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ABSTRACT
We introduce a new SIR particle filter that performs tracking in a
joint feature space where pixel domain data are fused with mea-
surements obtained from an 18-channel modulation domain image
model. This dual domain processor is capable of maintaining track
lock and delivering a high probability of kill against targets in the
AMCOM infrared closure sequences, which are challenging because
they are characterized by high closure rate dynamics, poor SNR, and
maneuvering targets that typically exhibit severe signature evolution
and profound magnification changes. In the setup considered here,
the track processor receives an initial target designation, which could
be obtained from an external detector or from a human in the loop.
After the first frame, the track processor must run autonomously
without further a priori information. Compared to traditional pixel
domain trackers, our results demonstrate that this new dual domain
approach provides inherently improved tracking accuracy and facil-
itates powerful new consistency checks capable of detecting when a
template update is needed due to nonstationary target signature evo-
lution.

Index Terms— AMCOM, AM-FM Models, Dual Domain
Tracking, Multichannel Tracking, Particle Filter, SIR Filter,

1. INTRODUCTION

High performance target tracking is a critical component of many
military weapon delivery systems. For example, precision guided
weapons rely on track filters to provide the on-board guidance com-
puter with robust and accurate estimates of the state trajectory of the
target in order to successfully maintain the target within the sensor
field of view (FOV) and steer the weapon to the target. Here, we fo-
cus our attention on the case of a single band imaging infrared (IR)
sensor operating in the longwave 8-12 μm (LWIR) band. The sen-
sor delivers a sequence of IR video frames fk depicting the target
against an ambient background scene. Highly maneuverable targets
immersed in strong, structured clutter present significant challenges
for the tracking system. During a maneuver, the target signature can
exhibit substantial nonstationary evolution which is difficult or im-
possible to model accurately by applying spatial transformations to
a theoretical appearance model or a small collection of stored library
signatures. For any particular target type, even if a large collection
of views at various poses and magnifications is maintained on-board
the weapon system, in real combat one will often encounter obser-
vations of the target that fail to match any of the stored signatures
well enough to provide reliable target detection and clutter discrimi-
nation.

Consider the well-known AMCOM closure sequence [1–4]
rng19 13 depicted in Fig. 2(m)-(p). A closeup view of the lead
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target from a frame near the one shown in Fig. 2(n) is given in
Fig. 1(a). A closeup view of this same target from a frame acquired
near the end of the turning maneuver, temporally near the one shown
in Fig. 2(o), is given in Fig. 1(b). This is an example of substantial
nonstationary target signature evolution that is extremely difficult
to model accurately using a priori appearance models [4–6] and/or
stored signature libraries. Our goal is to develop a new type of
track processor that, given an initial target observation (e.g., from
a manual designation or a dedicated detection process based on a
stored signature library), can maintain a robust track lock without
any further need for explicit a priori appearance models – even in
the presence of severe target signature evolution and severe clutter.

Techniques for tracking based on an initial target observation, or
template (e.g., matched filter kernel), have been studied extensively.
In the presence of highly evolutionary target signatures, the princi-
pal difficulty is in identifying when the current template, which is an
empirical appearance model, has become stale and needs to be re-
freshed. This is known as the ”template update” problem [7–10].
Typical strategies include no update, updating the template every
frame, and updating the template every L frames. If the template
is updated every frame, we have found that the track filter invariably
over adapts, ultimately losing the target and locking onto structured
features of the clutter. While the fixed interval update strategy rep-
resents an improvement in this regard, it is plagued by the unsolved
problem of how to choose the update interval L. In [11, 12], we
showed by a proof of concept experiment (using a normalized cor-
relation tracker) that it is possible to detect when the template has
become stale by observing the target simultaneously in two domains:
viz., the pixel domain and the modulation domain.

In the presence of highly evolutionary target signatures, we
found that a pixel domain correlation tracker fails frequently, and
also that a modulation domain correlation tracker fails frequently.
However, our work in [11, 12] suggests strongly that the failure
modes in the two domains are almost never the same. Thus, even
when both domains fail simultaneously, it is extremely rare that the
two simultaneous failures are similar. Thus, one can reliably detect
a stale template condition by checking for divergence of the pixel
domain track centroid and the modulation domain track centroid.
In [12], we showed that, with an idealized detection process and a
pair of normalized correlation trackers operating in the pixel and
modulation domains, 95% of the stale template conditions that arise
in the AMCOM IR closure sequences are detectable by thresholding
the divergence of the pixel domain and modulation domain track
centroids.

To make this notion practical, in this paper we will introduce a
new multichannel dual domain SIR track filter capable of success-
fully maintaining track lock and obtaining a high probability of kill
against virtually all of the targets in the LWIR AMCOM closure se-
quences with absolutely no a priori knowledge of any kind after the
initial target designation.
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Fig. 1. Two radically differing views of the lead target in AMCOM
closure sequence rng19 13. (a) Appearance before the turning ma-
neuver. (b) Appearance just after the turning maneuver.

2. MULTICHANNEL DUAL DOMAIN TRACK FILTER

We formulate the dual domain track filter in a unified Bayesian
framework where three SIR particle filters run in tandem to estimate
the target state, including both magnification and position. The main
SIR filter models the target jointly in both the pixel and modula-
tion domains and produces the position estimates that are output by
the overall tracking system. The remaining two SIR filters model
the target in the pixel domain and modulation domain individually;
divergence of the tracked position in these two filters indicates a
stale template condition. All three SIR filters are initialized with an
a priori target designation in the first frame of the sequence. This
designation, which could be obtained from a dedicated, independent
detection process or from a manual designation with a human in the
loop, includes the target centroid, height, and width, all specified in
units of pixels. The templates in all three SIR filters are refreshed
from the last reliably tracked frame when the distance between the
expected modulation domain and pixel domain centroids exceeds an
empirical threshold. For all of the LWIR AMCOM sequences, we
set the threshold to three pixels.

The pixel domain SIR filter inputs raw LWIR frames directly
from the sensor, while the remaining SIR filters incorporate modu-
lation domain measurements that must be computed from the pixel
domain frames as described in [13]. Each frame fk is considered to
be the real part of a complex-valued image tk that is modeled as a
multi-component AM-FM function according to

tk(x1, x2) = fk(x1, x2) + jH[fk(x1, x2)]

=

MX
m=1

am(x1, x2) exp[jϕm(x1, x2)], (1)

where H[·] is the partial Hilbert transform [13, 14]. We characterize
the frame fk in the modulation domain by computing estimates of
the M AM functions am and the M FM functions ∇ϕm in (1). First,
a multichannel Gabor filterbank with M channels having impulse
responses gm is applied to tk to obtain response images ym = tk ∗
gm ≈ amejϕm ∗ gm, 1 ≤ m ≤ M , that are each dominated on
a pointwise basis by a single image component in (1). The M FM
functions in (1) may then be estimated via [13]

∇ϕm(x1, x2) ≈ Re

»∇ym(x1, x2)

jym(x1, x2)

–
. (2)

Once the frequency estimates have been obtained using (2), the
AM functions in (1) are estimated according to am(x1, x2) ≈
|ym(x1, x2)/Gm[∇ϕm(x1, x2)]|, where Gm is the frequency re-
sponse of the m’th filterbank channel [13]. For the LWIR AMCOM
sequences, we apply the same Gabor filterbank that was used in [12],
which has M = 18 channels.

Although our results in [14] strongly suggest that the full
modulation domain characterization is useful for enhancing target-
background class separability in IR imagery, for the AMCOM data
we find in practice that the AM functions are considerably more
powerful that the FM functions in this regard. Thus, throughout this
paper we use the estimated FM functions (2) in computing the AM
estimates am, but only the AM functions are used as modulation
domain input to the SIR particle filters. For each frame fk, the input
to the pixel domain SIR filter is the frame fk itself, the input to
the modulation domain filter is a stack of the 18 AM images am

computed from fk, and both the frame and the AM images are input
to the joint domain SIR filter.

We model the target appearance and kinematics using a six com-
ponent state vector xk defined by

xk = [x1,k ẋ1,k δ1,k x2,k ẋ2,k δ2,k]T = [xT
1,k xT

2,k], (3)

where x1,k = [x1,k ẋ1,k δ1,k]T and x2,k = [x2,k ẋ2,k δ2,k]T .
In (3), x1,k and x2,k are the horizontal and vertical image coordi-
nates of the template spatial centroid, ẋ1,k and ẋ2,k are the corre-
sponding velocities in pix/frame, and δ1,k and δ2,k are the horizon-
tal and vertical extent of the template in pixels. The template has 19
planes of size δ1,k × δ2,k corresponding to the LWIR frame fk and
the 18 AM images am. The state vector xk indicates that the current
target template appears in the image stack fk|a1| . . . |a18 at pixel
x1,k, x2,k with size δ1,k × δ2,k × 19. The state transition equation
is a white noise acceleration model given by»

x1,k+1

x2,k+1

–
=

»
F 0
0 F

– »
x1,k

x2,k

–
+ vk, (4)

where

F =

2
4 1 Δ 0

0 1 0
0 0 (1 + γ)

3
5 , (5)

vk = [v1,k 0 0 v2,k 0 0]T , v1,k and v2,k are uncorrelated zero-mean
Gaussian noises, Δ is the interframe time, and γ is a uniform ternary
process that models the frame-to-frame magnification change by

γ =

8<
:

−α, p = 1/3,
0, p = 1/3,
β, p = 1/3.

(6)

In (6), p indicates probability and α and β are magnification gain
parameters related to the rate at which the weapon closes on the tar-
get. For the AMCOM sequences, we generally set α = β = 0.1.
The observation equation is given by zk = Hxk + nk, where
nk = [n1,k n2,k], n1,k and n2,k are uncorrelated zero-mean Gaus-
sian noise processes, and

H =

»
1 0 1 0 0 0
0 0 0 1 0 1

–
. (7)

Let Ii
k be the target template hypothesized in frame k by the

particle (xi
k, wi

k) [15]. We generate Ii
k from the original (or most

recently refreshed) template by applying bicubic interpolation to ac-
count for the change in size. Let Ik denote the subset of the image
stack fk|a1| . . . |a18 that is covered by the template Ii

k. Then we de-
fine the likelihood function to be p(zk|xi

k) ∝ exp[−MSE(Ii
k, Ik)],

where MSE(Ii
k, Ik) is the mean squared error between Ii

k and Ik.
The MSE is calculated only over the appropriate planes of the tem-
plate; e.g., in the pixel domain SIR filter it is calculated only over
the plane corresponding to the frame fk, for the modulation domain
filter it is calculated only over the planes corresponding to the AM
images am, and for the joint domain filter it it calculated over all 19
planes. Details of the SIR filters are as described in [15].
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3. RESULTS AND DISCUSSION

We evaluated the performance of the multichannel dual-domain par-
ticle filter (DDPF) introduced in Section 2 against the eight LWIR
AMCOM closure sequences listed in the first column of Table 1. The
experiment was as described in the first paragraph of Section 2: the
track filter was initialized with an initial designation including the
target centroid and spatial extent. After the initial frame, no further
a priori information of any kind was provided to the track filter. The
average absolute error in the DDPF track centroid relative to ground
truth is given in the third column of Table 1 in pixel units. Illus-
trative examples depicting key frames from several of the sequences
are shown in Fig. 2, where the spatial extent of the template (e.g., the
track gate) is superimposed on the raw pixel domain imagery. The
first row of Fig. 2 shows key frames from the visible wavelength test
sequence hand-ball, which we used to develop and tune the ternary
magnification change model (4)-(6). The remaining rows of Fig. 2
illustrate the performance of the DDPF against LWIR AMCOM clo-
sure sequences. In every case, the DDPF tracked the targets with
sufficient accuracy to provide a high probability of kill at the end of
the sequence. These sequences are notoriously difficult because the
targets generally exhibit substantial magnification and pose changes
as well as severe nonstationary signature evolution. In our opinion,
the lead vehicle in the sequence rng19 13 (fourth row of Fig. 2; also
see Fig. 1) represents one of the most difficult challenges in the entire
AMCOM data set.

For comparison, we also ran a pure modulation domain SIR
particle filter (MDPF) and a pure pixel domain SIR particle filter
(PDPF) against the sequences listed in Table 1. In every case, both
the MDPF and the PDPF failed to maintain track lock and lost the
target. This was true regardless of the template update strategy (i.e.,
no update, update every frame, fixed interval update).

To gain additional insight into the performance gains that are
possible with multichannel dual domain measurements, we supplied
both the MDPF and the PDPF with the dual domain track consis-
tency checks from the DDPF. Thus, in this modified experiment, the
templates for all three filters were updated at the same times us-
ing dual domain information. The resulting centroid errors for the
MDPF and PDPF are given in the last two columns of Table 1. The
bottom row of the table gives the percent improvement in the abso-
lute centroid error relative to the PDPF with dual domain updates.
These data demonstrate that, in addition to making it possible to de-
tect stale templates and maintain track lock, the multichannel dual
domain measurements also provide an inherent accuracy advantage
compared to traditional pixel domain techniques.
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Fig. 2. Multichannel dual domain tracking examples. (a)-(d): hand-ball sequence (with track gate superimposed): (a) Frame 1. (b) Frame
117. (c) Frame 149. (d) Frame 160. (e)-(t): LWIR AMCOM closure sequence examples (with track gate superimposed). (e)-(h): sequence
rng19 NS, frames (e) 208, (f) 228, (g) 244, and (h) 270. (i)-(l): sequence rng19 07, frames (i) 132, (j) 147, (k) 169, and (l) 194. (m)-(p):
sequence rng19 13, frames (m) 49, (n) 61, (o) 168, and (p) 230. (q)-(t): sequence rng16 18, frames (q) 140, (r) 184, (s) 222, and (t) 273.

4120


