
2D Phase Unwrapping

Chuong Nguyen

November 19, 2011



Contents

0.1 What is Phase Unwrapping? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.1 Numerical Path Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.1.2 Least-square Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.1.3 Model-based Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.1.4 Bayesian Phase Unwrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Least-square Phase Unwrapping for the AM-FM Image Model . . . . . . . . . . . . . . . . . . 3

0.1 What is Phase Unwrapping?

Phase unwrapping is an important process in many applications that take advantage of the phase information.

In synthetic aperature radar (SAR) interferometric imaging, the phase value at a given point indicate the

terrain evaluation height [1]. In fiber-optic interferometry, the phase value represent the depth of the imaged

object. In magetic resonant (MR), the phase values contain information about flow or inhomogeneities in the

magnetic field. However, in these applications, direct measurements of the phase functions are not possible.

For example, in compenstated imaging, one can have only obtain phase differences from the receivers [2, 3].

In other applications, only the wrapped phase are measurable and they do not provide an intuitive way to

present and perform analysis on the observed phenomena. Due to the emphasis of this dissertation on image

processing, we will limit our discussion of the phase unwrapping to the 2-D signals.

The 2-D phase unwrapping process aims to find the unwrapped phase function from its wrapped function.

In order words, given values of a continuous phase function by an inversion of a trigonometric function, for

example, arccos(φ(x)), we want to find φ(x) such that its range is not restricted in [0, 2π]. Formally, let φ(x)

be a continuous phase function. Let W[.] be the wrap operator such that W[φ(x)] ∈ [0, 2π]. Given W[φ(x)],

we need to compute φ(x). Nevertheless, the 2-D phase unwrapping is an ill-posed problem. In practice, due
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to noise or missing samples at the sensor’s receiver, a unique unwrapped phase solution can not be obtained.

Therefore, one has to resort approximation algorithms.

INSERT FIGURES TO ILLUSTRATE THE WRAPPED PHASE vs. UNWRAPPED PHASE

There are four main phase unwrapping categories: path integration, energy norm minimization, model-

based estimation, and bayesian based estimation. All approaches use either acquired or computed local

phase differences, i.e., gradient.

0.1.1 Numerical Path Integration

Goldstein, Zebker, and Werner [4] proposed a path integration phase unwrapping algorithm. They provided

an algorithm, branch cut to detect local errors caused by large phase discontinutities and prevent them from

contributing to the the global phase reconstruction. The unwrapped phase is then obtained by performing

path integration by knowing local horizontal and vertical derivatives. The numerical integration process

must not cross the cut boundaries detected by the branch cuts algorithm.

0.1.2 Least-square Energy Minimization

Fried [2] and Hudgin [3] formulated the least-square phase reconstruction problem for the wave-front sensor.

They aimed to minimize the sum of errors between the phase differences and gradient of the unwrapped

phase. Hunt [5] casted the phase reconstruction problem with linear algebra and proposed a method to

improve the convergence rate of the phase solution. Takajo and Takahashi [6] justified the least-square phase

reconstruction formulation and introduced conditions where the least-square phase solution is the unique

solution. The authors then proposed a closed-form non-iterative algorithm in frequency domain to solve for

the phase function [7]. Ghiglia and Romero [8] extended the least-square phase reconstruction to facilitate

weighted constribution of measured phase difference. They proposed two iterative algorithms to solve for

the phase. Strand, Taxt, and Jain proposed using the least-square phase unwrapping in small block [1].

Bioucas-Dias and Valadão [9] proposed an energy minimization framework for 2D phase unwrapping based

on graph cuts. Spagnolini [10] used the IF estimation directly from the model instead of the wrapped phase.

The estimated IF is then used in 2-D phase unwrapping using the least-square framework. Because the the

unwrapped phase values differ from that of the wrapped by multiple of 2π, Costantini [11] formulated the

phase unwrapping problem as the energy minimization with integer variables.
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0.1.3 Model-based Parameter Estimation

Friedlander and Francos [12] used a parametric model for phase unwrapping. First, the authors used a 2-D

polynomial model to fit the observed phase. The estimated phase is then used to direct the phase unwrapping

process where the phase of each sample is corrected by adding/subtracting a multiple of 2π based on the

difference between the principle value of the phase and the estimated phase. For arbitrary phase unwrapping,

the observed wrapped phase signal is first segmented prior to the model fitting process.

0.1.4 Bayesian Phase Unwrapping

Nico, Palubinskas, and Datcu [13] applied the Bayesian framework to the phase unwrapping problem. Be-

cause measurement noise and phase aliasing caused the least-square phase reconstruction solution inaccurate,

they advocated the use of first and second regularization term to enforce the phase pior model. However, it

is not easy to find an suitable prior model any arbitrary phase function.

0.2 Least-square Phase Unwrapping for the AM-FM Image Model

In many applications such as SAR or fiber-optic interferometry, we can not measure the values of the phase

function directly. Let x ∈ R2. Let φ(x) be the true phase function that we want to estimate. Let ∇ρ(x)

be the measured phase gradient. The least-square phase unwrapping approach finds the unwrapped phase

φ(x) by minimizing the mean square error between the gradient of φ(x) and the measured phase differences

∇ρ(x). In other words, we can cast their relationship as

∇φ(x) = ∇ρ(x) + d(x), (1)

where d(x) models the distortion during the measurement process.

In practice, acquired measurements are discrete. Therefore, the finite phase difference is often used to

approximate the derivative operator. For example, [φ(m + 1, n) − φ(m,n)] and [φ(m,n + 1) − φ(m,n)] are

approximation of vertical and horizontal derivative at location (m,n) in the grid [0 · · ·M − 1]× [0 · · ·N − 1].

Specifically, let ρm(m,n) and ρn(m,n) be the measured phase gradient, i.e., ρm(m,n) and ρn(m,n) be

discrete approximation of the vertical and the horizontal derivative of the measured phase ρ(m,n). Let

∇φ(m,n) = [φm(m,n) φm(m,n)]T be the gradient field of the unwrapped phase. The unwrapped phase
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φ(m,n) is the solution to the L2 norm minimization

E(φ(m,n)) = ||φm(m,n)− ρm(m,n)||2 + ||φn(m,n)− ρn(m,n)||2. (2)

Hunt [5] reorganized (2) in term of matrix multiplication. He constructed the matrix A which acts like a

phase difference operator. In this formulation, the phase functions φ(m,n), ρm(m,n), and ρm(m,n) are

vectorized into 1-D vector. Concretely, we denote φ a 1-D vector of φ(m,n) and γ = [ρm ρn]T a 1-D vector

consisting of two stacked 1-D vectors ρm, and ρn. The energy minimzation equation (2) is equivalent to

E(φ) = ||Aφ− γ||2

= (Aφ− γ)T (Aφ− γ)

= (Aφ)TAφ− (Aφ)T γ − γTAφ+ γT γ

= φTATAφ− 2φTAT γ + γT γ. (3)

We can see that (3) is a quadratice function of φ. The optimal solution for φ is computed by taking derivative

of E(φ) and set the derivative to zeros as

∂E
∂φ

= 2ATAφ− 2AT γ = 0.

⇒ ATAφ = AT γ. (4)

We notice that the solution in (4) is the well-known least-square solution of an overdetermined linear system.

We can solve (4) for φ using matrix inversion provided that the matrix ATA is not singular. However, the

matrix A in this problem is speciall matrix to compute discrete gradient. As a result, ATAφ can be

intepreted as the Laplacian of φ and AT ρ represents the derivative of the measured gradient ρ, which is the

Laplacian of measured phase ρ. With this representation, equation (4) is the discretization of the Poisson

equation which can be solved exactly using the fast discrete cosine transform (DCT) [7]. Let Φ be the 2-D

DCT transform of φ(m,n) and Γ be the 2-D DCT trasnform of γ(m,n).

φmm(m,n)︷ ︸︸ ︷(
φ(m+ 1, n)− 2φ(m,n) + φ(m− 1, n)

)
+

φnn(m,n)︷ ︸︸ ︷(
φ(m,n+ 1)− 2φ(m,n) + φ(m,n− 1)

)
=(

ρm(m,n)− ρm(m− 1, n)
)

+
(
ρn(m,n)− ρn(m,n− 1)

)
(5)
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φ(m,n) =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2m+ 1)

]
cos

[
π

2N
j(2n+ 1)

]
, (6)

where

w(i, j) =



0.25 if i = j = 0,

0.5 if i = 0 and j 6= 0,

0.5 if j = 0 and i 6= 0,

1.0 otherwise.

Substituting (6) to each element of the left hand side in (5) and expanding the first cosine term, we have

φ(m+ 1, n) =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2(m+ 1) + 1)

]
cos

[
π

2N
j(2n+ 1)

]

=
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2m+ 1) +

π

M
i

]
cos

[
π

2N
j(2n+ 1)

]

=
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j)

(
cos

[
π

2M
i(2m+ 1)

]
cos

[
π

M
i

]
cos

[
π

2N
j(2n+ 1)

]
−

sin

[
π

2M
i(2m+ 1)

]
sin

[
π

M
i

]
cos

[
π

2N
j(2n+ 1)

])
.

(7)

φ(m− 1, n) =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2(m− 1) + 1)

]
cos

[
π

2N
j(2n+ 1)

]

=
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2m+ 1)− π

M
i

]
cos

[
π

2N
j(2n+ 1)

]

=
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j)

(
cos

[
π

2M
i(2m+ 1)

]
cos

[
π

M
i

]
cos

[
π

2N
j(2n+ 1)

]
+

sin

[
π

2M
i(2m+ 1)

]
sin

[
π

M
i

]
cos

[
π

2N
j(2n+ 1)

])
.

(8)

Repeat the same expansion for every element on the left hand side of (6) and simplify the overall sum,
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we arrive

LHS =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2m+ 1)

]
cos

[
π

2N
j(2n+ 1)

](
2 cos

[
π

M
i

]
+ 2 cos

[
π

N
j

]
− 4

)
(9)

Repeat the same expansion for every element on the right hand side of (6) and simplify the overall sum,

we arrive

RHS =
M−1∑
i=0

N−1∑
j=0

w(i, j)Γ(i, j) cos

[
π

2M
i(2m+ 1)

]
cos

[
π

2N
j(2n+ 1)

]
(10)

Compare (9) and (10), we have the relationship in DCT domain

Φ(i, j) =
Γ(i, j)

2 cos
(
π
M i
)

+ 2 cos
(
π
N j
)
− 4

. (11)

The unwrapped phase solution is obtained by taking the inverse discrite cosine transform as

φ(m,n) = IDCT{Φ}. (12)

Φ(0, 0) in (11) is not defined because the denominator is 0. In practice, one can set Φ(0, 0) = 0 which

results in a zero mean unwrapped phase function. Better yet, one can estimate the constant c such that

it minimize the energy between the cos(W{φ(m,n)}) and cos(φ(m,n)). In other words, one minimizes the

following norm

E(c) = || cos(W{φ(m,n)})− cos(φ(m,n) + c)||2. (13)

Pritt [14] computed (13) with different c over the range of [0 2π] and select choose c with the lowest error.

One can also find the constant c using an interative approach such as gradient descent.

INSERT PICTURES HERE
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