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ABSTRACT 
In this paper, we describe genetic algorithms (GA’s) for forecasting long-term 
quarterly sales of products in the telecommunications technology sector using 
widely available economic indicators such as Disposable Personal Income and 
New Housing Starts as independent variables.  Individual chromosomes 
indicated inclusion or disinclusion of specific economic variables, as well as 
operational rules for combining the variables. Population evolution utilized 
random crossover mating, mutation, and inversion.  Several features beyond 
those of the canonical GA were also incorporated, including evolution of 
individuals in distinct ecosystems with a specified level of intermarriage 
between ecosystems, the capability for a single gene in an individual’s 
chromosome to indicate a subroutine call to the complete chromosome of an 
individual from a previous generation, and hill-climbing applied to improve the 
most fit offspring produced by a generation.  At a forecast interval of eight 
quarters, individuals exhibiting maximal fitness achieved RMS forecast errors 
below the the average two-week sales figure. 

1. INTRODUCTION 
The ability to accurately forecast long-term future sales of specific products is a 

highly desirable capability for many companies operating in the increasingly volatile 
telecommunications technology sector.  Such a capability could allow companies to avoid 
surpluses and shortages in manufacturing resources, including materials, capital 
equipment, and personnel.  Here, by long-term, we mean forecasting of quarterly sales at 
a forecasting interval ranging from a few quarters up to a few years.  Recently, such long-
term forecasting has proven to be an extremely difficult problem due to increased market 
volatility brought on by numerous factors including deregulation, the 
Telecommunications Act of 1996, and ever expanding global competition.   Whereas 
simple heuristic location estimation techniques, including, e.g., exponential smoothing, 
were in the past at least marginally adequate for developing long-term predictions in this 
market, we have found them to be wholly inadequate in recent years.  Moreover, due to 
the highly nonstationary, evolutionary, and indeed sometimes even chaotic nature of 
telecommunications product sales, the effort required to continuously reformulate more 
sophisticated parametric methods including linear regressions, classical Box-Jenkins 
ARMA models, and Kalman filters can rapidly constitute an insurmountable burden. 

Recently, artificial neural networks (ANN’s) have been applied to a variegated array 
of forecasting problems (Donaldson and Kamstra, 1989), (Saravanan, 1993), (Kuan and 
White, 1994), (Wan, 1994), (Masters, 1995).  One of the primary advantages of ANN’s is 
that they potentially have the capability to capture complex and nonlinear relationships 
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between the independent and forecasted variables, whereas such relationships are often 
difficult or impossible to treat using more traditional linear methods. The most important 
disadvantage of forecasting with ANN’s is that it is generally impossible to formulate a 
deterministic description of the algorithm that is implemented by the network after 
training.  Particularly in applications involving financial time series, this can be a 
significant concern since managers are often reticent to stake millions of U.S. dollars on a 
forecast that they cannot explain or systematically justify. 

A related family of empirical optimization techniques that also have been applied 
recently to time series forecasting includes genetic algorithms (GA’s) and evolutionary 
programming (Holland, 1975), (Packard, 1990), (Koza, 1992), (Bäck, et al., 1997), 
(Mitchell, 1998).  For example, Meyer and Packard (1992) proposed methods for 
prediction of high-dimensional chaotic time series using genetic algorithms based on 
conditional intervals for the independent variables.  With this approach it is difficult to 
formulate a deterministic model relating the forecast and independent variables, however. 
Hybrid techniques have also been investigated, including both genetic-fuzzy systems 
(Goonatilake, et al., 1994), (Kim and Kim, 1997) and the use of GA’s in training ANN’s 
(Saravanan, 1993), (Harrald and Kamstra, 1997). Some of these evolutionary techniques 
offer the benefit that the functional relationship between the independent and forecasted 
variables in the evolved algorithm can be obtained by analysis, although significant effort 
may be required to do so.   

In this paper, we present late-breaking, preliminary results wherein long-term 
quarterly sales of a particular, widely deployed telecommunications product were 
forecasted using GA’s and evolutionary programming. In the nomenclature of Bäck, et 
al. (1997), the described technique would actually best be characterized as an 
evolutionary algorithm (EA) rather than a GA, but we will not be concerned with such 
distinctions. For independent variables, we elected to use readily available leading 
economic indicators, reasoning that these should be related to both deployment of new 
telecommunications infrastructure and growth of existing infrastructure. With this 
approach, the inherently self-organizing, unsupervised nature of GA’s frees the analyst 
from the need to explicitly model rapidly changing nonstationary dynamics in the time 
series.  Moreover, the method produces a deterministic model that can be studied in-
depth for dependencies.  

This problem is extremely challenging in general: the studies cited above were 
limited to short-term prediction and did not address the long-term, multistep forecasting 
problem treated here. The difficulty of the problem is further compounded by a lack of 
large quantities of sales data for use in training.  Indeed, the independent variables have 
an inherent time resolution of months, whereas the dynamics of the sales time series can 
change on a time scale of less than one year.  Thus, large historical data sets have limited 
utility in training or evolving algorithms for predicting future sales. The primary 
contribution of this work is to demonstrate the successful application of GA’s to the long-
term forecasting problem. 

2. ALGORITHM DESCRIPTION 
GA’s were implemented using the “e Evolutionary Algorithm Program” developed 

and marketed by System Dynamics International, Inc., of St. Louis, MO (System 
Dynamics, 1997).  This software supports features of the canonical GA (Holland, 1975), 
as well as several extensions described below.  The independent variables were 12 time 
series of economic indicators selected from among the many such series available on the 
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Economic Time Series Web Site (http://www.economagic.com).  The selection of the 12 
indicators used was based both on correlation studies with the actual quarterly sales data 
of the product of interest, and on intuitive expectations derived from extensive historical 
experience with this particular product. 

2.1 Chromosome Structure 
Each individual in the population had a single chromosome representing a LISP S-

expression, or parse tree, comprising both operands and operations (Koza, 1992). The 
admissible operations were basic binary and unary calculator functions including add, 
subtract, multiply, divide, roots, logarithms, trigonometric transcendentals, and simple 
order statistics.  Admissible operands included constants, up to 15 samples (perhaps 
causally time lagged) of one or more of the economic indicators, variables derived by 
combining operands via operations, and return values from library calls.  Library calls 
are a sophisticated genetic feature supported by the e software used in this study.  With 
this feature, a single gene in an individual’s chromosome can represent a call to an entire 
chromosome from an individual in a previous population.  Typically, chromosomes from 
the most successful individuals evolved in a previous generation are stored in a library for 
this purpose.  Nested library calls were supported to a depth of four levels.   

The maximum chromosome size for an individual was limited to 40 operations, with 
a corresponding number of operands based on the operator types (unary or binary).  In the 
initial population, both the chromosome lengths and the values of individual genes were 
generated randomly by a uniform variable. 

2.2 Fitness Evaluation 
The fitness of individuals was evaluated based upon their ability to correctly predict 

quarterly sales data for the product.  Let kx represent the actual quarterly sales for quarter 
k  and ikx ,

∧  represent the forecast of individual i  for quarter ,k  where ],1[ Nk∈ defines 
the training set.  We define if , the fitness of individual ,i  according to 

where 
 
 

 
and where Λ = 10 –5 × (chromosome length) is a penalty term that favors shorter genetic 
programs over longer ones.   We do not consider the length of the genetic program to be a 
particularly important factor in this application; hence the small weight given to Λ in Eq. 
(2) indicates that this term will be significant only in cases where two or more individuals 
are equally fit.  When this occurs, the individual with the shortest genetic program is 
deemed most fit. 

2.3 Reproduction and Genetic Evolution 
The GA permitted individuals to reproduce both sexually and asexually. In sexual 

reproduction, two offspring were created with gene sequences derived from those of the 
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parents by single-point crossover reproduction (Mitchell, 1998).  A crossover point was 
chosen at random to divide each parent’s chromosome into two gene sequences.  Each 
offspring received one gene sequence from each parent, and these were concatenated to 
create the offspring’s chromosome.   

The population in any generation was divided into distinct ecosystems.  Like 
mutation, the purpose of this division was to maintain population diversity and avoid 
trapping in local optima.  The number of ecosystems was fixed at 14, the maximum 
supported by the e software.  An equal number of individuals in the original population 
were randomly assigned to each ecosystem, and offspring produced in a given ecosystem 
remained in that ecosystem upon generation evolution. Individuals in any given 
ecosystem were permitted to breed with one another, but not generally with individuals in 
other ecosystems (except for intermarriage, as described below).  Thus, competition for 
selection as a parent was only between individuals in a single ecosystem.  This approach 
differs in two ways from the niches often used in multimodal optimization (Holland, 
1975), (Baker, 1987),  (Deb and Goldberg, 1989), (Sareni and Krähenbül, 1998).  First, in 
the most common niching methods, individuals are grouped according to a sharing 
function that quantifies the similarity between individuals, whereas the ecosystems 
implemented here are explicitly delineated without regard to similarity.  Second, with our 
GA all individuals in the population are evaluated using a single, common fitness 
function; there is no fitness sharing. 

Within each ecosystem, individuals were mated as parents for sexual reproduction 
using roulette wheel selection (Mitchell, 1998), (Michalewicz, 1994).  For a given 
ecosystem, let 

 
be the total fitness of the ecosystem.  Then Ffii =ρ  defined the fraction of the roulette 
wheel assigned to individual i ; viz., the probability that individual i would be selected 
as a parent in a particular sexual reproduction.  

 The GA also permitted sexual reproduction involving parents from different 
ecosystems, or intermarriage (System Dynamics, 1997), which occurred in each 
generation with a specified probability.  When intermarriage occurred, roulette wheel 
selection was used to select parents from two randomly selected ecosystems.  Single-
point crossover reproduction was then used to generate two offspring, both of which were 
associated with the ecosystem of one of the parents. 

Asexual reproduction was implemented using both mutation and inversion (Holland, 
1975).  In mutation, an offspring’s chromosome was created by first copying the parent’s 
chromosome and then randomly choosing a gene to be replaced with a randomly selected 
value of the same type (operator or operand).  Likewise, inversion first copied the 
parent’s chromosome to the offspring.  Two randomly selected genes in the offspring’s 
chromosome were then swapped.  As in the case of sexual reproduction, individuals were 
mated as parents for asexual reproduction by roulette wheel selection.  Subsequent to the 
production of offspring by sexual and asexual reproduction, the GA subjected offspring 
of both types to random mutation as described above.   

After mutation, all offspring produced for a given ecosystem were placed in a new 
generation pool for the ecosystem.   When the new generation pool for a given ecosystem 

∑=
i

ifF  (3) 
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Table 1: GA parameter values 

Parameter Value 

Number of Ecosystems 14 
Number of individuals per ecosystem 50 
Fraction of reproduction that were sexual 80% 
Fraction of sexual reproductions by intermarriage 25% 
Fraction of reproductions that were asexual 20% 
Fraction of asexual reproductions by mutation 90% 
Fraction of asexual reproductions by inversion 10% 
Overall mutation rate 30% 

 
 
was filled, the fitness of each individual in this pool was evaluated.  A hill-climbing 
algorithm was then applied to the most fit individual from the pool (Michalewicz, 1994), 
(Mitchell, 1998).  In this process, a random mutation was sequentially applied to each 
gene in the chromosome of the selected individual and retained only if this mutation 
resulted in improved fitness. Only single-pass hill-climbing mutation was applied.  
Multiple-pass hill-climbing produced excessive computational load with little gain in 
population improvement. Subsequent to hill-climbing, the new generation pool replaced 
the current generation of the ecosystem.  Evolution continued until the stopping criterion 
given in Section 3 was satisfied. 

3. EXPERIMENTS AND RESULTS 
The actual quarterly sales time series that was used is shown in the solid line of Fig. 

1, where scaling has been applied to protect the proprietary nature of the data.  The 
forecast interval was defined to be eight quarters (two years).  The time series was 
divided into three segments.   The first segment was used for training; i.e., the GA 
evolved populations of individuals using this segment.  As this application is 
characterized by a paucity of data, the length of the training segment was set at N = 28 
quarters.  All individuals in the final generation of the GA evolution were then tested 
against the second, or evaluation, segment, which had a length of eight quarters. The GA 
was stopped when, after at least several thousand generations, only negligible 
improvements in fitness were observed. In all cases, this occurred after fewer than 20 
thousand generations had evolved. After each run of the GA, the individual delivering the 
minimum mean-squared error (MSE) predictions on the evaluation segment was used to 
forecast the third, or test segment, which also had a length of eight quarters. 

The algorithm described in Section 2 represents a reasonably sophisticated GA, for 
which a number of parameters such as percent sexual reproductions, percent asexual 
reproductions, and mutation rates must be specified.  The empirically selected parameter 
values used in this study are given in Table 1.  Note that the mutation rate was chosen 
quite high. We have observed the GA performance to be reasonably insensitive to the 
values of the parameters for this particular forecasting application.  

Forecasting performance of the fittest individual produced by a typical run of the 
GA is also illustrated in Fig. 1.  Out of the maximum of 40 operations allowed, the 
chromosome of this individual utilized only 10.  Four of these were library calls, while 
the remaining six were unary and binary operations.  Nested library calls were made to 
the maximum depth of four levels, and 18 library routines were called in total. The fore- 
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casting algorithm implemented by the fittest individual utilized values from 10 of the 12 
available economic variables, as enumerated in Table 2. 

The portion of the dashed line in Fig. 1 marked by X’s depicts the fittest individual’s 
eight-quarter forecasts over the evaluation segment.   While significant error is observed 
at one datum, the forecasts are generally in excellent agreement with the actual sales. The 
fittest individual’s eight-quarter forecasts on the test segment are shown by the portion of 
the dashed line in Fig. 1 marked by O’s.  For these forecasts, the root mean squared 
(RMS) forecast error is less than the average of sales over a two-week period, a result 
that we have been unable to obtain previously using more conventional techniques such 
as Box-Jenkins models and linear regressions. 

For a typical run of the GA producing a total of 700 individuals in 14 ecosystems, 
the MSE and RMS forecast error averaged across the fittest individual from each 
ecosystem was calculated, and is given in Table 3. The average quarterly sales over the 
test segment are 0.7085 product units, corresponding to a two-week sales average of 
0.1090 units. Thus, each of the 14 ecosystems produced at least one individual delivering 
eight-quarter forecasts for which the RMS forecast error was below the average two-
week sales figure.   

For comparison, eight-quarter forecasts were made for the test segment of the data 
using an ARMA(12,6) model of the type described by Masters (1995).  For independent 
variables, the ARMA model used only the history of the sales time series and did not 
consider the 12 economic variables employed by the GA.  Despite this difference, we feel 
that the  results provide a fair  means  of  comparing  performance  of  the  GA to that of a  

 

Fig. 1: Genetic algorithms forecasting results. 

Fig. 2: ARMA forecasting results. 
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Table 2: Economic Variables Used by Fittest Entity 

Privately-Owned Housing Starts S&P 500 
Federal Nondefense Gross Investment Bank Prime Loan Rate 
Total Industrial Production Index Commercial & Industrial Loans 
Index of Leading Economic Indicators Personal Income 
Residential Fixed Investment Federal Funds Rate 

 
 
Table 3: Cross-Ecosystem Average Forecasting Error for 14 Fittest Individuals 
 

 Max Average Min 

MSE 0.0069 0.0065 0.0059 
RMS 0.0833 0.0806 0.0770 

 
 
technique that is both well established and widely used in practice. The ARMA 
parameters were trained over the first segment of the sales time series, and the resulting 
forecasts are shown in Fig. 2, where the actual sales data are also repeated.  For the test 
segment, the ARMA MSE and RMS forecasting error were 0.0346 and 0.1860, 
respectively.  Thus, the MSE of the ARMA model was greater than that achieved by the 
GA by a factor of approximately five. 

4. CONCLUSION 
In this paper, a genetic algorithm (GA) was used to forecast long-term quarterly 

sales of a product in the highly volatile communications technology industry.  The 
independent variables input to the GA were time series containing historical values of 12 
economic indicators.  The GA was reasonably sophisticated, permitting sexual 
reproduction within and between ecosystems, asexual reproduction by both mutation and 
inversion, random mutation of offspring produced by both sexual and asexual 
reproduction, library calls to the complete chromosome of a previously evolved 
individual, and hill-climbing for the most fit offspring.   A complete replacement strategy 
was used to evolve generations.  

While the results obtained for this extremely difficult forecasting problem are of 
remarkably high quality, one should bear in mind that this research is still in a 
preliminary stage.  Our future research will study alternative configurations of the GA, its 
sensitivity to parameter values such as the mutation rate and the relative rates of sexual 
and asexual reproduction, and improved strategies for parameter selection in forecasting 
applications of this type.  In addition, we are hopeful that an increased understanding of 
the telecommunications technology business as related to specific leading economic 
indicators may emerge as a fortuitous byproduct of the work. 
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NOMENCLATURE 
  
F : total fitness of an ecosystem 
N : number of quarters in the training set 

if : fitness of individual i  
kx : actual quarterly sales for quarter k  

ikx ,
∧ : forecast made by individual i for quarter k  
Λ : penalty term favoring shorter genetic programs over longer ones 
α : penalty appearing in the denominator of the fitness if  

iρ : fraction of roulette wheel assigned to individual i in a sexual reproduction 
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