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Abstract—We consider the problem of tracking moving targets in
heavily cluttered video sequences and introduce a new state vector
augmentation technique to incorporate indirect velocity information
into the likelihood function of the SIR particle filter. While the
importance of motion information in video tracking has been well
recognized, the standard SIR filter typically weights particles using
a likelihood function that considers the appearance model only.
Our goal is to prevent particles with poor velocity estimates from
receiving large weights. The key modifications involve saving the
previous values of the state variables in the state update equation and
reformulating the measurement model to deliver both the current and
previous observations. This leads to a straightforward calculation of
likelihood across pairs of temporally adjacent frames. Our preliminary
experimental results show that the proposed method is effective for
avoiding track losses due to the filter locking onto structured clutter.

Keywords-video tracking, particle filter, SIR, velocity estimation

I. INTRODUCTION

Particle filters have become immensely popular for video object
tracking in recent years. The sampling importance resampling
(SIR) filter [1] in particular is widely used. First-order Markovian
state dynamics are almost always assumed [2], [3]. The SIR
filter’s choice of the prior density function as the proposal density
combined with its resampling and equal weighting of the particles
at the end of every time step then imply that the particle weights
are given by the likelihood function, which is straightforward to
design and implement in a wide variety of practical scenarios.

It is common to assume that the target kinematics obey a constant
velocity model [4], [5]. In a typical formulation, the state vector is
given by, e.g.,

xk = [xk ẋk yk ẏk γk γ̇k θk θ̇k]T , (1)

where [xk yk]T is the target centroid, [ẋk ẏk]T is the velocity, γk
and θk are magnification and planar rotation relative to a reference
appearance model, and γ̇k and θ̇k are the time derivatives of γk
and θk. The state update and measurement models are given by [1]

xk+1 = fk(xk,vk) (2)

zk = hk(xk,nk), (3)

where vk and nk are mutually uncorrelated i.i.d. noises. The
measurement zk is typically taken as the current video frame or a
set of features extracted from the current frame. Often, fk and hk
are independent of k so that fk(·) = f(·) and hk(·) = h(·).

The SIR filter maintains a set of Ns weighted particles
{xik, wik}Ns

i=1 that approximate the posterior density via [1]

p(xk|z1:k) ≈
Ns∑
i=1

wikδ(xk − xik). (4)
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Each particle xik is an instance of the state vector that makes a
hypothesis about the true state of the target. One of the main
advantages of the SIR formulation is that the weights are easy
to calculate: they are given by the likelihood function

wik ∝ p(zk|xik), (5)

where the proportionality constant is chosen so that the wik sum
to one. Elements of the state vector such as the target centroid
may be estimated by taking the expected value with respect to (4)
according to

[x̂k ŷk]T =

Ns∑
i=1

wik[xik y
i
k]T (6)

or by taking (MAP) estimates from the largest-weighted (i.e.,
“best”) particle according to

[x̂k ŷk]T = [xi
∗
k yi

∗
k ]T , i∗ = arg max

i
wik (7)

prior to resampling. Iterative application of (6) or (7) is the standard
method for tracking video targets.

Tracking failures can occur for several reasons. One is that, in all
but the simplest cases, the appearance model must be dynamically
updated. Over time, it can become corrupted by clutter leakage and
drift ultimately leading to track loss. The question of how best to
perform robust appearance model updates has received considerable
attention recently [5]–[7]. Another problem is that “bad” particles
can sometimes receive large weights. This happens frequently
in cases where there is strongly structured clutter together with
significant target appearance changes. The likelihood p(zk|xik)
is increased for bad particles that have a poor state hypothesis
but partially match the clutter, while p(zk|xik) is decreased for
good particles that have a good state hypothesis but only partially
match the target due to an ineffective appearance model update
strategy. The combined effect can be substantial. Furthermore, it
is exacerbated by the fact that the decreases in p(zk|xik) for the
good particles that should be heavily weighted tends to increase
the proportionality constant in (5), further amplifying the weights
of the bad particles.

When a bad particle receives a large weight, it is turned into
many bad particles by the SIR resampling operation. Since the total
number of particles is fixed, this reduces the number of particles
that are available in the next time step for searching the “good” part
of the state space where the true target state lies. This generally
has a deleterious effect on the tracking performance. Moreover,
the presence of many particles in the “bad” parts of the state
space implies that increasing numbers of bad particles may partially
match the clutter and receive large weights in subsequent time steps
due to the stochastic nature of vk in (2). The tracker often fails
when this occurs.



The importance of motion information in video tracking has
been well recognized [2], [3], [5], [8]. However, in practical
video tracking applications the sensor produces one video frame
at each time step and there is no way to obtain direct velocity
measurements without incorporating additional sensors. Thus, even
if the motion model is good, direct velocity measurements are not
available in zk and according to (5) there is no way of using
the weight calculation to explicitly penalize particles with poor
velocity hypotheses. Indeed, the likelihood calculation is often
implemented in a way that considers the appearance variables
only and omits the velocity information altogether. This has two
unfortunate consequences: 1) a particle with a state hypothesis xik
that matches the true target well will receive the same weight
as a particle with an identical appearance hypothesis but a poor
velocity hypothesis; and 2) even in the presence of ego motion and
moving clutter, it is unlikely for the clutter to match the target in
both appearance and velocity. Nevertheless, a particle that partially
matches the clutter in appearance may receive a large weight even
though this should be preventable based on velocity information.

Of course, one can save the previous frame and difference the
positions of best matching blocks between it and the current frame
to produce estimated velocity measurements. However, a naı̈ve
implementation of this approach approximates the derivative with
a zeroth-order Taylor series which is notoriously poor and, more
importantly, can suffer from imprecision and uncertainty in the
block matching algorithm.

In this paper, we address these problems by considering the
question of how to prevent particles with a poor velocity hypothesis
from receiving large weights. In Section II, we introduce a new
state vector augmentation method to incorporate indirect velocity
information into the likelihood function. Preliminary experimental
evaluation of the new method is presented in Section III, while
discussion and conclusions are reserved for Section IV.

II. INCORPORATING VELOCITY INFORMATION INTO THE

LIKELIHOOD FUNCTION

In this section, we introduce our proposed method in the context
of template tracking [5], [8]–[11]. The reason is that we are most
interested in tracking targets in monochromatic infrared video
signals that are characterized by low contrast, poor SNR, and strong
clutter. Template tracking often works better than other approaches
for such signals. However, the proposed method extends easily to
appearance models based on, e.g., histograms, HOG, SIFT, LBP
or other features.

Suppose that the sensor delivers a sequence of video frames zk
and let T be a globally defined appearance model (template) for the
target. We begin by considering a very standard conventional SIR

formulation where (2) takes the form shown in (8) below. In (8), ∆
is the frame time and v·k are mutually uncorrelated i.i.d. noises that
model the temporal second derivatives of position, magnification,
and rotation. Note that (8) defines the matrix A and the vector
vk. The function h in (3) creates a frame of zeros, inserts the
target model T at position [xk yk]T with magnification γk and
rotation θk, and adds measurement noise nk (there is no explicit
background model).

For a particle xik, the hypothesized target appearance is zik =
h(xik,0). Let Ωi

k be the spatial support of the magnified and
rotated template in zik. The SIR filter assigns the particle weight (5)
using likelihood

p(zk|xik) = e−κ(1−ρik), (9)

where κ is a gain that must be tuned and ρik is normalized cross
correlation given by

ρik =

∑
Ωi

k
zkz

i
k√∑

Ωi
k

z2
k

∑
Ωi

k
(zik)2

. (10)

Eqs. (3)-(5), (8)-(10), and (6) or (7) define the conventional SIR
track filter that will be used as a baseline for comparison with the
proposed method.

Let xjk−1 be the particle from which xik was resampled in
time step k − 1 and define x

(i)
k−1 ≡ xjk−1. The likelihood func-

tion (9) makes no explicit consideration of velocity information.
Furthermore, no direct measurements of velocity are available.
However, if particle xik has a good appearance hypothesis then
ρik should be large. If the velocity hypothesis is also good, then
ρjk−1 should also have been large. We want the particle xik to
receive a large weight only if both of these conditions are met.
This suggests a way to indirectly incorporate velocity information
into the likelihood function p(zk|xik) if the previous measurement
zk−1 can be retained in zk and the previous hypothesis x

(i)
k−1 can

be retained in xik. State vector augmentation provides a means to
do this. We denote quantities in the augmented system model with
a tilde. With respect to (1), the augmented state vector is given by
x̃k = [xk xk−1]T . The augmented state update model is then

x̃k+1 =

[
A 0
I 0

]
x̃k +

[
vk
0

]
, (11)

where I is the 8×8 identity matrix. Now let z̆k = h(xk,nk+1) be
a second realization of zk that is generated at time step k+1 instead
of time step k. The difference between this second realization and
the original measurement zk is z̆k − zk = nk+1 − nk. We define
the augmented measurement z̃k = [zk z̆k−1]T . The augmented

xk+1 =



xk+1

ẋk+1

yk+1

ẏk+1

γk+1

γ̇k+1

θk+1

θ̇k+1


=



[
1 ∆
0 1

]
[

1 ∆
0 1

] 0
[

1 ∆
0 1

]
0 [

1 ∆
0 1

]





xk
ẋk
yk
ẏk
γk
γ̇k
θk
θ̇k


+



0
vxk
0
vyk
0
vγk
0

vθk


≡ Axk + vk (8)



measurement model is then

z̃k =

[
zk

z̆k−1

]
= h̃(x̃k,nk) ≡

[
h(xk,nk)

h(xk−1,nk)

]
. (12)

For an augmented particle x̃ik = [xik x
(i)
k−1]T with measurement

hypothesis z̃ik = [zik z̆ik−1]T , let Ω̆i
k−1 be the spatial support of

the magnified and rotated template in z̆ik. The likelihood may now
be defined according to

p(z̃k|x̃ik) = e−κ(1−ρ̃ i
k), (13)

where

ρ̃ ik =

∑
Ωi

k

zkz
i
k +

∑
Ω̆i

k−1

zk−1z̆
i
k−1

√∑
Ωi

k

z2
k +

∑
Ω̆i

k−1

z2
k−1

√∑
Ωi

k

(zik)2 +
∑
Ω̆i

k−1

(z̆ik−1)2
(14)

is the normalized cross correlation between the hypothesis of aug-
mented particle x̃ik and two consecutive video frames acquired from
the camera. Intuitively, z̆k−1 is nothing more than a theoretical
construct that provides us with a rigorous way to consider a
realization of zk−1 in the likelihood p(z̃k|x̃k). Note that z̆k−1

does not appear in (14); rather, it is the actual saved video frame
zk−1 that is correlated with the lagged particle hypothesis z̆ik−1.
Eqs. (11)-(14), (4), (5), and (6) or (7) define our new method
for incorporating indirect velocity information into the SIR filter
likelihood function.

III. EXPERIMENTS

We compared the proposed method against the standard SIR
filter on two synthetic video sequences and two of the longwave
IR sequences described in [12]. Appearance model updates were
not performed in order to isolate performance differences between
the SIR filters with standard likelihood (9) and with velocity infor-
mation incorporated via state augmentation and likelihood (13).
The synthetic sequences were simulated by inserting the target
of Fig. 1(a) into benign and complex backgrounds as shown in
Figs. 1(c) and (b) with trajectory determined by (8). The horizontal
and vertical velocity drift noises were Gaussian with variances
0.63 and 0.75, while the magnification and rotation drift noises
were uniform with variances 3.6 × 10−5 and 6.4 × 10−3. For the
IR sequences shown in Figs. 1(g)-(o), ground truth was compiled
manually and the noise variances were estimated by approximating
derivatives with finite differences. The initial particle sets were dis-
tributed normally (position) and uniformly (magnification/rotation)
with means and variances given by ground truth from the first
frame.

The tracking results are given in Fig. 1 and Table I. As we
expected, incorporating velocity information had negligible impact
against the benign background of Figs. 1(c), (d) but provided a
substantial performance gain against the complex background of
Figs. 1(e), (f) where the standard SIR filter lost the target and
locked onto clutter. Against IR sequence 1, the proposed method
again provided a significant advantage when the standard SIR filter
became distracted by clutter as shown in Figs. 1(i), (j). As in
the benign synthetic sequence, both filters performed comparably
against the second IR sequence shown in Figs. 1(l)-(o).

IV. CONCLUSIONS

We introduced a new state vector augmentation method to in-
corporate indirect velocity information into the likelihood function
of the SIR filter for video target tracking in clutter. Our main
objective was to prevent particles with a poor velocity hypothesis
from receiving large weights. Our preliminary experimental results
suggest that the new method is effective, preventing the track filter
from locking onto structured clutter in cases where the standard
SIR filter fails and delivering equivalent tracking performance in
cases where the standard SIR filter succeeds.

Our method is distinct from the ones in [5] and [13] which use
velocity estimates computed from the measurements to adaptively
change the state update and appearance models, but do not use
them explicitly in the likelihood. It is also distinct from higher-
order particle filters that predict the current state from multiple
previous states like the one in [3] where the likelihood depends on
multiple past states but not on past measurements and the one in [2]
which uses agent based crowd models. Our likelihood function (13)
is similar to the one in [14] in the sense that both depend explicitly
on the current and past state and the current and past observation;
however, the method in [14] obtains explicit velocity estimates
by block matching. An important component of our future work
involves comprehensive performance evaluation of our proposed
method relative to all of these very interesting related techniques.
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