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0.1 What is Phase Unwrapping?

Phase unwrapping is an important process in many applications that take advantage of the phase information.
In synthetic aperature radar (SAR) interferometric imaging, the phase value at a given point indicate the
terrain evaluation height . In fiber-optic interferometry, the phase value represent the depth of the imaged
object. In magetic resonant (MR), the phase values contain information about flow or inhomogeneities in the
magnetic field. However, in these applications, direct measurements of the phase functions are not possible.
For example, in compenstated imaging, one can have only obtain phase differences from the receivers .
In other applications, only the wrapped phase are measurable and they do not provide an intuitive way to
present and perform analysis on the observed phenomena. Due to the emphasis of this dissertation on image
processing, we will limit our discussion of the phase unwrapping to the 2-D signals.

The 2-D phase unwrapping process aims to find the unwrapped phase function from its wrapped function.
In order words, given values of a continuous phase function by an inversion of a trigonometric function, for
example, arccos(¢(x)), we want to find ¢(x) such that its range is not restricted in [0, 27r]. Formally, let ¢(x)
be a continuous phase function. Let W[.] be the wrap operator such that W[é(x)] € [0, 27]. Given W[p(x)],

we need to compute ¢(x). Nevertheless, the 2-D phase unwrapping is an ill-posed problem. In practice, due



to noise or missing samples at the sensor’s receiver, a unique unwrapped phase solution can not be obtained.
Therefore, one has to resort approximation algorithms.

INSERT FIGURES TO ILLUSTRATE THE WRAPPED PHASE vs. UNWRAPPED PHASE

There are four main phase unwrapping categories: path integration, energy norm minimization, model-
based estimation, and bayesian based estimation. All approaches use either acquired or computed local

phase differences, i.e., gradient.

0.1.1 Numerical Path Integration

Goldstein, Zebker, and Werner [4] proposed a path integration phase unwrapping algorithm. They provided
an algorithm, branch cut to detect local errors caused by large phase discontinutities and prevent them from
contributing to the the global phase reconstruction. The unwrapped phase is then obtained by performing
path integration by knowing local horizontal and vertical derivatives. The numerical integration process

must not cross the cut boundaries detected by the branch cuts algorithm.

0.1.2 Least-square Energy Minimization

Fried [2] and Hudgin [3] formulated the least-square phase reconstruction problem for the wave-front sensor.
They aimed to minimize the sum of errors between the phase differences and gradient of the unwrapped
phase. Hunt [5] casted the phase reconstruction problem with linear algebra and proposed a method to
improve the convergence rate of the phase solution. Takajo and Takahashi [6] justified the least-square phase
reconstruction formulation and introduced conditions where the least-square phase solution is the unique
solution. The authors then proposed a closed-form non-iterative algorithm in frequency domain to solve for
the phase function [7]. Ghiglia and Romero [8] extended the least-square phase reconstruction to facilitate
weighted constribution of measured phase difference. They proposed two iterative algorithms to solve for
the phase. Strand, Taxt, and Jain proposed using the least-square phase unwrapping in small block [1].
Bioucas-Dias and Valadao [9] proposed an energy minimization framework for 2D phase unwrapping based
on graph cuts. Spagnolini [10] used the IF estimation directly from the model instead of the wrapped phase.
The estimated IF is then used in 2-D phase unwrapping using the least-square framework. Because the the
unwrapped phase values differ from that of the wrapped by multiple of 27, Costantini [11] formulated the

phase unwrapping problem as the energy minimization with integer variables.



0.1.3 Model-based Parameter Estimation

Friedlander and Francos [12] used a parametric model for phase unwrapping. First, the authors used a 2-D
polynomial model to fit the observed phase. The estimated phase is then used to direct the phase unwrapping
process where the phase of each sample is corrected by adding/subtracting a multiple of 27 based on the
difference between the principle value of the phase and the estimated phase. For arbitrary phase unwrapping,

the observed wrapped phase signal is first segmented prior to the model fitting process.

0.1.4 Bayesian Phase Unwrapping

Nico, Palubinskas, and Datcu 13| applied the Bayesian framework to the phase unwrapping problem. Be-
cause measurement noise and phase aliasing caused the least-square phase reconstruction solution inaccurate,
they advocated the use of first and second regularization term to enforce the phase pior model. However, it

is not easy to find an suitable prior model any arbitrary phase function.

0.2 Least-square Phase Unwrapping for the AM-FM Image Model

In many applications such as SAR or fiber-optic interferometry, we can not measure the values of the phase
function directly. Let x € R?. Let ¢(x) be the true phase function that we want to estimate. Let Vp(x)
be the measured phase gradient. The least-square phase unwrapping approach finds the unwrapped phase
¢(x) by minimizing the mean square error between the gradient of ¢(x) and the measured phase differences

Vp(x). In other words, we can cast their relationship as
Vo(x) = V() + d(x), (1)

where d(x) models the distortion during the measurement process.

In practice, acquired measurements are discrete. Therefore, the finite phase difference is often used to
approximate the derivative operator. For example, [¢(m + 1,n) — ¢(m,n)] and [p(m,n + 1) — ¢(m, n)] are
approximation of vertical and horizontal derivative at location (m,n) in the grid [0---M —1] x [0--- N —1].
Specifically, let pp,(m,n) and p,(m,n) be the measured phase gradient, i.e., p,,(m,n) and p,(m,n) be
discrete approximation of the vertical and the horizontal derivative of the measured phase p(m,n). Let

Vo(m,n) = [pm(m,n) ¢m(m,n)]T be the gradient field of the unwrapped phase. The unwrapped phase



@¢(m,n) is the solution to the Ly norm minimization

E(@(m,n)) = ||om(m,n) — pm(m,n)|[* +||6n(m,n) — pa(m,n)||*. (2)

Hunt [5] reorganized in term of matrix multiplication. He constructed the matrix A which acts like a
phase difference operator. In this formulation, the phase functions ¢(m,n), pm(m,n), and p,,(m,n) are

vectorized into 1-D vector. Concretely, we denote ¢ a 1-D vector of ¢(m,n) and v = [py, pn]T a 1-D vector

consisting of two stacked 1-D vectors p,,, and p,. The energy minimzation equation is equivalent to

|Agp —|?
(Ap—7)"(Ap—7)
= (A9)TA¢— (Ap)"y—7"Ap+~Ty

¢TATAY — 20T ATy + T, (3)

£(¢)

We can see that is a quadratice function of ¢. The optimal solution for ¢ is computed by taking derivative

of £(¢) and set the derivative to zeros as

€
= =2ATA4—2AT~y = 0.
90 o 7=0

= ATAp = ATH. (4)

We notice that the solution in (4)) is the well-known least-square solution of an overdetermined linear system.
We can solve for ¢ using matrix inversion provided that the matrix AT A is not singular. However, the
matrix A in this problem is speciall matrix to compute discrete gradient. As a result, ATA¢ can be
intepreted as the Laplacian of ¢ and AT p represents the derivative of the measured gradient p, which is the
Laplacian of measured phase p. With this representation, equation is the discretization of the Poisson
equation which can be solved exactly using the fast discrete cosine transform (DCT) [7]. Let @ be the 2-D
DCT transform of ¢(m,n) and T be the 2-D DCT trasnform of v(m,n).

Smm (m,n) Snn(m,n)
(d)(m +1,n) — 2¢(m,n) + ¢p(m — 1,n)) + (¢(m, n+1) — 2¢(m,n) + ¢(m,n — 1)) =
(pm(msm) = pn(m = 1,0)) + (pu(m, ) = pulm,n = 1)) (5)
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p(m,n) = Z

i= j=0

—

w(i, j)®(i, j) cos [27;41‘(2711 +1) : (6)
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<

where

0.25 ifi=45=0,

. 0.5 ifi=0and j#0,
w(i,j) =
0.5 ifj=0andi#0,

1.0 otherwise.

Substituting @ to each element of the left hand side in and expanding the first cosine term, we have
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Repeat the same expansion for every element on the left hand side of @ and simplify the overall sum,

. ™ . T .
sin [MZ] cos [2]\7](211 +1)



we arrive

.
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Repeat the same expansion for every element on the right hand side of @ and simplify the overall sum,

we arrive
M-1N-1 . .
RHS = 5, (2, 5 —1(2 1 — (2 1 10
;jgow(z,j) (z7j)cosl2Mz(m+ )| cos [QNj(n—l— ) (10)

Compare (9) and (L0), we have the relationship in DCT domain

L'(,4)

D(i, j) = -
2 cos (ﬁz) + 2 cos (%]) —4

The unwrapped phase solution is obtained by taking the inverse discrite cosine transform as

$(m,n) = IDCT{®}. (12)

®(0,0) in is not defined because the denominator is 0. In practice, one can set ®(0,0) = 0 which
results in a zero mean unwrapped phase function. Better yet, one can estimate the constant ¢ such that
it minimize the energy between the cos(W{@(m,n)}) and cos(¢(m,n)). In other words, one minimizes the

following norm

E(c) = [[cos(W{d(m,n)}) — cos(¢(m,n) + c)|*. (13)

Pritt [14] computed with different ¢ over the range of [0 27| and select choose ¢ with the lowest error.
One can also find the constant ¢ using an interative approach such as gradient descent.

INSERT PICTURES HERE
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