notation, we con-
sider a modulation domain feature vector with entries
A(m;n) = aD(m;n), R(m;n) = jr'D(m;n)j and
�(m;n) = argr'D(m;n) at each image pixel. While
spatial coordinates could also be included in the feature vec-
tor to encourage formation of connected regions in the seg-
mentation, there is a significant computational advantage
to keeping the dimension of the feature space as small as
possible [6,23]. We therefore obtain a preliminary segmen-
tation by performing statistical clustering in the 3-D mod-
ulation space and subsequently impose a spatial correspon-
dence constraint by refining the segmentation with post pro-
cessing as described in Section 4.2.

4.1. Modulation domain clustering

To obtain the preliminary segmentation, we apply the
well-knownk-means clustering algorithm in theA-R-� fea-
ture space [16]. While we are currently developing a tech-
nique based on the modified Hubert index [5] for automat-
ically determining the number of clusters, our algorithm
presently requiresa priori knowledge of the number of re-
gions in the image to specify the value ofk in thek-means
algorithm.

Prior to clustering, we scale each feature by the recipro-
cal of the sample standard deviation computed for the fea-
ture to obtain the scaled featureseA, eR, ande�. The similarity
measure between pixels(i; j) and(m;n) is then given by

S(i; j;m; n) =
n
�
h eA(i; j)� eA(m;n)

i2
+ �

h eR(i; j)� eR(m;n)
i2

+ 
he�(i; j)� e�(m;n)

i2 o 1

2

;

(8)

where the weights�, �, and, which seek to emphasize the
feature that provides the best class separability, are chosen
based on modulation domain entropy. Letp ~A(q) be the nor-
malized histogram ofeA(m;n) and definep ~R(q) andp~�(q)
similarly. As usual, the entropy of each feature is defined
by, e.g., E ~A = �

P
q p ~A(q) log2 p ~A(q). The weight� is

then calculated according to� = (ET � E ~A)
2=E ~A, where

E ~A =
E ~A

maxq p ~A(q)�minq p ~A(q)
(9)

andET = E ~A + E ~R + E~�. The calculations for� and are
completely analogous.

The k-means algorithm is run with respect to the sim-
ilarity measure (8) for ten iterations starting from random
initial cluster seeds, and the best final configuration is se-
lected using the usual squared-error criterion for cluster val-
idation [6,16].

4.2. Post processing

The preliminary segmentation delivered by thek-means
algorithm is generally unsatisfying and is rarely in good
agreement with visual perception. Many small regions of
misclassified pixels are typically present and we have also
observed long, narrow “streaks” of misclassified pixels. In
addition, numerous irregularities frequently appear along
the boundaries of regions that were smooth in the original
image.

We ameliorate these effects by applying two image do-
main post processing stages to arrive at the final segmen-
tation. First, similar to the post processing operator that
was used in [26] to regularize region boundaries, we ap-
ply an isotropic morphological majority filter to smooth the
boundaries of the segmented regions. For images of size
256 � 256, we use a9 � 9 structuring element. Second,
connected components labeling and minor region removal
are applied to the segmentation in the image domain. Only
the k largest connected components are retained, wherek
is equal to the number of clusters delivered by thek-means
algorithm. As mentioned above, this final step enforces an
image domain spatial correspondence constraint on the final
segmentation.

5. Examples and Conclusion

Several two-texture segmentation examples are pre-
sented in Fig. 1. The center portion of the image in Fig. 1(a)
has been rotated counterclockwise by 45Æ. The computed
dominant AM function is shown as a gray scale image in
Fig. 1(b) and a needle diagram depicting the dominant FM
function appears in Fig. 1(c), where needle length is in-
versely proportional to the dominant frequency magnitude
R(m;n). The segmentation obtained using our proposed al-
gorithm appears in Fig 1(d), where 98.25% of the pixels are
classified correctly. The image in Fig. 1(e) is a juxtaposition
of two Brodatz textures. The computed dominant modula-
tions are shown in Fig. 1(f) and (g), and the obtained seg-
mentation is given in Fig. 1(h). In this case, 99.19% of the
pixels are correctly classified. Finally, Fig. 1(i) and (k) show
two natural scenes from the MIT Media Laboratory Vis-
Tex database. The segmentation results appear in Fig. 1(j)
and (l), where pixel intensities in one of the two segmented
regions are equal to those of the original images and pixel
intensities in the second region have been divided by two.
While precise ground truth is not available for these images,



the segmentation results appear to be in excellent qualitative
agreement with human visual perception.

As demonstrated by these examples, the textured image
segmentation approach proposed in this paper is competi-
tive with the best existing techniques, many of which are
described in the references below. We have run the algo-
rithm against numerous synthetic two- and three-texture im-
ages and observed correct pixel classification rates ranging
from 94% to 99%. It also seems to work well on natural
scenes such as the ones in Fig. 1(i) and (k). The approach
is significant because it represents the first time that an im-
age processing problem of substantial practical interest has
been formulated and solved in the modulation domain. Our
ongoing research is focused on developing a technique for
automatically determining the number of regions in an im-
age so that the algorithm will be fully unsupervised. Several
of the new cluster validation techniques that have emerged
recently [8,18] may prove useful in this regard.
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Figure 1. (a) Original WoodWoodimage. (b) Computed dominant AM function. (c) Computed dominant
FM function. (d) Segmentation result delivered by the proposed algorithm. The correct classification
rate is 98.25%. (e) Original MicaBurlap image. (f) Computed dominant AM function. (g) Computed
dominant FM function. (h) Segmentation result. The correct classification rate is 99.19%. (i) Original
Building.0010image. (j) Overlay of segmentation result on original image. Pixel values in the left-
hand region are unaltered from the original; pixel values in the right-hand region are divided by two.
(k) Original GrassPlantsSky.0005image. (l) Overlay of segmentation result on original image. Pixel
values in the lower region are equal to those in the original; pixel values in the upper region are
divided by two.


