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ABSTRACT 

We develop a novel algorithm based on the method of 
wavelet shrinkage for denoising images that combines the 
best features from three recently published methods [1]­
[3]. In the process of developing the algorithm, we have 
noted several key aspects where improvements can be 
made and hold the potential for significant performance 
improvements. In exploring these important issues, we 
fully investigate the choices of the threshold used in 
defining the nonlinear filter used for denoising, as well as 
the impact of estimation errors on the algorithm 
performance. We also put some perspective on the impact 
of employing non-orthogonal representations. Our 
proposed algorithm is computationally inexpensive. 

1. INTRODUCTION 

Unlike the Fourier transform, the wavelet transform gives 
a multiresolution analysis of a signal. It is used widely in 
signal processing applications such as denoising and 
coding. The wavelet shrinkage (denoising) method 
introduced by Donoho and Johnstone [4] is a popular 
method for image denoising. In this approach, large 
transform coefficients are assumed to be associated with 
the signal while small transform coefficients are assumed 
to be associated with the noise. However, this approach 
exhibits spurious oscillations and other visual artifacts. 
Lang, et al., proposed a denoising algorithm using an 
undecimated wavelet transform (UDWT) [1]. The shift 
invariance of the UDWT appears to improve the 
denoising performance [3]. The key factor in 
performance, as determined by all researchers to this 
point, is the thresholding used to do the filtering. With this 
in mind, Xu, et al., proposed the additional use of a 
spatially-selective nonlinear filter [2]. Then, Pan, et al., 
[3] modified the Xu algorithm slightly in its method of 
choosing the nonlinear filtering to yield a slightly 
improved performance. An alternative version (there are 
two methods in the paper) given by Pan is in most aspects 
identical to the method from the Lang paper, with more 
detail. 

Our simulation and analysis show th~t both the Xu and 
Pan methods are sensitive to the noise power estimate 

used in defining the nonlinear filter used to do the 
denoising. In this paper, we introduce a new spatialIy­
selective noise filter based on the UDWT (possibly non­
orthogonal) that incorporates ideas from these three 
papers. We will see that because of this basis, our 
proposed method robustly improves the denoising effect. 
Its performance is in this aspect similar to the 
performance of the Lang method, with slight 
improvements that result from our threshold selection 
method based on the Xu and Pan methods. Additionally, 
our analysis has indicated that improvements in the non­
orthogonal basis selection method could significantly 
improve the denoising performance even further. We start 
by examining some details. 

2. PREVIOUS WORK - SOME DETAILS 

Xu [2] proposed an algorithm called the spatially­
selective noise filtration technique that uses the 
nonorthogonal wavelet introduced by Mallat and Zhong 
[5]. The method extracts the signal information at each 
scale through the direct correlation of the coefficients at 
several adjacent scales. We have the inter-scale 
correlation 
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C2 (m,n) = TIW(m+i,n), n = 1, 2, ... ,N , (1) 
i=O 

where W (m, n) are the wavelet transform detail 

coefficients of the signal x at level m and point n. The 

first step in the algorithm is to normalize C2 (m, n) 

where 

(;2 (m,n) = C2 (m,n)~Pw (m)/ Pc (m) , (2) 

Pw (m) = Lw2 
(m,n) 

Pc ( m ) = L C2
2 

( m, n) . 
(3) 

The normalized inter-scale correlation (;2 (m, n) is used 

as a dynamic intra-scale threshold function. Transform 
components larger than the threshold are called "signal" 



and removed. (;2 (m, n) is then recomputed based on the 

remaining components. This renormalization of the inter­
scale correlation lowers the threshold function, and more 
components are classified as signal. This iterated in-scale 
classification is stopped according to the estimated noise 
power. The devil in the details, of course, is determining 
the stopping point because accurate estimation of the 
noise power can be quite difficult. Stopping too early will 
leave significant signal out, while stopping too late allows 
too much noise. Simulation shows that this algorithm will 
generate more visually pleasing results when some signal 
is lost. To place this in some perspective, consider that in 
[4], the thresholding is done statically and directly in the 
transform domain, leading to inconsistent visual quality of 
the denoised images. 

Pan observed in [3] that performance of the Xu algorithm 
can be improved by modifying the thresholds given in Eq. 
(2) according to 

Pw (m)-th(m)(N -K)17~ > 0.05Pw (m) (4) 

which stops the iteration slightly earlier. In (4), N is the 
total number of samples, K is the number of samples 

extracted as signal, and 1.2:0:; th (m) :0:; 1.8 is a scale­

dependent value. Rewriting, we have 

R (m) th(m)172 N 
N_w __ > m =(1.05xth(m))172 N (5) 

N -K 0.95 m 

The left side is the estimated noise power based on the 
remaining wavelet coefficients. The right side is the 
estimated noise power based on noise variance, which is 
Pw (m) > c x estimation noise power at scale m, c > 1 . 

Simulations indicate that this alteration in threshold 
generates better results when the noise power estimate is 
reliable. Simulation results based on the two algorithms 
are given in Figure 1 using a typical Lena image and 
added white Gaussian noise with MSE=600 out of 256 
gray levels (about lOdB SNR). The horizontal axis gives 
the ratio of the estimated noise power to the true noise 
power; the vertical axis gives the percentage of noise 
extracted. We see that both algorithms can remove the 
noise effectively. However, the performance of both 
algorithms is very sensitive to noise power estimation 
errors. 

Analysis shows this sensitivity is caused by the extraction 
process. If the noise power estimate is too low, as we 
mentioned above, then the algorithm will continue 
extracting noise after the signal information has been 
extracted. On the other hand, if the noise power estimate 
is too high, the algorithm will stop when significant signal 
information remains in the wavelet coefficients. This 
effect is most pronounced in the fine scales where the 

noise is dominant. These scales are critical for keeping 
sharp edges. 
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Figure 1. Noise reduction vs. noise power estimation 

Since the Xu and Pan algorithms are sensitive to the noise 
power estimate, this paper considers methods to alleviate 
this concern. We introduce a spatially-selective filter 
based on the undecimated orthogonal wavelet transform 
(Details on efficient computation of the UDWT given in 
[6] are based on the original work pioneered in [7]) that is 
robust to the noise power estimation error. 

The undecimated discrete wavelet transform generates an 
equal number of coefficients at all resolution levels, and 
so is overcomplete. The locality in the time-frequency 
plane provided by the wavelet allows us to denoise an 
image using the spatial information. Because the wavelet 
coefficients for each scale are computed as the output of 
FIR filter(s), computing the noise variance at each scale is 
straightforward. This transform is shift invariant and 
redundant. Traditional wavelet shrinkage using 
orthogonal, maximally-decimated wavelets sometimes 
exhibits visual artifacts such as Gibbs phenomena. Using 
the shift invariant wavelet in the shrinkage produces better 
results [6]. This is verified by the results given in [1] and 
[3], where the performance consisted of both visual and 
MSE metrics. 

3. A NOISE ESTIMATION ERROR ROBUST 
SPATIAL SELECTIVE FILTER 

Now that we have seen what others have done, we 
examine our tweaking of the thresholds in the nonlinear 
filtering. 

3.1 Our Proposed Algorithm 

We retain Eq. (1), in which W(m,n) is the undecimated 

wavelet transformation detail coefficients of a noisy signal 
x at scale m and sample n. Some facets of the 
correlation remain unchanged. However, since we use a 
different wavelet decomposition than did Xu, we will 
distinguish between the correlations. Consequently, we 

introduce the notation C; (m, n), to indicate that we are 



using the undecimated wavelet transform instead of the 
dyadic transform. 

Our proposed algorithm is similar to the Pan spatially 
selective filter, but we use a different spatial selection 
criterion to extract the signal components. We give a brief 
description of our choice: 

1. Take the undecimated wavelet transform of the 
signa\. 

2. Calculate C; (m, n) at each scale. 

3. If C; (m, n) is larger than the estimated noise 

power, then select the component as a signal 
component. 

4. Invert the undecimated wavelet transform off the 
signal components. 

Like the Lang algorithm, our method does not require 
iteration. In the Xu and Pan algorithms, the threshold 
value is very critical to the performance of the algorithm. 
However, we are going to show in the following 
discussion that our algorithm is insensitive to the noise 
power estimate and therefore does not require a priori or 
precise knowledge of the noise process. 

3.2. Noise power estimation insenstivity 

C; (m, n) is the product of wavelet transform coefficients 

at adjacent levels and may be modeled as a product of 
uncorrelated Gaussian processes ,; and y. Thus ,; and 

yare filtered sub-bands. Consequently, they are 

Gaussian, but not generally white. However, because the 
sub-bands are undecimated, they are orthogonal to each 
other. Of course, for Gaussian noise, orthogonal implies 
uncorrelated. As a result, we have the statistical 
properties: 

E{ C; (m,n)} = E{,;} E{y} = 0 (6) 

Var{C;(m,n)}=Var{,;}Var{y} (7) 

It is difficult to calculate the relation in Eq. (8). However, 
Monte Carlo simulations show the PDF in figure 4. We 
find that the multiplication concentrates the distribution. 
As a result, if our threshold takes a relatively smaller 
value, most of contents of C; (m, n) that are contributed 

from the noise can still be subtracted. On the other hand, 
edges are relatively unaffected because they appear at all 
scales. Here the locality of UDWT helps us immensely. 
C; (m, n) is the multiplication of these two scales. So we 

can say that, through C; (m, n), the noise information is 

suppressed while the signal information is amplified. 
Thus, we have that the difference of the parts of 
C; (m, n) that are due to the noise and those due to the 

signal are much larger than the difference of the 
correlation to the wavelet coefficients themselves. Thus, 
our algorithm is robust to errors in the threshold value 
caused by mis-estimating the noise power. 
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Figure 2. Sample distributions (level 5 top, level 6 middle, 
and product of the two at bottom) 

3.3 Threshold selection 

There are several ways to calculate the threshold. Here we 
provide two methods. In the first method we use the fact 
that the undecimated wavelet transform retains all spatial 
relationships. Consequently, to characterize the noise, we 
can estimate C; (m, n) based on a region of the image 

where there is only noise present. In this case, we would 
have 

threshold = c*max( C; (m,n)), 0.5:::; c:::; 0.8 (9) 

The second approach for calculating the threshold is a 
statistical method. In this case, we assume that the noise is 
AWGN, with distribution'; - N(0,a2

). Then, we can use 

Eq. (6)-(8) to estimate the properties of C; (m, n). In this 

case, we would have the threshold 

threshold = c * (j~, 0.5:::; c:::; 0.8 (10) 

The thresholds in Eqs. (9) and (10) are constant in the 
correlation domain, but not in the wavelet transform 
domain. This is a significant difference from the Lang 
method [1]. 

4. SIMULA TION 

4.1 Sensitivity comparison 

We simulate our algorithm and compare it with the other 
algorithms discussed in the introduction. We measure the 
reduced noise power with respect to the different noise 



power estimations. The simulation result is shown in 
Figure 3. We can see that our algorithm is very robust to 
the noise power estimation error. The "threshold" method 
shown is essentially the Lang method, or alternatively, the 
second variant given by Pan. 
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Figure 3. Sensitivity analysis with image Lena, (j2 =600 

4.2 Visual comparisons 

The above sensitivity simulation compares MSE 
performance which may not be indicative of visual 
quality. Accordingly, we compare the methods visually. 
Figure 4 shows the noisy image, the best result generated 
by the Xu algorithm (when the noise estimate is 1.2 times 
the true noise power), and our algorithm. In this case, the 
methods appear to be visually comparable. However, our 
result is significantly better than the typical results 
delivered by the Xu algorithm, as should be expected by 
examining Figure 3. 

5. CONCLUSION 

We have combined the best aspects of three previously 
described wavelet shrinkage algorithms used for image 
denoising. Our new approach is robust to misestimates of 
the noise power. As a result, we obtain MSE and visual 
performance that is equivalent to the best performances 
attainable by those previous algorithms and do so over a 
much wider range of power estimation errors. Moreover, 
we have noted that further improvements are possible by 
treating the non-orthogonal representation jointly in the 
image and wavelet domains, in a self-orthogonalizing 
matching pursuits context. This is our next task. 
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a) Picture before denoising 

b) Denoised picture by our algorithm 

c) Best denoised picture by Xu's algorithm 

Figure 4. Visual comparisons 
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