Designing Perceptually-Based Image Filters in the Modulation Domain

Joseph P. Havlicek

School of Electrical and Computer Engineering University of Oklahoma

3 May 2011

Eigenfunctions of LTI System

For any $\omega_0 \in \mathbb{R}$, the signal $x(t) = e^{j\omega_0 t}$ is an Eigenfunction of any 1-D continuous-time LTI system.

$$y(t) = h(t) * x(t) = h(t) * e^{j\omega_0 t}$$

=
$$\int_{\mathbb{R}} h(\tau) e^{j\omega_0 (t-\tau)} d\tau$$

=
$$e^{j\omega_0 t} \underbrace{\int_{\mathbb{R}} h(\tau) e^{j\omega_0 \tau} d\tau}_{\text{a number}}$$

=
$$H(\omega_0) e^{j\omega_0 t}$$

=
$$|H(\omega_0)| e^{\{j\omega_0 t + \arg H(\omega_0)\}}$$

Representing Signals as Sums of Eigenfunctions

We use the Fourier transform to write an arbitrary input x(t) as a sum of Eigenfunctions:

$$x(t) = \frac{1}{2\pi} \int_{\mathbb{R}} X(\omega) e^{j\omega t} dt.$$

► The action of the LTI system H is that each term in the sum gets multiplied by a corresponding Eigenvalue $H(\omega)$:

$$y(t) = \frac{1}{2\pi} \int_{\mathbb{R}} H(\omega) X(\omega) e^{j\omega t} dt.$$

• Each term is scaled by $|H(\omega)|$ and shifted by $\arg H(\omega)$.

The LTI Filter Design Problem

- ► Design the Eigenvalues $H(\omega)$, e.g., the *frequency response*, to achieve some desired signal processing goal.
- What kinds of problems is this approach good for?
 - attenuate additive noise with a stationary spectrum.
 - in music: boost the bass and attenuate the midrange – related to how human hearing perceives the signal.

Human Auditory Perception

But is human auditory perception *really* very closely related to the Eigenfunction representation?

What About Human Vision?

► Are these Eigenfunctions

Closely related to human visual perception of this?

Gabor Aspects of Mammalian Biological Vision

 Biologically motivated Gabor filter bank:

Modulation Domain Signal Representation

- ► A nonstationary image component: $t_k(\mathbf{x}) = a_k(\mathbf{x}) \exp[j\varphi_k(\mathbf{x})]$.
- Modulation domain signal model:

$$t(\mathbf{x}) = \sum_{k=1}^{K} t_k(\mathbf{x}) = \sum_{k=1}^{K} a_k(\mathbf{x}) \exp[j\varphi_k(\mathbf{x})].$$

$$\blacktriangleright$$
 AM: $a_k(\mathbf{x})$

- local texture contrast.
- ► FM: $\nabla \varphi_k$
 - local texture orientation and granuliarity.

AM-FM Signal Components ► Image:

► AM-FM Components:

Nonlinear Demodulation Algorithm

► AM-FM image component:

$$t_k(\mathbf{x}) = a_k(\mathbf{x}) \exp[j\varphi_k(\mathbf{x})]$$

▶ Interpolate $t_k(\mathbf{x})$ with a cubic tensor product spline.

► FM: local texture orientation and granuliarity:

$$\nabla \varphi_k(\mathbf{x}) = \mathsf{Re}\left[\frac{\nabla t_k(\mathbf{x})}{jt_k(\mathbf{x})}\right]$$

$$a_k(\mathbf{x}) = |t_k(\mathbf{x})|$$

Modulation Domain Signal Processing

Orientation Selective Attenuation

• Best LTI filtering result:

• Modulation domain filtering result:

FM Processing Examples

• Least squares phase reconstruction:

• Spline-based phase reconstruction:

Lena Example

Barbara Example

