UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MODULATION DOMAIN IMAGE PROCESSING

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

CHUONG T. NGUYEN
Norman, Oklahoma
2012



MODULATION DOMAIN IMAGE PROCESSING

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Joseph P. Havlicek, Chair

J. R. Cruz

Choon Yik Tang

Murad Ozaydin

Tomasz Przebinda



(© Copyright by CHUONG T. NGUYEN 2012
All Rights Reserved.



To my late loving grandmother.



Acknowledgements

I would like to express my gratitude to five committee members for serving and
for offering technical expertise during my studies at the University of Oklahoma.
Especially, I would like to honor my academic advisor, Dr. Joebob Havlicek. He
has made tremendous impact on my research and professional career. Not only
he is a teacher, but also is a friend. His thorough guidance transforms me to
a better thinker. I am grateful to him for providing me opportunities to work
on interesting research problems and for sponsoring me throughout my graduate

study. More importantly, he taught me the phase “quality control”.

I have too many friends to thank for. I would like to thank my lab members
at the Intelligent Transportation System Laboratory. I have learned many lessons
from them, both academic and life. I also want to thank all my friends of the
Society of Vietnamese Student (SVS) and the SVS soccer team. They have been

a family to me when I am far away from home.

Last but not least, I want to show my appreciation to my parents and
brothers. I would not be in this position today without the support and patience

of my wife, Anh Nguyen. Anh and my son, Duy, have been my inspiration.

v



Table of Contents

[Acknowledgements| iv
[List_of Tables| viii
[List of Figures| X
[Abstract] XV
[Chapter 1. Introduction| 1
(1.1 Organization|. . . . . . . . . . . . . . 5)
(.2 Nomenclaturel . . . . .. . ... o 7
(1.3 Test images| . . . . . . . . . . .. 9
[Chapter 2. The 1D AM-FM Signal Model| 10
2.1 Instantaneous Frequency| . . . . . . . . . . ... ... 11
[2.1.1 The Importance of Instantaneous Frequency|. . . . . . . . . . .. 11
[2.1.2 Debates about Instantaneous Frequency| . . . . . . . ... .. .. 12
[2.2  Computation of the 1D AM-FM Signal Model| . . . . . . ... ... .. 13
[2.2.1 Analytic Signalf. . . . . . . ... oo 13
[2.2.2 'Teager-Kaiser Energy Operator| . . . . . . . . .. ... ... ... 18
[2.2.3 Quasi-Local AM-FM Estimation| . . . . . ... ... ....... 19
[2.3 Comparison of 1D AM-FM Techniques| . . . . . .. ... ... ... .. 21
2.4 Summaryl. . . . . ... e 30
[Chapter 3. The 2D AM-FM Image Modell 32
(3.1 The AM-FM Image Model: A Review| . . . . .. .. ... ... ... .. 33
[3.1.1 The AM-FM Image Model| . . . . . .. .. ... ... ... ... 33
[3.1.2 Computation of the AM-FM Image Model . . . . . . .. ... .. 34
(3.2 The 2D Complex Image Extension|. . . . . ... .. ... ... ... .. 35
(3.2.1 Partial Hilbert Transform| . . . . . . . . . . ... ... ... ... 35
3.2.2 Total Hilbert Transform(. . . . . . . .. .. ... ... ... ... 36
[3.2.3 Single Orthant Complex Signalf . . . . . ... ... ... ... .. 37




[3.2.4 Adjusted Hilbert Transtorm|. . . . . . . .. ... ... ... ...
[3.2.5 Hypercomplex Signal| . . . . ... ... ... .. ... ... ...

[3.2.6  Monogenic Signal| . . . . ... ... 0oL
(3.3 The 2D AM-FM Computation: Direct Approaches|. . . . . . . . . . ..
[3.3.1 The 2D Teager-Kaiser Energy Operator| . . . . . . . . .. .. ..
[3.3.2 The 2D Quasi-local Approachl. . . . . ... ... ... ... ...
[3.4 Comparison of the Complex Extension Approaches . . . ... ... ..
[3.5 Summary|. . . . . ..

[Chapter 4. The Perfect Reconstruction AM-FM Image Modell

4.1 The Importance of Phase Unwrapping. . . . . ... ... ... ... ..

(4.2 The 2D Phase Unwrapping Problem|. . . . . . ... ... ... ... ..
[4.2.1 Numerical Path Integration| . . . . . . . .. ... ... ... ...
[4.2.2 Least-squares Energy Minimization|. . . . . . . . . .. ... ...

4.2.4 Bayesian Phase Unwrapping| . . . . .. .. ... ... ... ...
4.3 Least-squares Phase Unwrapping for the 2D AM-FM Image Model| . . .
4.4 Pertect Reconstruction FM Algorithm|. . . . . . .. .. .. ... .. ..
[4.4.1 Arguments for the Least-squares Phase Unwrappingl . . . . . . .

4.4.2 Enforcing Phase Congruencel . . . . . . . ... ... ... ....
4.4.3 Spline-based Perfect Reconstruction FM| . . . . . ... .. .. ..
4.4.4 Least-squares FM Perfect Reconstruction| . . . . . . . . ... ..
4.5 The Single Component PR AM-FM Transtorm|. . . . .. ... ... ..
.6 Summaryl. . . ... ..

[Chapter 5. Multi-component AM-FM Transform|
[>.1 Motivation for the Multi-component Approach|{ . . . . . . . . . ... ..

[5.2.1 Arguments for the multi-scale multi-orientation filterbank| . . . .
[5.2.2  Arguments for the Steerable Pyramidl . . . . ... ... ... ..
[5.2.3 'The Original Steerable Pyramid| . . . . .. ... ... ... ...
[5.2.4 The Modified Steerable Pyramuad| . . . . . . ... ... ... ...
(5.3 The Multi-component PR AM-FM Transtorm| . . ... ... ... ...

(5.3.2 The Multi-component AM-FM transtorm| . . . . .. ... .. ..
(0.4 Summaryl. . . . ...

vi

60
61
63
65
66
67
67
67
70
70
70
76
79
84
91



[Chapter 6. AM-FM Image Processing| 120

[6.1 Motivation for Transform-Domain Filteringl . . . . . . .. ... ... .. 120
6.2 AM-based Filters| . . . . . . . . ... .o 124
[6.2.1 Orientation Selective AM Filteringl . . . . . . ... ... ... .. 124
[6.2.2 Frequency Selective Filteringl . . . . . ... ... ... ... ... 128
6.2.3 Selective Contrast Enhancement! . . . . . . . ... ... ... .. 129
[6.2.4 AM-based Image Fusion|. . . . . . ... ... ... .. 132
6.3 AM-F'M Image Filteringl . . . . ... ... ... ... ... ....... 134
6.3.1 Translationl . . . . . . . ... oo 137
[6.3.2 Scaling] . . ... ... 137
[6.3.3 Image Rotation|. . . . . . . . ... ... ... L. 140
(0.4 Summary|. . . . . ... 143
[Chapter 7. Extended Results of the xAMFM| 146
[7.1 Coherent Texture Decomposition| . . . .. ... .. ... ... ..... 146
[7.1.1 Modulation Domain Texture Decomposition|. . . . . . . . . . .. 149
[7.1.2 Results and Discussionl . . . . .. . ... ... ... ... ..., 152
[7.1.3 Summary| . . . . . . . . . 156
[7.2  Cartoon + 'Texture Decomposition|. . . . . . . . ... ... ... .... 156
[7.2.1 Background|. . . . . . .. ..o 158
[7.2.2 'Texture-Cartoon Decomposition| . . . . . . ... ... ... ... 161
[(.2.3 Simulation Results . . . . . . ... o000 162
[7.2.4 Summary| . . . . . . ... 163
[7.3 Relationship with the Monogenic Signall . . . . . . . .. ... ... ... 166
[7.3.1 A new algorithm for computing the monogenic FM| . . . . . . .. 169
[7.3.2 Relationship between Monogenic and partial Hilbert approaches|. 170
[7.3.3 Discussion and Conclusion] . . . . .. ... ... ... ... ... 175
[Chapter 8. Conclusions and Future Work]| 176
(Bibliography| 182
Appendices
[Appendix A. Orientation Decomposition| 195
[Appendix B. 2D Least-squares Phase Unwrapping] 197

vil



List of Tables

(1.1 Symbols used in the dissertation|. . . . . . . . ... ... ... ... 8
(1.2 Definitions of terms and acronyms used in the dissertation| . . . . . 8
[2.1 Comparison of MSE in estimated AM obtained by three compet-

ing discrete demodulation algorithms in presence of additive white

Gaussian noise. oo denotes the noise-free signal.| . . . . . . . . . .. 27

P2

Comparison of MSE in estimated FM obtained by three compet-

ing discrete demodulation algorithms in presence of additive white

Gaussian noise. oo denotes the noise-free signal.| . . . . . . . . . .. 27

13.1

Mean squared error (MSE) comparison of the computed AM with

respect to the original AM 1n Fig.[3.6(b) of four complex extension

approaches.| . . . . . . . . L 02

B.2

Construction comparison of different n-D complex signal extensions| 58

B3

Comparison of main properties of different approaches including

1sotropic, meaningful phase interpretation, and harmonic correspon-

dencel. . . . . 59

7]

Mean squared error (MSE) comparison between the true phase and

the least-squares phase after and before phase congruency 1s added

to the least-squares phase for the test image Barbara. . . . . . . . . 76

m2

Mean squared error (MSE) comparison between the true phase and

the least-squares phase after and before phase congruency 1s added

to the least-squares phase for the test image Lena.. . . . . . . . .. 7

i3

The mean squared error (MSE) comparison of the least-squares

phase and the unwrapped phase with respect to the true phase for

test image Lena.| . . . . . . . ... oo o 77

4.4 Mean squared error (MSE) comparison of the least-squares phase

and the unwrapped phase with respect to the true phase for the

test image mandrill.|. . . . . ..o 0000000 81
[4.5 Reconstruction error of the one component AM-FM transtorm. . . . 86
[>.1  Reconstruction error of the multi-component AM-FM transtorm. . . 118
[6.1 Objective performance of image fusion techniques measured by the |

mutual information metric [101]. . . . . . . . .. ... ... 134

[6.2

Objective performance of image fusion techniques using the objec-

tive pixel-level image fusion metric [128.| . . . . . . . . .. ... .. 134

viil



[6.3  Objective performance of image tusion techniques measured by the
| SSIM metric [127]] .. . . . . . . . .. ... ... ... 134

[6.4 Comparison of the upsampling operation.|. . . . . . . . . ... ... 140

1X



List of Figures

M1

Well-known test images. (a) Barbara. (b) boat. (c) Lena. (d)

fngerprint. (e) Gaussian chirp. (f) mandrill. | . . . . .. .. .. ..

P.1

Test signal f(n) and theoretical values of the AM and FM functions.

(a) Original AM-FM test signal given 1n (2.25)). (b) Theoretical

AM tunction obtained analytically from ([2.25]). (c¢) Theoretical FM

function obtained analytically from (2.25)), as given in (2.20])] . . . .

P2

Computed AM and FM functions of the TKEO approach. (a) The

computed AM function using (2.19). (b) The computed F'M function

using (2.20)] . - - . - . . ..

2.3

Computed AM and FM functions of the AS approach. (a) The

computed AM function using (2.10). (b) The computed F'M function

by discritizing (2.11)] - - - - - - - -« « .« ...

24

[2.4

Computed AM and FM functions of the QL approach. (a) The

computed AM function using (2.22). (b) The computed FM function

using (2.24). | . . . ..o

[2.5

Detail view of computed AM and FM functions from the noise-free

signal f(n) in (2.25) using all three methods. (a) Computed AM

function. (b) Computed FM functions.| . . . . . . . . .. ... . ..

[2.6

Detail view of computed AM and FM functions from the signal f(n)

n (2.25) corrupted by additive white Gaussian noise with standard

deviation o = 0.2 using all three methods. (a) Computed AM func-

tion. (b) Computed FM functions| . . . . . . ... ... ... ..

B1

Spectral support of the 2D spectrum of the complex signal con-

structed using the pH'T acting in the directione| . . . . . . .. ..

B2

Spectral multiplier of the 2D complex signal: (a) of the pHT with

e=[10". (b)of the tHT| . . . ... ... ... .. ... ......

[3.3

The 2D spectrum of single orthant complex signal . . . . . . . . ..

3.4

Ilustration of the frequency multiplier of the ordinary pHT in (3.2

and Irequency multiplier of the adjusted T in (3.12). (a) Frequency

multiplier of the pHT with e = [10]’. (b) Frequency multiplier of

the adjusted HT. | . . . . . . . . . . . ..o

3.5

Riesz transform frequency response: (a) hi(w). (b) ho(w)| . . . . .

B6

44

Chirp image: (a) Original image. (b) AM function. (¢) FM function.| 50




[3.7 AM and phase of hypercomplex signal: (a) AM function. (b) First

phase component ¢(x) in (3.22). (¢) second phase component 0(x)

in (3.22). (d) Third phase component ©(X) in (3.22)] . . . . . . . . ol

[3.8 AM results for the chirp image computed using three different com-

plex signal extensions. (a) Original AM. (b) Single orthant AM. (c)

Adjusted H'1' AM. (d) Monogenic AM.| . . . ... ... ... ... . 23

[3.9  EF'M results for the chirp 1mage computed using three difterent com-

plex signal extensions. (a) Original chirp FM. (b) Single orthant

FM. (c) Adjusted HT FM. (d) Monogenic FMJ . . . . . . .. .. .. 5

[3.10 AM-FM representations of Lena image: (a) Original image. (b) Sin-

gle orthant AM. (¢) Adjusted HI' AM. (d) Hypercomplex AM. (e)

Monogenic AM. (t) Single orthant phase. (g) Adjusted H'I' phase.

(h) Hypercomplex third phase component ¢)(x). (1) Monogenic phase.| 95

[3.11 Imaginary image of the complex signal models for the chirp image: |

(a) of the adjusted H'T approach (b) of the monogenic signal approach.| 59

4.1 2D Phase unwrapping of one narrowband component of the Babara

image. (a) Real image component. (b) Imaginary image component.

(c) Wrapped phase function. (d) Unwrapped phase function. (e)

Wrapped FM field. (f) Unwrapped FM field. | . . . .. ... .. .. 64
4.2  Wrapped phase vs. unwrapped phase. (a) Wrapped phase. (b) |
Unwrapped phase.| . . . . . . . . ... oo 65

4.3 2D Phase unwrapping of one component of lena, lena_3_2. (a)

Wrapped phase. (b) Unwrapped phase. (c¢) cos|¢rs(n)| — cos|p(n)].

(d) Congruence term 6(n) mn (4.12). | . . . . . . .. ... ... ... 72
.4 3D error plot of the 2D Phase unwrapping for barbara 3.2. (a) |
cos|prs(n)| — cosPVip(n);]. (b) coslp(n)| — cosifWipm)f. [ . . . . 73

4.5 2D Phase unwrapping of one component of barbara, babara_3_4. (a)

Wrapped phase. (b) Unwrapped phase. (c) cos|prg(n)| — cos[p(n)].

(d) Congruence term 06(n) mn (4.12). [ . . . ... ... ... ... .. 74
4.6 3D error plot of the 2D Phase unwrapping for barbara 3 4. (a) |
conTprs ([ — cosTW (] 1T () coslp(n)[ — cosDV L] - - -~ 75

4.7 2D phase reconstruction from FM functions. (a) U(n). (b) V(n). |

(c) Least-squares phase ¢reconrs(n). (d) Reconstructed phase p(n). | 82

4.8 2D least-squares phase reconstruction. (a) Offset constant 7 = |

—3.1317 in ([4.26). (b) [p(n) —@(m)][ €0, 25 x 10 1. ] . . . . . .. 83

4.9 Single component pertect reconstruction AM-FM transform of the

BentChirp image.. (a) Original bentChirp image. (b) Reconstructed

bentChirp image. (¢) Computed AM tunction. (d) Computed phase

function p(n). (e) Horizontal component of p(n). (f) Vertical com-

ponent of po(n). | . . . ... o 8

[4.10 Single component pertect reconstruction AM-FM transform of the |

BentChirp image. (a) Computed AM. (b) Computed FM field. | . . 88

x1



IIT

oingle component pertect reconstruction AM-FM transform of the

Chirp image. (a) Original chirp image. (b) Reconstructed chirp

mmage. (c¢) Computed AM function. (d) Computed phase function

v(n). (e) Horizontal component of p(n). (f) Vertical component of

O(m). | . 39
[4.12 Single component perfect reconstruction AM-FM transform of the |
Chirp image. (a) Computed AM. (b) Computed FM field. | . . . . . 90
[5.1 Single component AM-FM representation of the barbara image. (a)
Original barbara image. (b) Reconstructed barbara image. (c)
Computed AM function. (d) Computed phase function. | . . . . . . 93
[5.2  Computed FM function for single-component AM-FM transtorm ot |
Barbara image.| . . . .. ... o 94
(5.3 Decomposition scheme of the original steerable pyramid [106[.| . . . 98
[p.4  Frequency responses of Hy(—w) and Lo(—w).| . . . ... ... ... 102
(5.5 Highpass decomposition scheme of the MSP| . . . .. ... ... .. 103
[5.6  Decomposition of the lowpass channel into eight orientation selective
sub-channels. (a) Original lowpass channel. (b) 1°* component. (c)
274 component. (d) 3" component. (e) 4" component. (f) 5"
component. (g) 6! component. (h) 7" component. (i) 8 component [105
[5.7  Decomposition of the highpass into eight orientation selective sub-
channels. (a) Original highpass channel. (b) 1% component. (c) 2™
component. (d) 3" component. (e) 4" component. (f) 57 com-
ponent. (g) 6 component. (h) 7" component. (i) 8" component.
[ e 106
[>.8  Decomposition scheme of the MSP.| . . . ... ... ... ... ... 107

[5.9  Alternative interpretation of the decomposition scheme of the MSP.| 108

5.10

Steerable Pyramid filterbanks. (a) OSP filterbank. (b) MSP filter-

bank. | . . . e

B11

Barbara: imaginary image computed with rotated pHT and with

Hy. (a) Original Barbara image. (b) Component f4;. (c) g41 with

rotated pHT. (d) ¢4 with H,. (e) Rotated pPHT. (f) pHT with

O=0.1. .« o e

[>.12

Barbara: computed AM-FM with rotated pHT and pH'T' with H,.

(a) Original Barbara image. (b) Component fy;. (c¢) AM with

rotated pHT. (d) AM with Hy. (e) FM field of rotated pHT. (f)

EM field with Ho |. . . . . . . . o oo

[>.13

Mandrill: 1maginary image computed with rotated pH'I' and with

‘Hy. (a) Original Mandrill image. (b) Component f4;. (c) gs; with

rotated pHT. (d) ¢4 with H,. (e) Rotated pPHT. (f) pHT with

O=0.1. . e

xii



[5.14

Mandrill: computed AM-FM with rotated pHT and H,. (a) Origi-

nal Mandrill image. (b) Component f4;. (c) AM with rotated pH'T.

(d) AM with Hy. (e) FM field of rotated PHT. (f) FM field with #H,. [116

[5.15 The analysis xAMEFM.| . . . .. ... ... ... ... ... ... 117
[5.16 The synthesis xAMEM.|. . . . ... ... ... .. ... ... ... 117
6.1 AMEFM-based Image Filtering.|. . . . .. .. ... ... ... .... 123
[6.2  AM-based Image Filtering.|. . . . .. ... ... ... ... ... .. 124
[6.3 AM-based selective orientation attenuation. (a) Original chirp im-

age. (b) Notch filter response. (c¢) LSI result. (d) AM-based result.

(e) LSI residual. (f) AM-based residual. | . . . . . . . . ..o 126
(6.4 AM-based texture removal. (a) Original Lena. (b) Operating win- |

dow. (c) AM-based texture removal. | . . . . . .. . ... 0. 128
[6.5 AM-based bandpass filter. (a) Original chirp image. (b) AM-based

bandpass filter. (c¢) L5I result. (d) AM-based result. (e) LS5I resid-

ual. (I) AM-based residual. | . . . . . . ... o000 130
[6.6 AM-based image enhancement by unsharp masking. (a) Original

Lena. (b) Linear blur plus additive noise. (c¢) LSl highpass result.

(d) AM-based enhancement result. | . . . .. .. ... ... ... .. 131
[6.7  AM-based image fusion. (a) Clock A. (b) Clock B. (¢) Fusion of (a) |

and (b). (d) C'l' image. (e) MR 1mage. () Fusion of (d) and (e). | . 133
6.8  FM-based Image Filtering.| . . . . . ... ... ... .. ... ... 135
[6.9 AM-FM image shift. (a) Original Barbara image. (b) Spatial shift.

(c) AM-F'M shift. (d) Original fingerprint 1image. (e) Spatial shift.

(1) AM-FM shitt. (g) Original boat 1mmage. (h) Spatial shift. (1)

AM-EM st | . o o o 0 o o 138
[6.10 FM-based Image Scaling|. . . . ... ... ... ... ... ... .. 139
[6.11 AM-FM image 2x zoom. (a) Original barbara image. (b) Spatial

zoom. (c) AM-FM zoom. (d) Original Lena 1image. (e) Spatial

zoom. (f) AM-FM zoom. (g) Original boat 1mmage. (h) Spatial

zoom. (1) AM-FM zoom. | . . . .. ... .. ... .. ... ... 141
[6.12 FM-based Image Rotation.|. . . . . . . . ... ... ... ... ... 142
[6.13 AM-FM image rotation. (a) Original Barbara. (b) Spatial domain

rotation 27°. (c¢) AM-FM rotation 27°. (d) Original boat. (e)

opatial domain rotation 45°. (1) AM-EFM rotation 45°. (d) Original

Lena. (e) dSpatial domain rotation 65°. (f) AM-FM rotation 65°. | . 144
[7.1 Dominant orientation estimation of the woven brass image. (a) Wo-

ven brass image. (b) Dominant FM field. (¢) 1°* dominant orienta-

tion. (d) 2"¢ dominant orientation. |. . . . . . .. ... ... . ... 150

xiil



[7.2

Examples. (a) Original burlap image. (b) First component of

burlap. (c¢) Second component of burlap. (d) Residual of burlap.

(e) Original reptile skin 1mage. (1) First component ot reptile skin.

(g) Second component of reptile skin. (h) Residual ot reptile skin.

(1) Original straw 1mage. (]) First component of straw. (k) Second

component of straw. (I) Residual of straw. |. . . . . .. ... .. ..

[7.3

Examples. (a) Original wood/paper image. (b) First component of

wood /paper. (c¢) decond component of wood/paper. (d) Residual of

wood /paper. (e) Original tree 1image. (i) First component of tree.

(g) Second component of tree. (h) Residual of tree. (1) Original

cloth 1mage. (j) First component of cloth. (k) Second component

of cloth. (I) Residual of cloth. |. . . . . ... ... ... ... ... .

[7.4

Texture Cartoon Decomposition Examples. (a) Original kodim08

from Kodak. (b) Original kodim05 trom Kodak. (c¢) Cartoon com-

ponent of (a). (d) Cartoon component of (b). (e) Texture compo-

nent of (a). (I) Texture component of (b). |. . . . . .. ... .. ..

[7.5

Texture Cartoon Decomposition Examples. (a) Original fingerprint.

(b) Original Barbara. (¢c) Cartoon component of (a). (d) Cartoon

component of (b). (e) Texture component of (a). (f) Texture com-

ponent of (b). | . . . .. ...

[7.6

Regular FM v.s. modified FM computed using the monogenic signal.

(a) Original chirp image. (b) [(¢) — (d)|. (¢) Monogenic |pi(n)|. (d)

Modified Monogenic [¢r(n)]. (e) Regular monogenic FM field. (1)

Modified monogenic FM field. | . . . . ... .. ... ... ... ..

[7.7

Computed AM using the monogenic signal and pHT. (a) Original

barbara 1mage. (b) Steerable pyramid filterbank. (c¢) One compo-

nent of (a). (d) [(e) - (F)]. (e) Monogenic AM. (f) pHT AM.] . . ..

Xiv

174



Abstract

MODULATION DOMAIN IMAGE PROCESSING

Chuong T. Nguyen, Ph.D.
The University of Oklahoma, 2012

Supervisor: Joseph P. Havlicek

The classical Fourier transform is the cornerstone of traditional linear signal and
image processing. The discrete Fourier transform (DFT) and the fast Fourier
transform (FFT) in particular led to profound changes during the later decades of
the last century in how we analyze and process 1D and multi-dimensional signals.
The Fourier transform represents a signal as an infinite superposition of stationary
sinusoids each of which has constant amplitude and constant frequency. However,
many important practical signals such as radar returns and seismic waves are in-
herently nonstationary. Hence, more complex techniques such as the windowed
Fourier transform and the wavelet transform were invented to better capture non-
stationary properties of these signals. In this dissertation, I studied an alternative
nonstationary representation for images, viz., the 2D AM-FM model. In contrast
to the stationary nature of the classical Fourier representation, the AM-FM model
represents an image as a finite sum of smoothly varying amplitudes and smoothly
varying frequencies. The model has been applied successfully in image processing
applications such as image segmentation, texture analysis, and target tracking.

However, these applications are limited to analysis, meaning that the computed

XV



AM and FM functions are used as features for signal processing tasks such as
classification and recognition. For synthesis applications, few attempts have been
made to synthesize the original image from the AM and FM components. Nev-
ertheless, these attempts were unstable and the synthesized results contained ar-
tifacts. The main reason is that the perfect reconstruction AM-FM image model
was either unavailable or unstable. Here, I constructed the first functional perfect
reconstruction AM-FM image transform that paves the way for AM-FM image
synthesis applications. The transform enables intuitive nonlinear image filter de-
signs in the modulation domain. I showed that these filters provide important

advantages relative to traditional linear translation invariant filters.

This dissertation addresses image processing operations in the nonlinear
nonstationary modulation domain. In the modulation domain, an image is modeled
as a sum of nonstationary amplitude modulation (AM) functions and nonstationary
frequency modulation (FM) functions. I developed a theoretical framework for
high fidelity signal and image modeling in the modulation domain, constructed
an invertible multi-dimensional AM-FM transform (xAMFM), and investigated
practical signal processing applications of the transform. After developing the
xAMFM, I investigated new image processing operations that apply directly to
the transformed AM and FM functions in the modulation domain. In addition, I
introduced two classes of modulation domain image filters. These filters produce
perceptually motivated signal processing results that are difficult or impossible to
obtain with traditional linear processing or spatial domain nonlinear approaches.
Finally, I proposed three extensions of the AM-FM transform and applied them in

image analysis applications.

The main original contributions of this dissertation include the following.

Xvi



e [ proposed a perfect reconstruction FM algorithm. I used a least-squares
approach to recover the phase signal from its gradient. In order to allow
perfect reconstruction of the phase function, I enforced an initial condition
on the reconstructed phase. The perfect reconstruction FM algorithm plays

a critical role in the overall AM-FM transform.

e [ constructed a perfect reconstruction multi-dimensional filterbank by modi-
fying the classical steerable pyramid. This modified filterbank ensures a true
multi-scale multi-orientation signal decomposition. Such a decomposition is

required for a perceptually meaningful AM-FM image representation.

e [ rotated the partial Hilbert transform to alleviate rippling artifacts in the
computed AM and FM functions. This adjustment results in artifact free

filtering results in the modulation domain.

e [ proposed the modulation domain image filtering framework. I constructed
two classes of modulation domain filters. I showed that the modulation do-
main filters outperform traditional linear shift invariant (LSI) filters qualita-
tively and quantitatively in applications such as selective orientation filtering,
selective frequency filtering, and fundamental geometric image transforma-

tions.

e [ provided extensions of the AM-FM transform for image decomposition
problems. I illustrated that the AM-FM approach can successfully decom-
pose an image into coherent components such as texture and structural com-

ponents.

e [ investigated the relationship between the two prominent AM-FM compu-

tational models, namely the partial Hilbert transform approach (pHT) and

XVil



the monogenic signal. The established relationship helps unify these two

AM-FM algorithms.

This dissertation lays a theoretical foundation for future nonlinear modu-
lation domain image processing applications. For the first time, one can apply
modulation domain filters to images to obtain predictable results. The design of
modulation domain filters is intuitive and simple, yet these filters produce superior
results compared to those of pixel domain LSI filters. Moreover, this dissertation
opens up other research problems. For instance, classical image applications such
as image segmentation and edge detection can be re-formulated in the modulation
domain setting. Modulation domain based perceptual image and video quality
assessment and image compression are important future application areas for the

fundamental representation results developed in this dissertation.
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Chapter 1

Introduction

The classical Fourier transform is the cornerstone of traditional linear signal and
image processing. The fast Fourier transform (FFT) in particular has changed
the way we perform signal processing in the last decades of the last century. The
Fourier transform represents a signal as a superposition of sinusoids each of which
has constant amplitude and constant frequency. These amplitudes and frequen-
cies capture important signal characteristics that are not trivial to obtain from
time domain analysis. I will refer to such sinusoids as stationary in the sense that
they admit amplitudes and frequencies that do not vary across the domain. How-
ever, with the Fourier representation, nonstationary signal structures can only be
obtained by complicated constructive and destructive interferences between sta-
tionary Fourier components. For many important practical signals such as radar
returns and seismic waves, this stationary representation is counterintuitive. The
signal of interest in these applications are nonstationary. Such signals have been
treated with advanced techniques designed to capture nonstationary structure such
as the windowed Fourier transform and the wavelet transform. In this disserta-
tion, I develop an alternative nonstationary representation for images, wviz., the
2D AM-FM model. In contrast to the stationary nature of the classical Fourier
representation, the AM-FM model represents an image as a finite sum of smoothly

varying amplitudes and smoothly varying frequencies.



This dissertation addresses image processing operations in the nonlinear
nonstationary modulation domain. In the modulation domain, an image is mod-
eled as a sum of nonstationary amplitude modulation (AM) functions and non-
stationary frequency modulation (FM) functions. In particular, T investigated
the theoretical construction and the applications of the AM-FM image transform.
First, I developed the functional perfect reconstruction AM-FM transform. Sec-
ond, I proposed a new image processing framework where filters are designed to
operate directly on AM and FM functions. In addition, I introduced two classes
of modulation domain image filters. These filters produce perceptually motivated
results that are difficult or impossible to obtain with traditional liner and nonlinear
filters. Finally, I investigated three derivative works of the AM-FM transform for

image analysis applications.

In 1990, Bovik, Clark, and Geisler [13| first proposed an AM-FM image
model to analyze textured regions. Since then, the model has been applied suc-
cessfully in many image processing and computer vision applications such as im-
age segmentation [17,|129], image inpainting [1], fingerprint analysis [63], texture
analysis |49,/96], target tracking [86,90], and biomedical imaging [70]. However,
most of these applications are limited to analysis, meaning that the computed AM
and FM functions are used as features for other signal processing tasks such as
classification and recognition. So far, two major attempts have been made to syn-
thesize the original image from the AM and FM functions. Havlicek, Harding, and
Bovik [48] proposed an algorithm to reconstruct the dominant component of an
image from the dominant AM and FM functions. The authors used a phase differ-
ence integration scheme to reconstruct the phase function from the computed FM

functions. However, the reconstructed results contain artifacts and errors. Sivley



and Havlicek [109] introduced the first perfect reconstruction AM-FM transform.
While the proposed transform is invertible, it is not suitable for practical AM-FM
image synthesis applications. The transform requires more than 400 AM-FM com-
ponents; and the FM reconstruction algorithm is not stable if the FM functions
are altered. In this dissertation, I created the first functional perfect reconstruc-
tion AM-FM image transform that paves the way for image synthesis applications
and a general theory of signal processing the in modulation domain. The AM-
FM transform consists of a forward transform using a modified steerable pyramid
decomposition and a backward transform using a least-squares phase integration.
The transform enables us to design modulation domain image filters and apply
them to process the nonstationary amplitude and frequency modulations of an

image to realize perceptually motivated signal processing operations.

The main original contributions of this dissertation include the following.

e [ propose a least-squares perfect reconstruction FM algorithm that to recover
the phase signal from the computed gradient. In order to allow perfect
reconstruction of the phase, I enforce an initial condition on the reconstructed
phase. This perfect reconstruction FM algorithm plays a critical role in the

overall AM-FM transform.

e [ construct a modified perfect reconstruction filterbank based on the classical
steerable pyramid [38,/106]. The modified filterbank ensures a true multi-
scale multi-orientation signal decomposition. Such a decomposition is an
important consideration for obtaining a perceptually meaningful AM-FM

image representation.

e [ adjust the rotation of the partial Hilbert transform axis of action so that the



computed AM and FM functions are artifact free from orientation induced
artifacts. This adjustment results in artifact free modulation domain filtering

results for the first time.

e [ propose the first practical framework for designing filters and performing
signal processing directly in the modulation domain. I construct two new
classes of practical modulation domain filters. I show that these modula-
tion domain filters outperform traditional linear shift invariant (LSI) filters
qualitatively and quantitatively in applications such as selective orientation
filtering, selective frequency filtering, image fusion, and fundamental image

geometric transformations.

e [ provide extensions of the AM-FM transform applicable to certain important
image decomposition problems. I illustrate that the AM-FM approach can
successfully decompose an image into coherent components such as texture

and structural components.

e [investigate the relationship between the two most current AM-FM computa-
tional models, namely the partial Hilbert transform approach (pHT) [50,97]
and the monogenic signal [34,/67]. The results provide important perspectives
on the similarities and differences between the two approaches and suggest

powerfully how they can be unified.

This dissertation lays a theoretical foundation for future nonlinear modu-
lation domain image processing applications. For the first time, one can apply
modulation domain filters to images to obtain predictable results. The design of
modulation domain filters is intuitive and simple, yet these filters produce superior

results compared to those of pixel domain LSI filters.



Besides modulation domain image processing, this dissertation opens up
other research problems. For instance, classical image applications such as image
segmentation and edge detection can be re-investigated in the modulation domain
context. In addition, as the AM-FM transform admits important characteristics
including perceptual relevance and prefect reconstruction, it can potentially yield

performance gains in image and video quality assessment [12] and coding [6§].

1.1 Organization

The dissertation contains eight chapters and two appendices.

In Chapter 2] I introduce the 1D AM-FM signal model as a viable represen-
tation for nonstationary signals. I discuss the limitations of the classical Fourier
representation in cases where the signals of interest are nonstationary. I review
practical applications where important nonstationary features of signals can be
captured by the instantaneous frequency (IF), here interpreted as frequency modu-
lation (FM). I then discuss three major computational techniques for obtaining the
AM and FM for 1D signals, namely the Gabor analytic signal approach (AS) [41],
the Teager-Kaiser energy operator (TKEO) approach [16,79], and the quasi-local
method (QL) [43].

In Chapter 3] I explore extensions of the 1D AM-FM signal model into
multiple dimensions, with an emphasis on the 2D case. 1 first reason that the
phase and instantaneous frequency play an important role in many image pro-
cessing applications, such as image restoration, image segmentation, and optical
flow estimation. I then discuss the generalization of the 1D AM-FM approaches
into 2D. Finally, I evaluate their effectiveness with respect to mean squared error

(MSE) via simulations using both synthetic and real images.



In Chapter [} I introduce the single component perfect reconstruction AM-
FM image model. I argue that most previous AM-FM image processing techniques
were limited to analysis applications, meaning that the computed AM and FM
functions were used for analysis but not to reconstruct images. I then discuss the
importance of phase unwrapping in the 2D analysis and reconstruction problems.
I review four major approaches to perform 2D phase unwrapping. Then I define
the single component perfect reconstruction AM-FM image model. I provide two
algorithms that compute AM and FM functions from a single component image
and provide prefect reconstruction of the image from the AM and FM functions. I
verify the perfect reconstruction property by calculating the MSE and peak signal

to noise ratio (PSNR) between the reconstructed and original images.

In Chapter [ T introduce the perfect reconstruction AM-FM image trans-
form (xAMFM) for general images. [ modify the well-known steerable pyra-
mid [38]/106] to create a full multi-scale, multi-orientation perfect reconstruction
filterbank. I then discuss the problems associated with the partial Hilbert trans-
form (pHT) where the computed AM and FM functions can show artifacts if the
image component has frequency support orthogonal to the pHT filtering axis. For
the first time, I overcome this problem by rotating the axis of action of the pHT.

Finally, I develop the xAMFM for general images.

In Chapter [0] I introduce the AM-FM image processing framework where
filters are designed to operate directly on the AM and FM functions of an image.
I define two classes of AM-FM image filters, namely the AM-based filters and the
FM-based filters. I show the performance gain of the AM-based filters over tra-
ditional LSI filters in applications such as selective orientation attenuation, image

enhancement, and image fusion. For the FM-based filters, I performed geometric



image transformation in the AM-FM domain. Qualitative and quantitative mea-
sures indicate that the modulation domain image filters outperform traditional

spatial domain LSI filters in these applications.

In Chapter [, I demonstrate the effectiveness of the xAMFM in image
analysis. I consider two xAMFM applications in coherent texture decomposition.
In addition, I investigate the connection between the AM-FM image model used

in this dissertation and the emerging monogenic signal [34,67].

Conclusions and recommendations for future work are reserved for Chap-
ter 8l T prove for the perfect reconstruction property of the modified steerable
pyramid in Appendix [A] Derivations of the phase unwrapping algorithm used in

this dissertation is given in Appendix [B]

1.2 Nomenclature

Mathematical notations used in this dissertation are consistent with those found
in typical vector calculus texts. Lower-case bold face is used for vectors, i.e., x and
n. x refers to continuous variable and n refers to discrete variable. Upper-case
letters such as I and A can either represent images or matrices, depending on the
context. R, Z, and C refer to the set of real, integer, and complex number with

the usual notions of addition and multiplication.

~

The hat(™) denotes Fourier transform; e.g., f(w) is the Fourier transform

of f(z). The tilde(™) denotes a modified version of the original signal; e.g., f(z)

denotes a modified version of f(x).

The meanings of some common symbols, acronyms, terms, and abbrevia-

tions used in this dissertation are outlined in Table [[.1] and Table [L.2]



Table 1.1: Symbols used in the dissertation

Symbol Meaning

f(x) Input continuous image
a(x) AM function
o(x) Phase modulation function

Ve(x)  FM vector field
R(x) Magnitude of the FM

0(x) Argument of of the FM

h(x) Image filter

H{.} Hilbert transform

(x) Least-squares phase approximation of ¢(x)

Table 1.2: Definitions of terms and acronyms used in the dissertation

Term Meaning

AM Amplitude Modulation

FM Frequency Modulation
xAMFM AM-FM transform

TKEO Teager-Kaiser energy operator
QL Quasi-local approximation

AS Analytic complex image extension
HT Hilbert transform

pHT Partial Hilbert transform
MSE Mean square error

PSNR Peak signal to noise ratio

PR Perfect reconstruction

LSI Linear shift invariant

DCT Discrete cosine transform
DFT Discrete Fourier transform

Modulation domain

Pixel domain

Refers to representation, analysis, and processing of
signals and images in terms of AM and FM func-
tions.

Refers to representation, analysis, and processing
of signals and images in terms of pixel values (in-
tensity) expressed in the image plane.




1.3 Test images

Well-known test images are shown in Fig. [[.1 These test images are used in

simulations.

Figure 1.1: Well-known test images. (a) Barbara. (b) boat. (c) Lena. (d) finger-
print. (e) Gaussian chirp. (f) mandrill.



Chapter 2

The 1D AM-FM Signal Model

The classical Fourier transform provides an essential tool for time-frequency analy-
sis of stationary signals. Throughout this dissertation, I establish that a stationary
signal is one that admits a meaningful, intuitive representation as a superposition
of amplitude, linear phase, and constant frequency. However, many important
signals of practical interest are nonstationary in this sense; i.e., the local ampli-
tude envelope and local frequency content are time-varying. For such signals, the
AM-FM model has been widely used to capture their nonstationary characteris-

tics [9,25]. The AM-FM model represents a real 1D signal as

f(x) = a(x) cos[p()], (2.1)

where a(z) : R — R is a non-negative smoothly varying amplitude modulation

function (AM) and ¢(z) : R — R is a smoothly varying phase modulation function.

The frequency modulation function (FM) is defined as the derivative of ¢(x),
d

e.g., ¢'(r) = $-0(x). The FM is also referred to as the instantaneous frequency

(IF) [25]. The terms IF and FM are used interchangeably in this dissertation.

I discuss the importance of the IF in signal processing applications in Sec-
tion[2.1.1] The computation of 1D AM-FM signal model is described in Section [2.2]
Finally, I evaluate the effectiveness of three major 1D AM-FM computational ap-
proaches in Section 2.3
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2.1 Instantaneous Frequency

The IF concept originated in the physics and communications communities where
the signals of interest are primarily 1D [25,41}(75,124]. The IF of a 1D signal
modeled according to (2.1]) is given by

IF(z) = ¢'(z). (2.2)

2.1.1 The Importance of Instantaneous Frequency

The IF captures nonstationary characteristics of time-varying signals in many prac-
tical applications [9]. In radar applications, the time varying behavior of the IF
indicates the variation of frequency and motion of objects [23]. The object motion
is modeled as a point target giving rise to time-varying frequency content in the
radar returns. In seismic survey data processing, geological structures can be char-
acterized by analyzing the returns of seismic signals [119]. The reflection strength
in seismic traces is determined by the amplitude envelope of the return signals.
Important geological structures can be deduced from the instantaneous phase even
though the return signal has a weak reflection strength. In biomedical applications,
the IF is used to identify blood flow |116] and to diagnose diastolic murmurs [130].
In speech processing, important nonlinear features in human speech production
can be captured by the AM-FM model [78,120]. In oceanography, the IF measures
the kinetic energy dissipation of turbulent water [59]. Middleditch and Wyatt [85]
observed that the temporal and spatial inconsistencies within the radar measure-
ment region can lead to distortions in the spectra of the radar returns. They
developed an IF filtering technique to remove the first-order modulation from the

return signals to improve the quality of oceanographic radar measurements.
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2.1.2 Debates about Instantaneous Frequency

Given a 1D continuous signal f(z), there are infinitely many pairs of a(x) and
¢(x) satisfying the model (2.1). Since the IF is defined as ¢/(x), it is not unique
for a given f(x). Even if the IF is computed, its existence was debated in the
research community, based mostly on the physical interpretations of IF [9,|75].
Since IF and Fourier spectrum capture properties of signals in term of frequency,
it is natural to wonder if there exists any relationships between these two quantities.
Mandel investigated such relationships and showed that the first moment of the
IF equals the first moment of the Fourier frequency [75]. He pointed out that this
relationship does not hold for higher moments. In addition, he showed that there
is no one-to-one relationship between these two descriptors. In other words, there
exist signals where the Fourier frequencies manifest while the IF vanishes and vice

versa. Indeed, this counter-intuitive fact is the root of many debates.

Cohen [25] noted several paradoxes concerning the IF. First, the IF is gen-
erally distinct from the Fourier frequencies. If the signal is a cosine wave oscillating
with a single frequency, the IF is a constant and continuous function. In addition,
the IF of the analytic signal can be negative, which is counter-intuitive because the
analytic signal does not admit negative Fourier frequencies. That is, the IF can
lie outside the frequency support of the signal. Some authors [9,[25] interpreted
that the IF is the average of Fourier frequency at a given time. This interpretation
was originated from first moment relationship between Fourier frequency and IF.
Nevertheless, this interpretation is only true for single component signal and is gen-
erally false or misleading for general multicomponent AM-FM signals [71]. Despite
being a controversial concept, the IF has been used successfully as a descriptor for

nonstationary signals [9}10].
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2.2 Computation of the 1D AM-FM Signal Model

The AM-FM model is ill-posed in the sense that infinitely many pairs of
AM and FM functions satisfy this equation for a given signal f(x). Here I review
several major 1D IF computation methods such as analytic signal differentiation,
zero-crossing identification, time-frequency distribution, polynomial phase mod-
eling, and the Teager-Kaiser energy operator. Readers are referred to in-depth

discussions of the IF by Boashash [9,/10] and Vakman [124].

2.2.1 Analytic Signal

Gabor [41] pioneered a complex signal model to compute the IF. For 1D signal
f(z), the complex signal model includes the signal f(x) as the real part and an
auxiliary signal ¢(x) as the imaginary part. The signal ¢(x) is obtained by applying
the Hilbert transform (HT) to f(z).

The HT kernel is characterized by the time domain impulse response
h(z) = —, (2.3)

where z € R. The function h(z) is neither a L'(R) nor a L?*(R) function because

of the singularity at the origin. Let f(x): R — R. The HT of f(x) is a real signal

q(z) given by
o(x) = H{f(2)} = flz) = — (2.4)

T’
where * denotes convolution. Since h(x) is undefined at x = 0, the convolution

operation in (2.4)) must be evaluated as a Cauchy principal value according to

q(z) = %p.v ng—z_ dr
1 T f(n) = f(7)
_ ;1%(/_00 2 dr+ HeﬁdT). (2.5)
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The corresponding Fourier spectrum of the 1D HT kernel h(z) is

—~ w )
hw) = —j W sgn(w), (2.6)
where sgn(w) is defined as
1, w>0
sgn(w) = 0, w=0 (2.7)
-1, w<DO.

Since |[h(w)|]2 = 1 almost everywhere the HT operator does not affect the

magnitude of the Fourier spectrum of the input signal.

The 1D HT possesses three distinct properties that make it an important

transform in communication and signal processing.

1. Tt is a linear time invariant (LTT) operator.
2. It is anti-symmetric and bounded for 1 < p < oo [114][page 49].
3. It is an all-pass filter (except at DC).

All of these properties follow directly from the definition of H{.} in (2.5) and (2.6)).

Let f(z) : R — R. Then the 1D analytic signal z(z) : R — C is constructed

as

2(w) = f(x) + jH{Sf ()} = f(2) + jg(=), (2.8)

'Here, I mean almost everywhere in the precise mathematical sense, i.e., everywhere except
on a set of Lebesgue measure zero.
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or equivalently in Fourier domain as

Zw) = fw)+il—jsgn(w)f(w)]

2 A(w) w>0

- {ﬂw) w = (2.0
0 w < 0.

As the signal f(z) is real, its spectrum is Hermitian, i.e., complex conjugate sym-

metric. Therefore, negative Fourier frequencies are unnecessary for the unambigu-

ous representation of f(x). The complex signal construction (2.9)) using the HT

eliminates the spectral information on the negative half of the frequency axis while

it doubles it on the positive half.

Vakman [124] showed that the analytic signal constructed by the HT satis-

fies the following three conditions.

1. Amplitude continuity and differentiability: If a small variation is added to

the signal f(x), the variation of the AM must be small.

2. Homogeneity: If the signal f(x) is scaled by a constant ¢ > 0, the phase

function ¢(x) and the FM are not changed.

3. Harmonic correspondence: the HT maps pure cosine/sine signals into pure
sine/cosine signals. Therefore, the HT can be used to define a complex signal

to uniquely solve the AM-FM representation of model ({2.1).

Once the analytic signal z(z) is constructed, one can analytically calculate

the amplitude modulation (AM) as

a(x) = |z(x)]. (2.10)



The IF can be computed from different approaches such as complex signal differ-
entiation, zero-crossing identification, phase modeling, and time-frequency peak

detection.

Analytic Signal Differentiation

After constructing the analytic signal (2.8), one can directly compute the FM

function using differentiation as [41]

¢'(z) =Im [i((;)} : (2.11)

The IF in (2.11)) is undefined at points where z(z) = 0. At such points, the IF can

be approximated by the neighborhood IF. It should be noted that the concept of

IF is not meaningful on intervals where z(x) or f(x) is identical to zero.

Since the derivative operator in (2.11)) is only defined for functions of con-
tinuous variable x, this IF computation algorithm is restricted to the continuous
time signals. In practical applications where only discrete signals are available, a

discrete counterpart of the derivative is required.

Zero-crossing Identification

The nonstationary signal model in (2.1) assumes that f(z) is a locally narrow-
band signal. Therefore, the number of zero-crossings can describe the oscillating
behavior of the underlying signal. Some authors have defined the IF in terms of
zero-crossings identification |10]. Let k£ be the number of sample intervals between

two zero-crossings. The IF is then estimated according to

1

= (2.12)

¥ (x)
To improve the accuracy of the zero-crossing identification process, a sliding win-

dow technique is often applied. The zero-crossing identification is then restricted

16



to within the support of the sliding kernel [10].

Polynomial Phase Modeling

The phase function () can be modeled by a p-order polynomial [10]
() = by + by + byx® + ... + bya?. (2.13)

The selection of p depends on the oscillating characteristics of the signal. Regres-
sion techniques such as least-squares are used to compute the coefficients by, b1,

- ,b,. Let f(n) be the true discrete signal of length N. Then f(n) is modeled
according to as f(n) = a(n)cos[p(n)]. Let f(n) be the measured discrete
signal. The coefficients of the polynomial in are obtained by minimizing the

sum of squared error E as

=

E=) [f(n) = f). (2.14)

n

I
o

A least square minimization approach was given by Boashash [10]. However, the

solution depends on initial estimate of the polynomial coefficients by.

Time Frequency Distribution Techniques

In the study of time-frequency analysis, it was realized that important character-
istics of a nonstationary signal are captured by the IF [9,/10,24]25]. Specifically,
the IF can be estimated by temporally tracking peaks in the time-frequency dis-
tribution |10]. For example, IF can be estimated from tracking peaks of the time-
frequency distribution computed by the short time Fourier transform (STFT) |11].
However, IF estimation from the STFT method depends on the choice of the
window. Martin and Flandrin used the Wigner-Ville distribution (WVD) as an

alternative to STEFT to extract the IF [81]. Recently, Sedji¢ et al. |103] proposed a

17



hybrid approach where they combined the STFT and wavelets for time frequency
analysis. They showed that the hybrid approach performs better than the STFT
and the WVD.

2.2.2 Teager-Kaiser Energy Operator

Maragos, Kaiser, and Quatieri [78,/79] used the Teager-Kaiser energy operator
(TKEO) to compute the AM and FM functions of the signal (2.1)). The Teager
energy of the signal f(z) in (2.1)) is defined by

U[f(z)] = [f'(@)] ~ f(z)f"(x)
= [a(@)P[¢'(2)]*. (2.15)
They applied TKEO to the derivative signal f'(z) to obtain
()] = (@)~ () f"(x)
= [a(@)][¢'(=)]". (2.16)

From (2.15) and (2.16)), the AM and FM functions may be computed according

to [79]
alz) = @)
V) 217
oy — @)

In (2.17), the AM function is undefined at points where when U[f(z)] is zero;
similarly, the FM function in is undefined where W[f(x)] is zero. Based
on these observations, Vakman [124] provided examples where the TKEO fails to
produce intuitive AM and FM functions. In addition, ¥U[f(x)] can be negative [15].

However, for many signals of practical interest, U[f(z)] is non-negative [7§].
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Approximate discrete counterparts for the continuous algorithms in ([2.17))
and were proposed in [78]. Here I will restrict attention to the first discrete
energy separation algorithm, DESA-1. The closely related DESA-2 algorithm is
substantially similar. The DESA-1 can demodulate AM and FM functions with
maximum [F up to half the sampling frequency. Let f(n) be a real discrete signal
with N samples where n = 0,1,--- N — 1. Let y(n) = z(n) — z(n — 1) be the
first order finite backward asymmetric difference of z(n). Then the AM and FM

functions may be estimated by

a(n) =~ ifn)] - (2.19)
1— (1 _ ‘I’[y(niya}’(%)(fl-&-l)])
¢'(n) =~ arccos (1 - \I/[y(n)l]l;—[ﬁ[g)(]n i 1>]) (2.20)

The FM computed by (2.20]) is always non-negative. Hence, the sign of the FM
computed by TKEO is ambiguous if the signal contains both negative and positive

IF.

In contrast to the analytic signal approach of Section the 1D TKEO
approach is a local method. The TKEO approach assumes that the signal f(x)
is locally narrowband. For locally wideband signals, a multiband decomposition
must be performed prior to the demodulation process |[16]. The 1D TKEO has

been used successfully to extract features from human speech signals [47,/7§].

2.2.3 Quasi-Local AM-FM Estimation

As mentioned in Section and [2.2.2] the analytic signal approach is a global
method and the TKEO is a local method. Girolami and Vakman [43] proposed a

quasi-local method to compute the AM and FM functions. Let f(z) be the real
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signal in (2.1)). Let “(-)” denote a Bessel lowpass filter. If the lowpass filter can
be assumed to efficiently eliminate signal components of the form cos[2¢(x)], then

the AM may be obtained according to [43]

2(f*(z)) = 2{a*(2) cos’[p(2))

= (a*(x) (1 4 2cos[2p(x)])) (2.21)

Q

a*(z),

in which (a?(z) cos[2¢(z)]) ~ 0 and (a*(z)) ~ a*(x). This assumes that a*(z) and
cos[2p(z)] are spectrally disjoint, which is reasonable for many signals of practical

interest [6]. Equivalently, the AM can be written as
a(x) = \/2(f(x) f(2))- (2.22)

In order to compute the FM, Girolami and Vakman defined an auxiliary

function

2(f(x+71)x(x—1))

D) = @i+ ) + @) 229
They then obtained obtained the FM by
o' (x) =~ lim (% arccos (W) ) (2.24)

In practice, a small value of 7 is used in (2.23) to approximate ([2.24]).

The method requires three local points, f(x), f(z—7), and f(z+7), which
makes it a local method. However, as a lowpass filter is involved in the computation
process, the method is not strictly local. Hence, it is classified as quasi-local. The
authors showed that the AM and FM functions computed by this approach also
satisfy the same three conditions as those computed by the analytic signal approach

in Section [2.2.1} Nevertheless, the quasi-local method depends on the bandwidth

20



selection of the lowpass filter, which is signal dependent. The selection of the
constant 7 also affects the demodulated AM and FM functions. In addition, the
quasi-local approach can only compute the absolute value of the FM function.

Therefore, the signed FM is ambiguous in the QL method.

2.3 Comparison of 1D AM-FM Techniques

In this section, I quantitatively compare the AM-FM demodulation effectiveness of
the analytic signal (AS) approach given in Section the Teager-Kaiser energy
operator (TKEO) approach given in Section[2.2.2] and the quasi-local (QL) method
given in Section [2.2.3] The test signal is taken from [79] and is given by

f(n) = (1 + 0.5 cos [%n} ) cos En + 4sin (%n + %)] : (2.25)

where the AM is a 0.01 Hz sinusoid and the FM is given by

¢'(n) = = 4+ == cos

T T [
5 25

s T
A 2.2
T 4} : (2.26)

which is sinusoidally varying in the range 0.502 < ¢'(n) < 0.754 radians. Here, it
is understood that ¢'(n) is obtained by interpolating to obtain f(x) where
x € R, differentiating ¢(z) to obtain ¢'(z), and finally sampling ¢'(x) to obtain
¢'(n). The original signal, the AM, and the FM are illustrated in Fig. [2.1{(a)-(c).

While all three approaches were formulated in continuous settings, I used
discrete implementations to evaluate their effectiveness. For the TKEO approach,
I first used the DESA-1 algorithm [79] to computed the modulation functions. The
AM and FM functions computed using and ; and they are shown in
Fig. 2.2l The AM and FM functions obtained by the AS method are depicted in
Fig. In the AS approach, the AM is computed as in and the FM is
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Figure 2.1: Test signal f(n) and theoretical values of the AM and FM functions.

(a) Original AM-FM test signal given in (2.25)). (b) Theoretical AM function ob-
tained analytically from (2.25)). (c) Theoretical FM function obtained analytically

from ([2.25)), as given in ({2.20)
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Figure 2.2: Computed AM and FM functions of the TKEO approach. (a) The
computed AM function using (2.19)). (b) The computed FM function using (22.20))
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Figure 2.3: Computed AM and FM functions of the AS approach. (a) The com-
puted AM function using (2.10). (b) The computed FM function by discritiz-

ing (2.11)).
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Figure 2.4: Computed AM and FM functions of the QL approach. (a) The com-
puted AM function using (2.22)). (b) The computed FM function using ([2.24)).
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obtained as in ([2.11]) using a 2-point forward asymmetric difference as the discrete
counterpart of the continuous derivative operator. Notice that direct discretization
of can lead to poor performance if the signal f(n) is corrupted. The AM
and FM functions obtained by the quasi-local approach are shown in Fig. [2.4. The
lowpass filter is a 2" order Butterworth filter with normalized cutoff frequency

0.04. In this experiment, 7 in ([2.23]) is set to 1.

To evaluate the performances of these three methods in the presence of ad-
ditive noise, I corrupted the signal with additive white Gaussian noise with
standard deviation ¢ = 0.1 (40.33 dB) and ¢ = 0.2 (26.47 dB). I measured the
accuracy of the three algorithms by computing the mean square error (MSE) be-
tween the demodulated signals and their theoretical values as shown in Fig. [2.1(b)
and (c). The MSE comparison of the AM is given in Table and the MSE
comparison of the FM given in Table 2.2] From the MSE results, the quasi-local
method [43] yields the best MSE performance. However, the performance of this
method depends on the bandwidth of the lowpass filter. For this experiment, the
lowpass filter was designed with a priori knowledge of the true FM function. In
particular, the cutoff frequency of the lowpass filter was set to 0.04 Hz so that the
lowpass filter captures the AM function, which is oscillated at 0.01 Hz, and rejects
the FM frequency, which is in the range [0.079 0.12] Hz. Therefore, I restricted
the comparison to the TKEO and AS.

While producing a lower MSE for the FM function in the noise-free case,
the TKEO is relatively more sensitive to noise. As the noise power increases,
the accuracy of the demodulated FM by the TKEO degrades faster than that of
the AS. The accuracy of the TKEO can be improved by filtering the input signal

with a multiband filterbank and performing the demodulation algorithm on each

26



Table 2.1: Comparison of MSE in estimated AM obtained by three competing
discrete demodulation algorithms in presence of additive white Gaussian noise. co
denotes the noise-free signal.

|PSNR [ TKEO | AS | Quasi-Local |
00 5.0399 x 10~* [ 7.9848 x 10" [ 2.8751 x 10~*
40.33 dB 0.2430 0.0103 0.0017
26.47 dB 0.5604 0.0377 0.0056

Table 2.2: Comparison of MSE in estimated FM obtained by three competing
discrete demodulation algorithms in presence of additive white Gaussian noise. co
denotes the noise-free signal.

| PSNR | TKEO | AS | Quasi-Local |
00 3.1906 x 10=* | 0.0022 | 3.8563 x 107°
40.33 dB 0.4487 0.0213 | 8.183 x 107°
26.47 dB 1.0093 0.1686 0.0023

subband separately as suggest in [16]. In addition, improvements in the accuracy

of the TKEO can be achieved by median filtering the demodulated outputs [7§].

The AS consistently yields better AM demodulation than the TKEO. As
illustrated in Fig. 2.5 and Fig. the FM of the AS is more resilient to noise than
that of the TKEO. Nevertheless, the FM of the AS is also prone to noise, because
it is computed using a 2-point forward difference as the discrete counterpart of the
continuous derivative operator. This poor performance against noise is related to
the derivative filter which is generally a highpass filter. Therefore, noise in the

signal is amplified whenever the derivative filter is applied the signal.

While computing the AM and FM functions of the same model, the three
approaches are fundamentally different in term of localization. While the discrete
unfiltered demodulation algorithm associated with the AS method is temporally
localized, the HT requires the entire signal to construct the analytic signal ¢(x)

in (2.4). Consequently, this approach is decidedly global in this respect. The
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Figure 2.5: Detail view of computed AM and FM functions from the noise-free
signal f(n) in (2.25)) using all three methods. (a) Computed AM function. (b)
Computed FM functions.
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(a) Computed AM function.

0.2 using all three methods.
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TKEO is regarded as a local method because the AM and FM functions are com-
puted from local samples only, e.g., generally only five consecutive samples are
required by the DESA-1 algorithm. The quasi-local method is a mixture of local
and global techniques as it involves both a lowpass filtering process and a local

operator.

The TKEO and the quasi-local method put a restriction on the time-varying
characteristics of the input signal. The TKEO DESA-1 algorithm is applicable to
signal with IF limited to half the sampling frequency. The maximum IF require-
ment for the quasi-local is stricter than that of the TKEO. The quasi-local method
works well for signal having IF less one fourth of the sampling frequency. In con-
trast to these two approaches, the AS applies for any input signal without a priori

knowledge of its IF range.

2.4 Summary

In this chapter, I introduced the concept of the 1D AM-FM signal model. T dis-
cussed the importance of the instantaneous frequency (IF), or FM, in practical
applications and reviewed three major approaches that compute the AM and FM

functions from a given real signal.

I discussed the mathematical construction of the Gabor analytic signal (AS)
approach, the Teager-Kaiser energy operator (TKEO) approach , and the quasi-
local (QL) approach. I evaluated the effectiveness of the three approaches in terms
of the accuracy of the demodulated AM and FM functions. The adopted quality
metric is the mean square error of the demodulated functions with respect to their
theoretical values. Of the three methods, the AS has an advantage over the TKEO

and the QL, because it does not make any a priori assumption about the IF range
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of the signal and it is more robust to noise compared to the TKEO. The QL can
provide the best performance if the lowpass filter is correctly designed, i.e., a priori
knowledge of true FM signal is required. The noise immunity and general accuracy
of the TKEO approach can be improved if the input signal is first decomposed into

subbands and the TKEO is then applied to the subband signals separately.

While the IF is well-understood and has been a useful descriptor for 1D
nonstationary signals in many practical applications, its generalization to multiple
dimensions is not straightforward. For instance, the Gabor analytic signal can not
be naturally extended to higher dimensions because the HT is strictly defined for
1D signals. As there exist multiple definitions for the nD extension of the HT,
the multidimensional extensions of the Gabor analytic signal are not unique. In
addition, the physical interpretation of the multidimensional IF poses a challenging
problem, e.g., what information does IF carry if the signal is an image? These issues

are the topic of the next chapter.
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Chapter 3

The 2D AM-FM Image Model

While the IF is well-understood and has been proven to be a useful descriptor for
1D nonstationary signals in many practical applications [9], its multidimensional
counterpart remains an open research problem [34,49]. The main reason is that
the multidimensional extension of the 1D IF is not unique. For instance, the
Gabor analytic signal can not be naturally extended to higher dimensions because
there is no standard accepted definition of the HT in dimensions greater than one.
Consequently, multiple multidimensional extensions of Gabor’s analytic signal have
been proposed. In addition, even if the nD IF is computed, especially for signals
with dimension higher than two, whether it provides any correlation with physical
interpretations is largely unexplored. In this chapter, I focus my attention on the
2D case where the IF captures structural properties of the image texture that are

meaningful in terms of visual perception and interpretation.

Traditionally image filters operate on the pixel intensity, viz., pixel domain.
However, in many applications such as motion detection, edge detection, and im-
age segmentation, the phase function and the IF can provide more accurate and
robust solutions [36]. Oppenheim and Lim [95] argued that for images, the phase
captures more important information to human visual perception than the mag-
nitude frequency. Fleet and Jepson [36] showed that the phase is more resilient to

image deformation than pixel intensity in the sense that phase is approximately
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linear on sufficiently small neighborhood, whereas the intensities are not. More-
over, the phase is invariant to image contrast changes. The authors used the IF to
compute optical flow in images [5]. Bovik, Clark, and Geisler [13] used the phase
in image segmentation. They showed that homogeneous regions can be separated
by detecting discontinuities in the local phase. In addition, they showed that the
IF carries important characteristics of the texture, namely orientation and pattern

granularity:.

I discuss the 2D AM-FM model in Section The computational ap-
proaches are reviewed in Section and [3.3] T compare the performance of 2D
AM-FM demodulation algorithms in Section [3.4] Finally, the summary is given
in 3.5

3.1 The AM-FM Image Model: A Review
3.1.1 The AM-FM Image Model

Let f(x) : R® — R be a real image. The AM-FM image model represents the
image as

f(x) = a(x) cos[p(x)], (3.1)
where a(x) : R? — RT is the amplitude modulation function (AM) and ¢(x) :
R? — R is the phase modulation function. The frequency modulation function

(FM) is defined by V(x), which I will sometimes write in terms of its components

as [U(x) V(x)]T. The AM and FM are assumed to be smoothly varying signals.

The AM and FM functions can provide an intuitive interpretation of an
image f(x) [52]. The AM captures local contrast of the image where larger values
of AM imply higher local contrast. The magnitude of the FM, |Vy(x)|, describes

texture spacing or granularity. A large value of |V¢(x)| indicates high frequency
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structures, e.g., closer texture spacing. The argument of the FM, argV(x), char-

acterizes the local orientation of image textures.

3.1.2 Computation of the AM-FM Image Model

As described in Section and [3.3] the AM and FM functions in can be
computed by different approaches. Peyrin, Zhu, and Goutte [97] defined a 2D
complex signal by performing a 1D Hilbert transform along a specified direction;
such transform is frequently referred to as partial Hilbert transform (pHT) [46.52].
All Hilbert transforms belong to a class known as multiplier transform; Havlicek,
Havlicek, and Bovik proposed an adjusted multiplier in [53] to enforce harmonic
correspondence [124] of the multidimensional pHT and used it to define a multi-
dimensional analytic image [49]. Other 2D AM-FM developments include Hahn'’s
single orthant complex signal |45] and the hypercomplex signal of Biilow and Som-
mer [19]. Felsberg and Sommer [34] introduced the multidimensional monogenic
signal where the 1D HT is replaced by a nD Riesz transform. Independently,

Larkin, Bone, and Oldfield [67] used the same signal model to study fingerprints.

Most of the nD AM-FM approaches in the literature can be categorized
into two groups, namely the complex signal extensions and the approaches using
separable implementations. I discuss 2D complex signal extension in Section
and the separable approaches in Section [3.3] While all of these approaches a valid
for signal with dimension greater than two, I restrict the discussion to 2D signals as
image processing is the primary goal in this dissertation. I compare, contrast, and
evaluate these techniques in terms of mathematical construction and meaningful

physical interpretation.
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3.2 The 2D Complex Image Extension

Let x = [z1 22]” be the 2D position vector, f(x) : R? — R be the 2D real signal,
q(x) : R? = R be the 2D Hilbert transform of f(x), and z(x) : R? — C be the 2D

complex signal obtained by adding an imaginary part to f(x).

3.2.1 Partial Hilbert Transform

The 2D partial Hilbert transform (pHT) extends the 1D HT by performing the 1D
HT in a certain direction defined by e = [e; es]. The spectrum of the 2D pHT is
given by

~

Go(w) = —jsgn(w’e) f(w). (3:2)

The 2D complex signal shares the same construction as the 1D case, i.e.,
the real part is the original signal f(x) and the imaginary part is the pHT of the

real part. The Fourier representation of the complex signal ze(x) is given by

Zo(w) = f(w)[l+sgn(w”e)]
2f(w) wle >0

= {flw) wle=0 (3.3)
0 wTe <0.

Fig. shows the spectral support of the 2D complex signal generated by
the pHT acting in direction specified by e. The spectrum is zero in the white

regions and is doubled in the shaded region.

The 2D pHT retains most the properties of the 1D HT, e.g., it is linear
and bounded. It also reduces the redundancy inherent in the conjugate symmetric
spectrum of a real signal. Because of the pHT spectral multiplier sgn(w?e) defined
in , the transform fails to satisfy the harmonic correspondence property. Par-

ticularly, the pHT of a pure cosine or sine signal with frequency vector lying in the
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Figure 3.1: Spectral support of the 2D spectrum of the complex signal constructed
using the pHT acting in the direction e.

axis perpendicular to e is suppressed because the signum function is zero at these

frequencies. This limitation is addressed by the adjusted pHT in Section

3.2.2 Total Hilbert Transform

While the pHT in Section acts in one direction, the 2D total Hilbert transform
(tHT) admits true 2D action. The 2D tHT is given by

X) = X :i V. Ld%’ )
ot (x) = H{f(x)} 2PV - (3.4)

or equivalently in the Fourier domain as

Gion(w) = FLF(x) % h(x)} = (=5)*f(w) Hsgn(wi), (3.5)

where w = [w; wy]. The spectrum of the complex 2D signal z(x) constructed by

using the tHT approach is then given by

~

Zor(w) = f(w) + jGiot(w) = f(w) [1 —J Hsgn(wi)] : (3.6)

Similar to previous approaches, the real signal f(x) can be recovered simply by

taking the real part of the z(x).
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Figure 3.2: Spectral multiplier of the 2D complex signal: (a) of the pHT with
e=[10]". (b) of the tHT.

I illustrate the distinction between the 2D spectral multipliers of the pHT

and of the tHT in Fig.|3.2l The spectral multiplier for the 2D pHT with e = [1 0]

is shown in Fig. |3.2{a). The spectrum of z¢(x) is zero on the left half plane,

one on the vertical axis, and two on the right half of the frequency plane. The

multiplier of the tHT approach, on the other hand, retains full spectral support.

The spectral multiplier of the tHT is depicted in Fig. [3.2(b). The unity gain

symbols are exaggerated in these two figures as they occur only at locations where

sgn(wy) = 0 (for the pHT) and sgn(w;)sgn(ws) = 0 (for the tHT).

Compared to the pHT, the tTH does not provide an intuitive AM-FM
representation [34]. Nevertheless, it plays an important role in the development
of the single orthant complex signal model in Section and the hypercomplex

signal model in Section [3.2.5]

3.2.3 Single Orthant Complex Signal

Hahn [45] proposed the single orthant complex signal as a 2D extension of the

1D complex signal, where orthant is equivalent to quadrant in the 2D case. He
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modified the HT spectral multiplier so that the spectrum of the 2D complex signal
is zero in all but one orthant. The spectrum of the single orthant complex signal

is defined as
2
Zo(w) = Jl@) T (1 + sen(wn). (3.7)
i=1
Expanding (3.7]), the Fourier spectrum of Zy,(w) is

Zso(w) = A(w)(l + Sgn(wl)) (1 + sgn(wg))

-~ ~ ~

Flw) + sgn(en) Fle) + sgn(en)Flw) + sgn(ew)sgn(ws) Fle)
_ ( ) = Gl )+j(ae1<w>+ae2<w>), (3.8)

where G, and ., are defined in with e; = [1 0]7 and e, = [0 1]” . From (8.8),
we see that the spectrum of the complex signal in Hahn'’s approach contains con-
tributions from both partial and total Hilbert transform terms. The 2D spectral
support of Zy,(w) is shown in Fig. where the spectrum is quadrupled in the

shaded region and is zero in the remaining white regions.

v

Figure 3.3: The 2D spectrum of single orthant complex signal

As Hahn’s single orthant approach eliminates 2" — 1 orthants of the nD

complex signal spectrum, the model is efficient in terms of digital storage. However,
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the single orthant representation is insufficient to reconstruct the original real signal
f(x). In particular, f(x) can not be obtained by taking the real part of (3.8). To
recover the original real signal f(x), an additional single orthant complex signal

Zso, (X) must be defined with the following spectrum
) = ) (1= sente) ) (1+sses)
- (F@r+au@) +i( ~m@+@@). 69

Combining Z,(w) and Z, (w), the original signal is then recovered as

F(x) = SRe{F ™ {Bu(w) + B (@)} (3.10)
As for physical interpretation, the single orthant complex signal can not capture
signal which admit orientations outside the support of z,,(w). For an image,
oriented textures with spectral support lying in quadrant one and quadrant two

can not be simultaneously represented by the single orthant signal.

3.2.4 Adjusted Hilbert Transform

Although the 2D pHT in Section [3.2.1] preserves most of the important properties
of the 1D HT, it fails to retain the harmonic correspondence property for some
pure sinusoidal signals. Let Z = {w : wle = 0} with e = [1,0]7 be a subset of
the 2D frequency plane. If a signal f(x) has spectral support in Z, the ordinary
pHT suppresses it, because sgn(w?e) = 0 when w’e € Z. Havlicek, Havlicek, and

Bovik [50] proposed an adjusted multiplier for the 2D pHT as

~

F{Hai{f(x)}} = —jsgnag(w’-e) f(w), (3.11)

where they defined sgn.qj(w’e) as

SgNagj(w) = Z sgn(wy) 1:[(1 — [sgn(wk)]|). (3.12)
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In this definition, the adjusted multiplier H,q; differs from that in (3.2]) only at

frequencies in Z. The adjusted HT spectral multiplier is further simplified as

58N adj (wi,wa) = sgn(wr) + sgn(ws)[1 — [sgn(w)|]

1 w >0
1 wy=0andwy, >0
= {1 w <0 (3.13)

—1 w; =0andws <0

0 w1:w2:0.

['illustrate the difference between the ordinary HT [3.2]and the adjusted HT
in Fig. Notice that the two multipliers differ only on the vertical axis where
the ordinary multiplier is zero and the adjusted multiplier takes on +j, 0, and —j.
This modification allows the adjusted pHT to retain the harmonic correspondence

property for all pure sinusoidal signals [50].

t7 0 —J T+ =)

\2=
\2=

(a) (b)

Figure 3.4: Hlustration of the frequency multiplier of the ordinary pHT in (3.2))
and frequency multiplier of the adjusted HT in (3.12)). (a) Frequency multiplier of
the pHT with e = [10]7. (b) Frequency multiplier of the adjusted HT.

Like to complex signal (3.3 generated with the 2D pHT, the signal (3.11])

constructed using the adjusted pHT fails to satisfy the multidimensional Cauchy
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Riemann equations [50]. However, the adjusted pHT retains most of important

properties of the 1D analytic signal:

1. Haqgj is LTI, bounded, and has unity gain.

2. The complex signal generated with H,q; has frequency support only in the

right half of the frequency plane.

3. Haq; satisfies Vakman’s three conditions [124], e.g., amplitude continuity,

amplitude homogeneity, and harmonic correspondence.

3.2.5 Hypercomplex Signal

Biilow and Sommer [19] proposed an extension of the 1D analytic signal for higher
dimensions using the hypercomplex Fourier transform. The hypercomplex Fourier
transform is an extension of the traditional Fourier transform in combination with
hypercomplex number theory. The authors combined the hypercomplex Fourier
transform and Hahn’s single orthant approach [45] to construct a hypercomplex

signal. In 2D, the hypercomplex signal is in the form of a quaternionic signal
p(x) = f(x) +ir(x) + ju(x) + kv(x), (3.14)

where f(x), r(x), u(x), and v(x) are real signals, and i, j, and k are the quater-
nionic imaginary units. The basic properties of the quaternionic units are ij = k,
jk =i, ki = j, and i® = j?> = k? = —1. These relations do not commute, i.e.,

Ji=—1j = —k.

The spectrum of the hypercomplex signal p(x) is computed using the quater-

nionic Fourier transform (QFT) [19] defined by

fw) :/ e‘ﬁmlwlf(x)e_j%”“de. (3.15)
R2
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Since the QFT of a real signal f(x) is quaternionic Hermitian [19], it is suffi-
cient to retain only the spectral information from one orthant in the hypercomplex
signal p(x). Therefore, Biillow and Sommer [19] adopted Hahn’s single orthant idea
to construct the hypercomplex signal. The spectrum of the hypercomplex signal
is given by

Pl f[ (1 + sgn(w; ) (3.16)

=1

For a 2D signal, (3.16) may be rearranged to simplify the spectrum of the quater-

nionic signal according to

Pl(w) = Fo(w)[1+ sgn(wi)][1+ sgn(ws)]

= fq(w)[l + sgn(wq) + sgn(ws) + sgn(wy)sgn(ws)], (3.17)

whereupon the inverse QFT is applied to arrive at

Pso(X) = f(X) + iGe, (X) + J¢es (X) + ktor (). (3.18)

Here, ge,(X), ¢o,(x) are pHT’s (3.2) of f(x) acting in the direction specified by
the unit vectors e; = [10]7 and ey = [01])7, and q¢(x) is the tHT (3.4)). Unlike
Hahn’s single orthant approach [45], the hypercomplex representation provides

direct access to the original signal f(x) as its real part.

Once the hypercomplex signal ps,(x) is constructed, the AM function of
f(x) is then defined as

a(x) = [[pso(%)[| = \/fQ(X) + @2, (%) + 62, (%) + ¢l (). (3.19)

However, the phase of the quaternionic signal is complicated and is not defined for
all orientations [19]. The phase functions can be retrieve from the polar represen-

tation p(x) = |a(x)|eei?ek. Let p = p(x¢)/|a(x0)| = po + ip1 + jp2 + kps be a
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normalized quaternionic number at xy. The phase of the hypercomplex signal has

three components that are point-wise given by

Y = —arcsin[2(pip2 — pops)]/2 (3.20)

6 = 0.5 arctan[2(—paps + pop1), Py — P; — P53 + 13}, ¢ = £7/4, (3.21)
0.5 arctan[2(paps + pop1), P2 — P2 + p3 — p3],  otherwise, '
0 Y =+m/4

0 = s e e ‘ (3.22)
0.5 arctan[2(p1ps + pop2), pg + Pi — p5 — D3}, otherwise,

where I have dropped the spatial argument for brevity.

The hypercomplex signal addresses the shortcoming of Hahn’s single or-
thant approach where the real signal f(x) can not be directly reconstructed from
the complex single orthant signal z4,(x). In other words, the hypercomplex signal
construction allows perfect reconstruction of f(x) from zy(x) without defining an

auxiliary hypercomplex signal.

While the mathematical foundations of the hypercomplex signal are solid
and interesting, the hypercomplex signal has practical limitations. First, the phase
functions computed from the hypercomplex signals are not defined for signals with
dimension greater than two [19]. Second, even when the phase functions are defined
for 2D signal, the computation of the phase is complicated and the computed phase
functions do not correlate well with human visual perception of the image texture
structure. Finally, it is not clear that the hypercomplex AM function satisfies the
basic requirement that the AM should capture contrast as opposed to the local

texture granularity and orientation.

3.2.6 Monogenic Signal

Felsberg and Sommer [34] introduced the Riesz transform as a natural 2D ex-

tension of the 1D HT. They reasoned that the 1D HT can be derived from 2D
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harmonic fields and the 2D Riesz transform can be derived from 3D harmonic

fields. Therefore, they claimed that this generalization is both natural and valid.

The Riesz transform maps a signal into a vector of signals. Let hg(x) be
the kernel of the Riesz transform. Its Fourier transform is given by

w

hp(w) = R{ha(x)}(w) = —jm' (3.23)

For the 2D case, using the Fourier transform differentiation identity, one can ex-

press the kernel of the Riesz transform (RT) in the spatial domain as [34}[123]

hp(x) = ( o (x) ) o G (3.24)
Z(X) 27 (22 +y2)3/2
where x = [z y]” and h;(x) and hy(x) are two filters acting in the z and y direction

respectively. The 2D RT R{.} of the real signal f(x) is then obtained by time

domain convolution according to

R = (109 ) = (i) ) (3.25)

(a) (b)
Figure 3.5: Riesz transform frequency response: (a) I (w). (b) /};2((&)).

I plotted the frequency responses of hy(x) and hy(x) in Fig. 3.5l The black

corresponds to —1 and the white indicates 4+1. Similar to the 1D HT, the Riesz
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kernels are not defined at the origin. However, the frequency responses of the
Riesz transform are smoother compared to that of the partial Hilbert transform in
Chapter [3.2.1] In other words, the HT multiplier contains sharp transitions from
—j to +7 in regions where the signum function changes sign, while the frequency
responses of the Riesz filters vary smoothly as shown in Fig. [3.5] This difference
is an important property that allows the Riesz transform to produce better AM

function than the HT-based approaches.

Felsberg and Sommer [34] named the complex signal extension using Riesz
transform the monogenic signal. In 2D, they defined the monogenic image in the

hypercomplex plane as

Zmo(X) = f(x) +ifi1(x) + jfa(x), (3.26)

where 7, j are a pair of orthogonal hypercomplex imaginary units with basic oper-

ations defined in Section [3.2.5

The hypercomplex components of the monogenic signal are given by

f(x) = amo(x) cos[pmo(x)];
fi(x) = amo(X) sinfpmo(x)] cos[p(x)],

f2(X) = amo(X) sin[pimo(x)] sin[¢(x)]. (3.27)

From this model, the AM and FM functions of f(x) can be calculate analytically.

The AM function is computed as

o (%) = o (¥)] = 1/ F2() + F2(x) + f3(%). (3.28)

The imaginary signal in the RT approach is then computed by

Gmono(X) = f1(x) cos[@(x)] + j f2(x) sin[¢(x)], (3.29)
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where ¢(x) is given by ¢(x) = arctan|fy(x)/f1(x)]. The monogenic signal can be

rewritten in the regular complex signal form as
Zm0H0<X> - f(X) + j%nono(X) (330)

Similar to the 1D HT, the RT preserves harmonic correspondence [34}/123].
In addition, it is an all-pass filter with unity gain. However, the key property of the
RT is that the Riesz operator is isotropic [34,|123]. I illustrate in Section that
this property allows the monogenic image approach to produce artifact-free AM
functions. On the other hand, the AM function obtained by the pHT approach

contains rippling artifacts along a line normal to the direction of action of the pHT.

The computation of ¢(x) involves the arctan operation. Therefore, ¢(x)
is wrapped between —m/2 and 7/2. As a result, the imaginary image ¢mono(X)
contains discontinuous of magnitude 7 at branch cuts in the arctan function. These
discontinuous points can lead to artifacts in the computed FM function of the

monogenic signal.

3.3 The 2D AM-FM Computation: Direct Approaches

While the complex signal extension approach is prevalent in the literature, there
exist approaches that compute the AM and FM functions directly from the real sig-
nal f(x), i.e., without constructing an explicit complex signal. Here, I discuss two
important approaches, namely the 2D Teager-Kaiser energy operator (TKEO) by

Maragos and Bovik [77] and the 2D extension of the 1D quasi-local approach [87].
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3.3.1 The 2D Teager-Kaiser Energy Operator

Maragos and Bovik [77] proposed a 2D extension of the 1D TKEO described in
Section to extract the AM and FM functions from images. The AM and FM

functions are computed by the continuous energy separation algorithm (CESA) as

, (3.31)

(3.32)

(3.33)

where x = [11 25)7 and Vp(x) = (8_<p1 a—i) is the FM function. U[f(x)] denotes

the 2D Teager-Kaiser energy of the image f(x) given by
U[f(x)] = [V = f(x)V*f(x), (3.34)
where Vf(x) = <8a—f1, aa_z];>'
Similar to the 1D algorithm, the discrete 2D DESA is a local method where
the AM and FM function are computed from neighborhood points. Let y,(m,n) =

f(m+1,n)— f(m—1,n) and y,(m,n) = f(m,n+1)— f(m,n—1) be two auxiliary
discrete signals. The discrete version (DESA) of the CESA is given as

a(m, ) ~ 2,4[f(m,n)
VUl (mn)] + Waly,(m,n)]
—* | ~ arcsin \I]d[yv (m7 TL)]
e ( () > (3.35)
7 | ~ arcsin \de[yh (m7 n)]
0T - < AV[f(m,n)] )




The 2D DESA can estimate AM and FM function up to one fourth of the sampling
frequency [77], i.e., 0 < [22[, | 22| < «/2. Similar to the 1D DESA, the 2D DESA

can not deduce the sign of the FM function.

3.3.2 The 2D Quasi-local Approach

Murray, Rodriguez, and Pattichis [87] extended the 1D quasi-local method orig-
inally proposed by Girolami and Vakman [43] to 2D to compute AM and FM
functions for images. The 2D method is a separable implementation of the 1D
quasi-local method in Section i.e., the FM in the horizontal direction is ob-
tained by treating the 2D image as a set of 1D signals along rows of the image and

applying the 1D quasi-local algorithm to these 1D signals.

As noted in the 1D case, the quasi-local method can estimate frequencies
up to one fourth of the sampling frequency. This restriction holds for the 2D
case as well. For signals with maximum IF above one fourth of the sampling
frequency, it is possible to resample the input signal before applying the quasi-
local method [43]. Murray, Rodriguez, and Pattichis [87] provided an extension to
the 2D quasi-local method to account for frequencies higher than one fourth of the
sampling frequency. They used two filters with disjoint passbands to compute the

FM for entire discrete frequency range [—7 7).

The 2D quasi-local method faces the same limitations as in the 1D case
because it depends on the bandwidth of the lowpass filter. In order to get good
demodulation results, the lowpass filter must filter the AM function and completely
reject the FM frequencies . This requirement is difficult to satisfy in practice
because the variation of the FM has to be known a priori. As a result, for an

arbitrary image, the 2D quasi-local method has limited use.
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3.4 Comparison of the Complex Extension Approaches

I evaluated the effectiveness of the four complex extension approaches, e.g., single
orthant complex signal by Hahn [45], adjusted Hilbert transform by Havlicek,
Havlicek, and Bovik [49], hypercomplex signal by Biillow and Sommer [19], and
monogenic signal by Felsberg and Sommer [34]. I did not consider the direct
approaches because of the limitations of the quasi-local method and the difficulty
in determining the relative signs of the FM components with the TKEO. Although
the complex extension approaches can all be generalized to arbitrary dimensions,
I restricted my attention to the 2D case. Since the phase unwrapping process was

not discussed in this chapter, the phase functions are not compared. In particular,

I computed the AM function and FM function of model 3.1 using (2.10)) and (2.11)).

Fig. [3.6|shows the AM and FM representation of the test image chirp. The
AM and FM functions are given by Fig.[3.6(b) and (c¢). This image has a Gaussian
AM function, a circularly symmetric quadratic phase, and a circularly symmetric
linear FM function. In 2D, the FM function is computed by taking the gradient of
the phase function. I plotted the FM frequency vector as a needle diagram. The
magnitude of each needle is normalized for display purpose. The orientation of

each needle represents the orientation of the FM vector in the original image.

As discussed in Section [3.2.5] the hypercomplex signal model does not lead
to direct intuitive interpretation of the model . Therefore, results for the hy-
percomplex signal are shown separately in Fig. . The computed AM function
is depicted in Fig. [3.7(a) and its corresponding three phase components are illus-
trated in Fig. [3.7(b),(c),(d) respectively. For the remaining three approaches, I
compared the computed AM and FM functions of each approach side by side. The
computed AM functions are shown Fig. and the computed FM functions are
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Figure 3.6: Chirp image: (a) Original image. (b) AM function. (¢) FM function.

20



shown in Fig. 3.9, For quantitative evaluation, I provide the mean squared error
(MSE) comparison for the computed AM in Table.
s

F

(d)

Figure 3.7: AM and phase of hypercomplex signal: (a) AM function. (b) First
phase component ¢(x) in (3.22). (c¢) Second phase component 6(x) in (3.22). (d)
Third phase component ¥ (x) in (3.22)).

Observe that for the single orthant approach, both the computed AM func-
tion in Fig.|3.8(b) and the computed FM function in Fig.|3.9(b) fail to fully capture
the original AM and FM functions. Both the estimated AM function and the es-
timated FM function are valid in some parts of the image, e.g. regions where the

AM is large in Fig. [3.8(b).

Among the four complex extension approaches, the adjusted Hilbert trans-
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Table 3.1: Mean squared error (MSE) comparison of the computed AM with re-
spect to the original AM in Fig. [3.6[b) of four complex extension approaches.
’ \ Single Orthant \ Hypercomplex \ Adjusted HT \ Monogenic ‘

IMSE| 04449 [ 01398 [ 0.0295 | 0.0440 |

form and the monogenic signal yield the best results in term of meaningful interpre-
tations of the AM and FM. While the AM of the adjusted HT in Fig. [3.§(c) yields
smaller error with respect to the original AM function (0.0295 versus 0.0440), the
computed AM function of monogenic signal in Fig. (d) is visually closer to that
of the original signal. In addition, both approaches also produce satisfactory FM
results. Over most of the image, the FM vectors in Fig. [3.9(b) and Fig. [3.9(c) are
correctly oriented normal to important structures of the chirp image. However,
both fail to provide meaningful FM vectors along the vertical shear line running

down the center of the image.

I repeated the same experiment with the well-known test image Lena shown
in Fig. (a). I computed the AM function and wrapped phase function using all
four complex extension approaches. Observe that none of the approaches deliver
an intuitively satisfying AM functions and phase. This is because the model is
a valid representation only for locally narrowband signals, while the 2D signal like
Lena image in Fig. (a) is decidedly wideband. In practice, wideband signals
must be decomposed into locally narrowband components, e.g., by a filterbank,

before one can apply any of these complex signal extension approaches.

The 2D pHT extends the notion of 1D HT by performing the 1D HT in
a specified direction. Similar to the 1D case, the spectral redundancy of the par-
tial HT is reduced by 50%. The 2D pHT, however, fails to satisfy the harmonic

correspondence property if the real signal has frequency support in the region Z
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Figure 3.8: AM results for the chirp image computed using three different complex
signal extensions. (a) Original AM. (b) Single orthant AM. (¢) Adjusted HT AM.
(d) Monogenic AM.
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Figure 3.9: FM results for the chirp image computed using three different complex
signal extensions. (a) Original chirp FM. (b) Single orthant FM. (c¢) Adjusted HT

FM. (d) Monogenic FM.
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Figure 3.10: AM-FM representations of Lena image: (a) Original image. (b) Single
orthant AM. (c¢) Adjusted HT AM. (d) Hypercomplex AM. (e) Monogenic AM.
(f) Single orthant phase. (g) Adjusted HT phase. (h) Hypercomplex third phase
component 1(x). (i) Monogenic phase.

95



as described in Section [3.2.4f The 2D tHT extends the 1D HT by applying a
true 2D transform. Nevertheless, this transform fails to produce visually mean-
ingful AM and FM functions [19]. The single orthant complex signal approach
proposed by Hahn [45] eliminates all but one orthant of the signal’s spectrum.
However, the representation is not complete, i.e., the real signal can not be di-
rectly recovered from the single orthant complex signal. For a 2D signal, the single
orthant complex signal model is limited to signals whose frequencies lie in the
first and third quadrant of the frequency plane, which is the regions in Fig. |3.2
where sgn(wy)sgn(wy) > 0. Consequently, the model can not be used to represent

arbitrary images as demonstrated in Fig. [3.8(b) and Fig. 3.9(Db).

The 2D adjusted HT proposed by Havlicek, Havlicek, and Bovik [50] pre-
serves most of the properties of the 1D analytic signal. More importantly, it
satisfies the harmonic correspondence property for all pure sinusoidal signals. The
harmonic correspondence is made possible by an adjustment in the frequency mul-
tiplier of the transform. The adjustment is illustrated by the spectral multiplier
shown in Fig. 3.2 Furthermore, the adjusted HT is able to produce visually mean-
ingful phase function. The computed AM function from this approach suffers from
discontinuities and rippling artifacts around the operating axis of the pHT filter.
While the AM function obtained with this approach has the lowest MSE with re-
spect to the true AM of the original signal, it is not the most visually satisfying

AM result.

The hypercomplex signal approach extends the 1D analytic signal to higher
dimensions using the hypercomplex Fourier transform. For a 2D signal, the hy-
percomplex signal is constructed using the quaternionic Fourier transform (QFT).

Since the 2D QFT of a real signal is quaternionic Hermitian, the entire spectrum
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can be recovered from a single orthant. The hypercomplex signal construction uses
Hahn’s single orthant approach to reduce the spectral redundancy to one orthant in
the hypercomplex frequency plane. In the image domain, the hypercomplex signal
is a combination of the pHT and the tHT . The computed AM and FM functions
of hypercomplex signal do not correspond with human visual perception. In addi-
tion, the phase is not well-defined for signals with dimensions greater than two. In
the 2D case, even when the phase is mathematically defined, the phase calculation
is not straight forward. Despite the fact that the hypercomplex signal retains only
one orthant of spectral information, the amount of data for storage in this orthant

is two times larger than that of the pHT.

The monogenic signal uses the Riesz transform as an extension of the 1D HT
into higher dimensions. In contrast to the pHT where there is only one imaginary
component in the complex signal, the monogenic signal has two. The monogenic
representation provides meaningful interpretation of the AM function because the
Riesz transform is an isotropic operator. In addition, the Riesz transform also
satisfies the harmonic correspondence property. In addition, the monogenic FM
function generally gives a visually meaningful representation of the image struc-
ture. Similar to the adjusted HT case, the monogenic FM has problems in the
computation of the FM function. In particular, the monogenic signal requires an
auxiliary orientation estimation step in order to compute the correct FM function.
In term of spectral reduction, the monogenic signal does not offer any spectral

cancellation compared to other approaches.

Mathematical construction and important properties of complex extension

approaches are summarized in Table. and Table. 3.3

o7



3.5 Summary

In this chapter, I discussed the computational aspect of the 2D AM-FM image
model. I argued for the importance of the phase and the instantaneous frequency
in two dimensional image processing applications. I discussed major approaches
to compute the 2D AM-FM image model and compared their performance. The
performance comparison was measured in term of the mean squared error (MSE)

between the computed AM functions and their theoretical values.

Among the approaches I discussed for computing 2D AM-FM image models,
the complex signal extension approaches are more popular in the literature than the
direct approaches. The pHT and the monogenic signal yield satisfactory results as
they compute low MSE demodulated functions and offer meaningful interpretations
of the underlying image. Compared to the monogenic signal, the pHT has a
simpler representation, i.e., two components versus three components. I adopted
the pHT as the AM-FM computation algorithm for the perfect reconstruction AM-
FM transform, which I will discussed in Chapter [4l While these two approaches
use different signal transformations, there is a connection between them as I will

show in Chapter [7]

I concluded this chapter by arguing that the quality of computed AM and

Table 3.2: Construction comparison of different n-D complex signal extensions
| | Frequency Multiplier | Re [2(x)] = f(x) | Spectral Reduction |

Partial Hilbert —jsgn(w’- e) Yes 50%
Total Hilbert (=)™ 1, sen(w;) Yes 0%

Single Orthant [T, (1+ sgn( i) No 5%
Adjusted Hilbert —jsighagi(w’ - €) Yes 50%
Hypercomplex Signal | [T, (1 + sgn(w;)) Yes *75%
Monogenic Signal —7 IIzII Yes N/A
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Table 3.3: Comparison of main properties of different approaches including
isotropic, meaningful phase interpretation, and harmonic correspondence

H I[sotropic ‘ Meaningful Phase ‘ Harmonic Correspondence ‘

Partial Hilbert No Almost Almost
Total Hilbert No No No
Single Orthant No Inadequate No
Adjusted Hilbert No Almost Yes
Hypercomplex Signal No Inadequate No
Monogenic Signal Yes Almost Yes

FM functions using the complex extension approaches depends on the construction
of the imaginary component. I illustrate the imaginary components of the adjusted
HT approach in Fig. |3.11j(a) and of the monogenic approach in Fig. |3.11{(b). Ob-
serve that the locations where the imaginary signals exhibit discontinuities coincide
with where the FM of these approaches have artifacts. The question of how to con-

struct a complex-valued image without introducing such discontinuities remains an

N 7

»
2

Figure 3.11: Imaginary image of the complex signal models for the chirp image:
(a) of the adjusted HT approach (b) of the monogenic signal approach.

open research problem.

(b)
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Chapter 4

The Perfect Reconstruction AM-FM Image
Model

In Chapter [3| T discussed different algorithms for computing the AM and FM
functions of an image. In theory, these modulating functions can be used to define
a complete AM-FM image representation. However, they have primarily been used
as features for higher level image processing applications such as target tracking,
image segmentation, stereo vision, and texture analysis [52]. In these applications,
visually important image features are characterized in terms of AM-FM functions
and used as input to higher level processes such as recognition or classification.
Such applications are not concerned with recovering the original image from the
computed modulating functions. In other words, most AM-FM image processing
applications have been limited to image analysis. The image synthesis process,
where the image is recovered from the modulating functions, has not been widely
investigated. The main reason is that a perfect reconstruction AM-FM transform
suitable for image synthesis did not exist. I first address this problem by developing

the perfect reconstruction AM-FM image transform for a one component image.

I begin by discussing the importance of the 2D phase unwrapping problem
in image synthesis in Section [4.1} I then review major approaches for computing
the unwrapped phase in 2D in Section [4.2] with an emphasis on the 2D least-
squares phase unwrapping technique in Section [4.3] T discuss the splined-based
FM perfect reconstruction technique in Section [4.4.3] In addition, I propose the
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least-squares FM perfect reconstruction technique in Section [4.4.4] Finally, the
perfect reconstruction AM-FM transform for single component images is the focus

of Section 1.5 A summary of the chapter is given in Section [4.6]

4.1 The Importance of Phase Unwrapping

The AM-FM image synthesis process aims to compute the original signal f(x)
from the AM and FM functions. Since the original image is defined as f(x) =
a(x) cos[p(x)], this process requires reconstructing the phase function ¢(x) from
the computed FM function V(x). In particular, ¢(x) is obtained by integrat-
ing the gradient field Vip(x). However, the true phase function ¢(x) can not be
obtained from the measured gradient easily in 2D. Missing data samples, noisy
measurements, and quantization errors at the receivers cause the measured gradi-
ent Vmeasured (X) to be different from the true gradient Vip(x). Hence, the inte-
grated phase @inerg(Xx) does not equal the true phase function p(x). Consequently,
the reconstructed image finterg(X) = a(X) cos[@interg(x)] differs from the original
image f(x). This problem has prevented the development of AM-FM synthesis

applications.

One possible way to avoid phase integration is to obtain ¢ (x) directly from

the complex image z¢(x) as

o(x) = arctan [(?((;())} . (4.1)

Because arctan is a multi-valued function, the phase ¢(x) in (4.1)) is always com-
puted as the principal value, which lies in [—m,7|. This principal value phase
function is referred to as @wrap(x). As discussed in Section [3.2.1} the complex

function ze(x) is the complex image constructed using the partial Hilbert trans-

61



form (pHT) approach. The real part of the complex image is the original image
f(x) and the imaginary part go(x) of the complex image is obtained by the pHT.

The AM is computed by taking the magnitude of the complex image
a(x) =V [2(x) + g3(x). (4.2)

With the computed AM and the computed phase Yyyap(x) defined as in ((4.2)
and , the original image f(x) may be perfectly reconstructed. However, the
FM functions calculated from yrap(x) do not correspond to human visual per-
ception of the image. This problem is caused by the multi-valued nature of the
arctangent where arguments differing by integer multiples of 7 yield the same
value. As a result, the computed FM functions Vg, (x) contain discontinuities
at locations where the branch cuts in ¢y.p(x) occur. These discontinuities arise
solely from the branch cuts in the arctangent function and do not correspond
to any visual information in the image. Moreover, because they are unbounded,
they introduce large errors in the computed FM function and violate the smoothly
varying assumption of the phase function in (3.1). Fig. illustrates some of
the problems associated with the wrapped phase @yrap(x). Fig. [4.1)(c) shows the
phase function ¢y, (x) computed using for a narrowband component of the
well-known test image Barbara. The component is given in Fig. |4.1(a). Observe
that Pyrap(x) in Fig. [l.1](c) contains many 2D discontinuous (e.g., bifurcations)
introduced by the branch cuts in the arctangent function. The FM field computed
from the wrapped phase is shown in Fig. |4.1{e), where many mathematically cor-
rect but visually meaningless needles with large magnitudes appear. In contrast,
the unwrapped phase is shown in Fig. [4.1(d). The FM field computed from the

unwrapped phase is depicted Fig. 4.1[f), where the needle length and orientation
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are consistent visual perception of the image component. This example demon-
strates that the 2D phase unwrapping process is a crucial step in constructing a

perfect reconstruction FM transform.

4.2 The 2D Phase Unwrapping Problem

Phase unwrapping is an important step in many applications that use the phase
information. In synthetic aperture radar (SAR) interferometric imaging, the phase
at a given point indicates the terrain evaluation height [115]. In fiber-optic inter-
ferometry, the phase represents the depth of the imaged object [44]. In magnetic
resonance (MR), the phase contains information about flow or inhomogeneities
in the magnetic field. However, in these applications direct measurement of the
phase is not possible. For example, in compensated imaging, one can only ob-
tain phase differences from the receivers [39,/56]. In other applications, only the
wrapped phase is measurable. However, the wrapped phase does not provide an
intuitive way to present or perform analysis on the observed phenomena. Due to
the image processing emphasis of this dissertation, I limited the discussion of the

phase unwrapping problem to 2D signals.

2D phase unwrapping aims to find the unwrapped phase function from its
principal (wrapped) values in the range [—m, 7]. In other words, given a continuous
function obtained by an inversion of a trigonometric function, e.g., arccos[¢(x)], the
goal is to find a smooth function p(x) such that its range is no longer restricted
in [—m, 7. Fig. shows the difference between the wrapped phase and the
unwrapped phase. The wrapped phase in Fig. (a) contains discontinuous points
because its range is restricted to [—, n]. Fig. [1.2(b) is the unwrapped version of
the phase in Fig. (a). Notice that the unwrapped phase is smoother compared
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Figure 4.1: 2D Phase unwrapping of one narrowband component of the Babara
image. (a) Real image component. (b) Imaginary image component. (¢) Wrapped
phase function. (d) Unwrapped phase function. (e) Wrapped FM field. (f) Un-
wrapped FM field.
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the wrapped phase while still mapping through the cosine function.

(b)

Figure 4.2: Wrapped phase vs. unwrapped phase. (a) Wrapped phase. (b) Un-
wrapped phase.

Formally, let ¢(x) be a continuous phase function. Let W[.] be the wrap
operator such that W[p(x)] € [—7, 7|. Given W]p(x)], the task is to compute the

unwrapped phase ¢(x) such that

p(x) = Wip(x)] + p(x)m, (4.3)

where p(x) € Z. Unfortunately, 2D phase unwrapping is an ill-posed prob-
lem ,. Therefore, phase unwrapping is usually formulated as an optimization
problem. In this chapter, I give a short summary of the major 2D phase unwrap-
ping approaches. I organize the 2D phase unwrapping algorithms into four main
categories: path integration, energy norm minimization, model-based estimation,

and Bayesian-based estimation.

4.2.1 Numerical Path Integration

Goldstein, Zebker, and Werner [44] proposed a path integration phase unwrap-

ping algorithm. They provided an algorithm, branch cut, to detect local errors
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caused by large phase discontinuities in order to prevent discontinuous points from
contributing to the global phase reconstruction. The unwrapped phase is then
obtained by performing path integration by knowing local horizontal and vertical
derivatives. The numerical integration process must not cross the cut boundaries

detected by the branch cuts algorithm.

4.2.2 Least-squares Energy Minimization

Fried [39] and Hudgin [56] formulated the least-squares phase reconstruction prob-
lem for the wave-front sensor application. They aimed to minimize the sum
of errors between the phase differences and gradient of the unwrapped phase.
Hunt [57] cast the phase reconstruction problem in a linear algebra setting and
proposed a method to improve the convergence rate of the phase solution. Takajo
and Takahashi [117] studied the least-squares phase reconstruction and introduced
conditions where the solution is unique. They then proposed a closed-form non-
iterative algorithm in the frequency domain to solve for the phase function [118].
Ghiglia and Romero [42] extended the least-squares phase reconstruction approach
to facilitate weighted contributions of measured phase differences. They proposed
two iterative algorithms to solve for the unwrapped phase. Strand, Taxt, and
Jain proposed a block-based phase unwrapping algorithm [115]. Bioucas-Dias and
Valadao [8] proposed an energy minimization framework for 2D phase unwrap-
ping based on graph cuts. Spagnolini [112] used the IF estimated directly from
the signal instead of from the wrapped phase. The estimated IF is then used
in 2D phase unwrapping and the phase is solved by the least-squares framework.
Because the unwrapped phase values differ from those of the wrapped by multi-

ples of 27, Costantini [26] formulated the phase unwrapping problem as an energy
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minimization with integer variables.

4.2.3 Model-based Parameter Estimation

Friedlander and Francos [40] proposed a parametric model for phase unwrapping.
First, they used a 2D polynomial model to fit the observed phase. The estimated
phase was then used to guide the phase unwrapping process where the phase of
each sample was corrected by adding or subtracting a multiple of 27 based on the
difference between the principle value of the phase and the estimated phase. For
general 2D phase unwrapping, the observed wrapped phase signal was segmented

prior to the model fitting process.

4.2.4 Bayesian Phase Unwrapping

Nico, Palubinskas, and Datcu [93] applied the Bayesian framework to the phase
unwrapping problem. Because measurement noise and phase aliasing caused inac-
curacies in the least-squares phase reconstruction solution, they advocated the use
of one and two regularization terms to enforce the phase prior models. However,

it is not easy to find a suitable prior models given an arbitrary phase function.

4.3 Least-squares Phase Unwrapping for the 2D AM-FM
Image Model

Let ¢(x) be the true unwrapped phase function. Let Vp(x) be the measured phase
gradient. The least-squares phase unwrapping approach finds the unwrapped phase
©(x) by minimizing the mean squared error between the gradient of ¢(x) and the

measured phase differences Vp(x). In other words, the relationship between the

67



measured gradient and the true gradient is given by
V(x) = Vp(x) +d(x), (4.4)
where d(x) models the errors in the IF measurement or estimation process.

In practice, the acquired measurements are discrete. Therefore, the fi-
nite difference is often used to approximate the derivative operator. For exam-
ple, [p(m,n) — o(m — 1,n)] and [p(m,n) — p(m,n — 1)] are approximations of
the vertical and horizontal derivatives of ¢(m,n) at pixel location (m,n) in the
[0---M—1]x[0--- N—1] rectangular grid. Specifically, let p,,(m,n) and p,(m,n)
be the measured phase gradient, i.e., p,,(m,n) and p,(m,n) are discrete approx-
imations of the vertical and the horizontal derivatives of the measured phase
p(m,n). Let Vop(m,n) = [@m(m,n), pn(m,n)] be the true gradient field of the
unwrapped phase. The unwrapped phase ¢(m,n) is the solution to the Ly norm
minimization

Elp(m, n)] = [[om(m,n) = pr(m, n)[I* + [len(m, n) — pu(m, n)|*. (4.5)
Hunt [57] formulated as a matrix multiplication. He constructed the matrix A
which acts like a phase difference operator. In this formulation, the phase functions
w(m,n), pm(m,n), and p,(m,n) are vectorized into 1D vector. Concretely, let ¢
be a 1D vectorization of ¢(m,n) and let v = [p,, pn]’ be a 1D vector consisting
of two stacked 1D vectors p,, and p,. The energy minimization equation is

equivalent to

Elp) = |[Ap—1]]
= (Ap—)"(Ap—7)
= (Ap)"Ap— (Ap)"y —7"Ap++"y

= ¢TATAp — 20" ATy + 7. (4.6)
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The error in (4.6) is a quadratic function of ¢. The optimal solution for ¢ is

computed by equating the derivative of E[¢(m,n)] to zero according to

o€ _ 2ATAp —2ATy =0,
dyp
or equivalently, ATAp = AT~. (4.7)

Notice that is the well-known least-squares solution of an overdetermined
linear system. One can solve for ¢ using matrix inversion provided that the
matrix ATA is not singular. In the phase unwrapping problem, the matrix A
computes the discrete approximation to the gradient. As a result, AT Ay can be
interpreted as the Laplacian of ¢ and A p represents the derivative of the measured
gradient p, which is the Laplacian of measured phase p. With this representation,
equation is the discretization of the classical Poisson equation which can
be solved exactly using the fast discrete cosine transform (DCT) |118]. A detailed
derivation of this is given in Appendix[B] Let ® be the 2D DCT transform of ¢ and
I" be the 2D DCT transform of . We have the in DCT domain relationship |118].
I'(é, j)
2 cos <%2) + 2 cos (%j) — 4’

where 7 and j are indexes of the 2D grid. The least-squares unwrapped phase

®(i,j) =

(4.8)

¢vrs(m,n) is obtained by taking the inverse 2D discrete cosine transform as
ors(m,n) = IDCT{®(7, j)}. (4.9)
Notice that ®(0,0) in is not defined because the denominator is zero. In
practice, I set (0,0) = 0 which results in a zero mean unwrapped phase function. I
emphasize that ¢ps(m, n) is not necessarily equal to the true phase p(m,n); rather,
because it is the least-squares approximation of ¢(m,n). As the unwrapped phase

is obtained by integrating the gradient, the computed solution can differ from the

true phase by a global constant in the best case.
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4.4 Perfect Reconstruction FM Algorithm
4.4.1 Arguments for the Least-squares Phase Unwrapping

I adopted the 2D least-squares phase unwrapping algorithm for the AM-FM per-
fect reconstruction model for several reasons. The unwrapped phase produced by
the least-squares phase unwrapping algorithm is usually smooth and agrees with
the smoothly varying assumption of the AM-FM image model. In addition, as the
measurement noise is inherently modeled in the least-squares formulation, the algo-
rithm is robust to phase discrepancies. As a result, the least-squares approach does
not need to explicitly determine the phase discontinuities like other approaches
such as path integration discussed in Section [£.2.1] Moreover, the least-squares
formulation provides an efficient and stable algorithm to compute the unwrapped
phase. Finally, additional constraints can be enforced on the reconstructed phase
because regularization terms can be conveniently integrated into the least-squares

formulation.

4.4.2 Enforcing Phase Congruence

Let n = [n m] € Z* As noted in Section [£.3] the least-squares phase prs(n)
computed from (4.9) is not guaranteed to be equal to the true phase ¢(n), i.e.,
vrs(n) # @(n). As a result, the original image can not be recovered exactly

because cos[¢rs(x)] # cos[p(x)] in general.

In the best case, the unwrapped phase differs from the true phase by a global
constant c. The constant ¢ can be estimated by minimizing the energy between
the wrapped phase and the unwrapped phase. In other words, ¢ is obtained by

minimizing the following norm
E(c) = || cos(W{p(m,n)}) — coslprs(m,n) + cJ||* (4.10)
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Even in cases where the unwrapped phase differs from a true phase by a function
d(n), we can still use this least-squares approach to improve the accuracy of the
unwrapped phase. For instance, Pritt [100] computed with different ¢ over
the range of [0, 27| and chose the ¢ with the lowest error. The constant ¢ can also
be found using an iterative approach such as the gradient descent method. For
instance, in the phase unwrapping example in Fig. [£.1], T found that ¢ = 0.9105
using the gradient descent algorithm with step size 0.3 and 1000 iteration. The

mean squared error is improved from 0.9773 to 0.9626.

In order to obtain FM perfect reconstruction, Sivley and Havlicek |108] en-
forced congruence on the least-squares unwrapped phase. For perfect reconstruc-
tion, they required that cos[p(n)] = cos|W{¢(n)}]. Therefore, they introduced an

auxiliary function b(n) € Z and computed b(n) as

o) — V%s(n) ~Wet) J | )

where “| |” denotes the floor function and § is a predefined positive real constant.
The constant § was set to 300 according to [108]. The constant /3 alleviates discon-
tinuous jumps in the final unwrapped phase function. The final unwrapped phase
p(x) is given by

o(n) = W{p(n)} + 27b(n). (4.12)

I illustrate the importance of enforcing the phase congruence in Fig. [1.3
Fig.|4.3(a) shows the wrapped phase of a locally narrowband component. Fig.|4.3(b)
shows the unwrapped phase ¢(n). The unwrapped phase is smoother and does not
contain discontinuities compared to the wrapped phase in Fig. [4.3(a). The error
between the least-squares phase and the wrapped phase after mapping through

the cosine function is shown in Fig. |4.3(c). The congruency term b(n) is shown in
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Fig. [4.3(d). The error between the least-squares phase and the final unwrapped
phase ¢(n) are illustrated with 3D plots in Fig. .4a). This error which is shown
in Fig. [1.4(b) is effectively zero after the congruency term is enforced. Similar

example of phase congruency enforcement is shown in Fig. [4.5 and

(d)

Figure 4.3: 2D Phase unwrapping of one component of lena, lena_3_2. (a) Wrapped
phase. (b) Unwrapped phase. (c) cos[¢rs(n)] — cos[p(n)]. (d) Congruence term
b(n) in (4.12]).

Quantitative illustrations of the MSE between the unwrapped phase before
and after the phase congruency is enforced are shown in Table. [4.1] and We
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Figure 4.4: 3D error plot of the 2D Phase unwrapping for barbara_3.2. (a)
cos[prs(n)] — cos[W{p(n)}]. (b) cosfp(n)] — cospV{p(n)}].
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Figure 4.5: 2D Phase unwrapping of one component of barbara, babara 3 4. (a)
Wrapped phase. (b) Unwrapped phase. (c) cos|prs(n)] — cos[p(n)]. (d) Congru-

ence term b(n) in (4.12)).
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Figure 4.6: 3D error plot of the 2D Phase unwrapping for barbara 3 4. (a)
cos[prs(n)] — cos[W{p(n)}]. (b) cosfp(n)] — cospV{p(n)}].
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can see that the MSE of 12 narrowband components effectively go zero after the

phase congruency terms are added to the least-squares phase.

Table 4.1: Mean squared error (MSE) comparison between the true phase and the
least-squares phase after and before phase congruency is added to the least-squares
phase for the test image Barbara.

|

\ after phase congruency \ before phase congruency ‘

barbara_2_2 1.393365 x 10=% 0.979680
barbara_2_3 1.273848 x 10~ 0.998202
barbara_2_4 1.308133 x 102 1.001034
barbara_2_5 1.416999 x 1023 1.007397
barbara_3_2 3.394855 x 10724 0.977283
barbara_3_3 3.049092 x 1024 0.970878
barbara_3_4 3.016521 x 10724 0.977438
barbara_3_5 3.109758 x 1024 0.991340
barbara_4_2 7.302929 x 10=%° 0.973036
barbara_4_3 7.074440 x 1072 0.944815
barbara_4_4 7.274310 x 1072° 1.065723
barbara_4_5 7.342723 x 1072 1.051791

4.4.3 Spline-based Perfect Reconstruction FM

Once the unwrapped phase ¢(n) is obtained, the FM is computed as the gradi-
ent of p(n). For a perfect reconstruction representation, the phase ¢(n) must be
recovered from the computed FM without errors. Sivley and Havlicek [110] pro-
vided the first perfect reconstruction FM transform. They used the spline-based
framework proposed by Unser, Aldroubi, and Eden [121,[122]. They fitted ¢(n)
with a tensor product cubic spline model to create a continuous surface @.(x).
Specifically, they computed the cubic-spline coefficients from the discrete samples

of ¢(n). The forward cubic spline transfer function is given by [122] by

[B3(2)] ! = ﬁ (4.13)
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Table 4.2: Mean squared error (MSE) comparison between the true phase and the
least-squares phase after and before phase congruency is added to the least-squares
phase for the test image Lena.

’ ‘ after phase congruency ‘ before phase congruency ‘

lena_2 2 8.306846 x 10726 0.993641
lena 2.3 2.033533 x 1072 1.012747
lena 2.4 2.362168 x 10~ 0.997782
lena_2_5 2.183022 x 107 0.992178
lena_3.2 5.673893 x 10726 0.997217
lena_3_3 1.570788 x 1072° 0.978311
lena_3_4 1.769817 x 107° 1.005338
lena_3.5 1.166994 x 107° 1.035526
lena 4 2 2.951476 x 1072¢ 1.036047
lena_4_3 6.999355 x 10726 1.101886
lena 4.4 8.165159 x 10726 0.863878
lena_4.5 6.236149 x 10~2° 0.994436

Table 4.3: The mean squared error (MSE) comparison of the least-squares phase
and the unwrapped phase with respect to the true phase for test image Lena.

The signal ¢(n) is recovered without errors by the indirect cubic spline transfer
function
z+4+ 271

B3(2) = — (4.14)

For a 2D signal like ¢(n), the cubic spline filters [B3(z)]™! and B3(z) are applied

successively along rows and columns of the image.

Since the cubic spline interpolants were used in [109], the first order deriva-
tive of these splines is quadratic splines. In order to map the quadratic spline
representation to the image intensity representation, one must apply the indirect

quadratic spline with transfer function C?(z) is given by

C2(z) = = _; L (4.15)

The first order derivative operator and the indirect quadratic spline C?(z) can be
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grouped into one filter

z+1_z—z‘1

D(z) = (1- )2 :

(4.16)

Let g,(n) be cubic spline representation of the phase function ¢(n) along

the rows. Then g¢,(n) is obtained as

g-(n) = p(n) * [b*(n)] ", (4.17)

where [0*(n)]™! is the time domain representation of [B3(z)]™!. Similarly, let g.(n)
be the cubic spline representation along the column of the phase image ¢(n),
ge(m) = p(n) x [B3(n)]~!. Let U(n) and V(n) be the horizontal and the vertical

components of the FM vector. They are computed as

U(n) _ gc(myn + 1) ;gc(mv n— 1)7 (418)
V(l’l) _ g,,(m—f—l,n);gr(m—l,n). (4.19>

Sivley and Havlicek [110] showed that the original phase function ¢(n)
can be perfectly reconstructed from the FM functions U(n) and V(n). However,
the reconstruction algorithm required prior knowledge of four points of the original
phase function. Particularly, they assumed that ©(0,0), ¢(0, 1), ¢(1,0), and p(1,1)
are known. First, the algorithm computes g,(m,n) using for the first two
columns

g-(m+1,n)=2V(m,n)+ g.(m —1,n), (4.20)

where ,(i, /) = (i, ) for i,§ € [0,1]. Let (3, §) = g.(i.5), for i € [0, M — 1] and
j €[0,1]. Then g.(n) is computed using (4.19) along the columns as

ge(m,n+1) =2U(m,n) + g.(m,n — 1), (4.21)
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where g.(i,7) = ¢-(4,7), for i € [0, M — 1] and j € [0, 1]. The original phase ¢(n)

is then obtained by performing the indirect cubic spline transform

QO(H) = gr(n) * bs(n)v (4'22)

where b®(n) is the time domain representation of B3(z).

Notice that one could arrive at the same answer for ¢(n) if the reconstruc-
tion algorithm was started by integrating along the columns and then integrating
along the rows. However, the algorithm still requires four points on the top left

corner of the original phase function ¢(n) in that case.

4.4.4 Least-squares FM Perfect Reconstruction

While the spline-based algorithm in Section provides perfect reconstruction
of the phase from the FM, it is not suitable for FM signal processing applica-
tions. The first step of the reconstruction algorithm only operates on the first two
columns. Therefore, any signal processing changes of V' (n) in columns other than
these first two will not be reflected in the reconstructed phase. Similarly, changes
in the first two columns of V(n) will results in changes even though V' (n) is un-
modified everywhere else. Second, the algorithm requires the knowledge of four
points on the top left corner of the original phase function. A small change in any
of these four points results in global changes to the reconstructed phase. There-
fore, the algorithm does not give predictable results if the FM is altered by signal
processing. This limitation prohibits the implementation of non-trivial filtering

operations applying directly on the FM functions.

Nguyen, Campell, and Havlicek proposed a new FM perfect reconstruction

algorithm in [88]. The FM reconstruction followed the same formulation as the
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least-squares phase unwrapping in Section Let U(n) and V(n) be the hori-
zontal and vertical components of the FM function. They are computed from the

unwrapped phase ¢(n) using the phase difference technique
U(ma n) - So(m7 TL) - Qp(ma n-— 1)7 (423)

V(m,n) = ¢(m,n) —p(m—1,n), (4.24)

T

where n = [m n]". Recall that the discrete phase differences where also used in

the least-squares optimization setup in (4.5)).

In the FM reconstruction problem, I aimed to reconstruct the phase function
¢(n) from the FM functions U(n) and V' (n). Let ¢(n) be the reconstructed phase.
Similar to the least-squares approach in Section [4.3] T set up the least-squares

optimization problem as
E[@(m,n)] = [|@m(m,n) = V(m,n)||* +|@n(m, n) — U(m,n)||?, (4.25)

where @,,(m,n) and $,(m,n) are the vertical and horizontal approximation of
the derivatives. In particular, the FM components are computed using the phase
differences, i.e., o(m,n) = @(m,n) — p(m — 1,n) and @,(m,n) = o(m,n) —
o(m,n —1).

From (4.23])— (4.24)), and (4.25)), the solution of (4.25)), if found, differs from

the original phase p(n) by a global constant 7:

o(n) = ¢(n) + 7. (4.26)

Therefore, the original phase ¢(n) can be perfectly reconstructed if 7 is known
a priori. I chose 7 to be the top left corner pixel of the unwrapped phase, e.g.,

©(0,0). The MSE of the reconstructed phase ¢(n) with respect to the original
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phase p(n) is given in Table for 12 locally narrowband components of the well-
known mandrill image. The algorithm is able to reconstruct the original phase

from the FM functions U(n) and V(n) without errors.

Table 4.4: Mean squared error (MSE) comparison of the least-squares phase and
the unwrapped phase with respect to the true phase for the test image mandrill.

| | (MN)“H[(m) — p(m)[* |

mandril_2_2 1.438606 x 10~14
mandril_2_3 2.574802 x 10~™
mandril_2_4 5.446122 x 10~
mandril 2_5 7.288013 x 10~14
mandril_3_2 3.886939 x 10~
mandril_3_3 7.553478 x 10715
mandril_3_4 1.462437 x 10~
mandril_3_5 1.944426 x 10~
mandril 4_2 9.360980 x 10716
mandril_4_3 1.825935 x 10~1°
mandril_4_4 3.595069 x 10~
mandril 4.5 4.682343 x 1071

I illustrate FM reconstruction results in Fig. The FM functions U(n)
and V(n) are shown in Fig. [4.7(a) and Fig. [£.7|(b), respectively. Fig. [4.7](c) depicts
the least-squares reconstructed phase ¢reconLs(n) obtained by solving (4.25). The
final phase is shown in Fig. [£.7(d). The least-squares phase and the final phase
differ by a constant 7. I show this difference as a mesh plot in Fig. (a). The

error between the reconstructed phase and the original phase is also illustrated in
Fig. [4.8(b).

The least-squares perfect reconstruction algorithm overcomes the limita-
tions of the spline-based approach in Section The algorithm requires a priori
knowledge of one sample rather than four samples. In addition, the changes in

U(n) and V(n) are reflected in the reconstructed phase which allows us to define
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(c) (d)
(

Figure 4.7: 2D phase reconstruction from FM functions. (a) U(n). (b) V(n). (c)
Least-squares phase ¢reconrs(n). (d) Reconstructed phase ¢(n).
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Figure 4.8: 2D least-squares phase reconstruction. (a) Offset constant 7 ~ —3.1317
in (4.26). (b) |p(n) —@(n)| € [0, 2.5 x 1077].
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filters acting on these FM components.

4.5 The Single Component PR AM-FM Transform

Once the FM perfect reconstruction algorithm was realized, I developed the perfect
reconstruction (PR) model for the single component AM-FM transform. Given a
real discrete input image f(n), I constructed the imaginary image ¢(n) using the
pHT technique in Section [3.2.1] T then created the complex image as z(n) =
f(n) + jg(n). The AM and FM functions are computed as

a(n) = v/ f*(n) + ¢*(n), (4.27)

V(n) = Im {Zzi?)] . (4.28)

Since the derivative operator is not defined for discrete signals, Vz(n) in (4.28)

must be computed using an approximate discrete implementation. Sivley and
Havlicek [108,/110] used the spline-based approach to compute discrete derivatives.
The spline-based approach permits an invertible FM transform. Farid and Simon-
celli [33] designed separable kernels to perform differentiation for multidimensional
discrete signals. These filters are of the finite impulse response (FIR) type. The ac-
curacy of the approximation depends on the filter length. The filter coefficients are
computed using a least-squares optimization technique. For practical applications,
these derivative FIR filters have five or seven taps. In the proposed transform, a

five tap FIR filter is used.

While the AM and FM functions have been computed numerically, we still
can not reconstruct the original image f(n) from these modulating functions. Be-
cause of the wrapped phase problem discussed in Section [4.1 one must perform

phase unwrapping in order to obtain a perfect reconstruction AM-FM model. Let
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U(n) and V(n) be the horizontal and vertical components of the FM function, i.e.,
Ve(n) = [U(n) V(n)]?. These FM functions are then used as estimates for the
least-squares phase unwrapping process in Section . Specifically, U(n) plays the
role of p,(m,n) and V' (n) plays the role of p,,(m,n). The unwrapped phase ¢(n) is
solved by . The FM functions are then computed from the unwrapped phase
¢(n) according to and (£.24). The triplet a(n), U(n), V(n) constitutes a

perfect reconstruction AM-FM image representation for the image f(n).

The original image f(n) is reconstructed from the three components a(n),
U(n), V(n) without errors. I showed in Section that the phase function
©(n) can be perfectly reconstructed from the FM functions U(n) and V' (n). While
both the spline-based approach in Section [4.4.3| and the least-squares approach
in Section [4.4.4] allow perfect reconstruction of the phase signal from the FM, I
adopted the least-squares FM reconstruction approach because the least-squares
reconstructed phase function is more robust to changes in the FM than that ob-
tained from the spline-based approach. Once ¢(n) is recovered, the original image
is given by

f(n) = a(n) coslip(n)]. (4.29)

Algorithm 1 The analysis AM-FM transform
Let f(n) be the discrete image.
Step 1: Construct the complex image z(n):
q(n) = H{f(n)}, defined in Section [3.2.1]
2(m) = f(n) + jq(m)
Step 2: Compute the AM using and the FM using
Step 3: Find the phase function ¢(n) by solving

Step 4: Compute the FM functions using (4.23)) and (4.24).

Steps for computing the analysis and synthesis AM-FM transform are given

in Algorithm [I] and Algorithm [2] respectively.
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Algorithm 2 The synthesis AM-FM transform

Require: ¢(0,0) known a priori.
Let U(n) and V(n) be the FM functions.
Step 1: Reconstruct the phase function ¢(n) by solving .
Step 2: Reconstruct the original image using (4.29).

I applied the perfect reconstruction AM-FM transform to two single com-
ponent images: BentChirp and Chirp. The transform and reconstruction the
BentChirp image are shown in Fig. [£.9] and those of the Chirp image are shown in
Fig.[4.11} In addition, 3D plots of the computed AM and FM functions are depicted
in Fig. and Fig. [£.12] T quantified the reconstruction error by computing the

mean squared error (MSE) and peak signal to noise ratio (PNSR)

MSE(f, g) — 2om=d Zenco [/ (m: 1) = g(m, )

e , (4.30)
PSNR(f, g) = 10log,, (Mrg%(ﬁ?ﬂg)) , (4.31)

where g(m, n) is the reconstructed image. The results are given in Table The
low MSE (8.523966 x 107'8) and high PSNR (170.71 dB) results confirm that the

proposed algorithms provide a perfect reconstruction AM-FM transform.

Table 4.5: Reconstruction error of the one component AM-FM transform.

| \ MSE | PSNR (dB) |
BentChirp | 8.523966 x 1018 170.71
Chirp 1.912063 x 10~17 167.18

86



r
i
i
/
i

Figure 4.9: Single component perfect reconstruction AM-FM transform of the
BentChirp image.. (a) Original bentChirp image. (b) Reconstructed bentChirp
image. (c) Computed AM function. (d) Computed phase function ¢(n). (e)
Horizontal component of ¢(n). (f) Vertical component of ¢(n).
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Figure 4.10: Single component perfect reconstruction AM-FM transform of the

BentChirp image. (a) Computed AM. (b) Computed FM field.



(c)

Figure 4.11: Single component perfect reconstruction AM-FM transform of the
Chirp image. (a) Original chirp image. (b) Reconstructed chirp image. (c¢) Com-
puted AM function. (d) Computed phase function ¢(n). (e) Horizontal component
of p(n). (f) Vertical component of ¢(n).
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(b)

Figure 4.12: Single component perfect reconstruction AM-FM transform of the
Chirp image. (a) Computed AM. (b) Computed FM field.
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4.6 Summary

I discussed the importance of 2D phase unwrapping in the context of AM-FM
image synthesis applications. I reviewed four major approaches to perform phase
unwrapping from the wrapped phase. I then discussed in detail the least-squares
phase unwrapping approach which I then used to build the perfect reconstruction
AM-FM transform. While both the spline-based approach and least-squares ap-
proach yield a perfect reconstruction FM transform, I argued for the least-squares
approach because it is more robust to changes in the FM function than the spline-
based approach. Finally, I introduced the AM-FM transform for single component
images. I provided two algorithms that can compute the AM-FM representation of
the image and then reconstruct the original image from the AM and FM functions

without errors.

I argued that that the proposed AM-FM transform should be applied to
single component images. Most practical images must be decomposed into multiple
locally narrowband components before the proposed AM-FM transform can be
applied. As a result, an image is represented as a finite sum of multiple single
component AM-FM models. I develop the multi-component perfect reconstruction

AM-FM transform in the next chapter.
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Chapter 5

Multi-component AM-FM Transform

5.1 Motivation for the Multi-component Approach

In Chapter [4], T discussed the single component AM-FM transform where an im-
age is represented by one AM function and one FM function. The AM and FM
functions are assumed to be smoothly varying functions. However, for practical
images such as Barbara in Fig. p.1fa), the single component AM-FM model is
not an appropriate representation. Mathematically, the single component AM-
FM representation of Barbara is still a perfect reconstruction model. Indeed, the
MSE and PSNR of the reconstructed image are MSE = 5.952755 x 10~!3 and
PSNR = 164.44dB. Nevertheless, the computed AM and FM functions do not
correspond with human visual perception of the image. The AM function of the
single component prefect reconstruction AM-FM transform is given in Fig. (C);
it contains texture information and oscillations. The FM is depicted with a nee-
dle diagram in Fig. While the single component FM function captures some
texture features, in many locations the needles in the FM field fail to indicate
the correct texture orientations. In certain regions, the magnitude of the needles
are also unstable due to the presence of phase discontinuities in the image. To
be meaningful, an AM-FM representation must satisfy two constraints: perfect
reconstruction and intuitive interpretation. To achieve these goals, for images like
Barbara, a multi-component AM-FM model is required. Specifically, the image

Barbara should be represented by K locally narrowband AM-FM components,

92



where K is a reasonably small integer.

() (d)

Figure 5.1: Single component AM-FM representation of the barbara image. (a)
Original barbara image. (b) Reconstructed barbara image. (c¢) Computed AM
function. (d) Computed phase function.

Let f(x) be a multi-component image. I model f(x) with X' AM-FM com-

ponents according to

ar(x) cos[pr(x)], (5.1)

=
X
I
M-
==
£
I
™)~

k=1

where fr(x) = ap(x) cos[pr(x)] is the single-component AM-FM model of image
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Figure 5.2: Computed FM function for single-component AM-FM transform of
Barbara image.

component fi(x). In order to realize the representation (|5.1)), I first decompose the

image f(x) into multiple locally coherent components fi(x). The decomposition

strategy is given in Section

5.2 Perfect reconstruction filterbank

5.2.1 Arguments for the multi-scale multi-orientation filterbank

Biological evidence has been the driving force behind many successful visual pro-
cessing algorithms. Hubel and Wiesel [55] provided a spatial mapping of the re-
sponses of cortical neurons. They found that these responses are sensitive light
slits, edges, and bars of different orientations. Campbell and Robson [21] later
suggested that the nervous system is also sensitive to selective ranges of spatial fre-
quencies. They conjectured that there might be multiple spatial frequency channels

involved in biological vision processing. Together with that of Hubel and Wiesel,
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Campbell and Robson’s work inspired the interpretation that our visual system
functions similar to a spectrum analyzer [12], meaning that the visual passband is

composed of multiple frequency and orientation selective channels.

Marcelja [82] provided a mathematical description of the responses of the
simple cortical cells. He described the receptive fields in terms of 1D Gabor func-
tions which are localized in both time and frequency. Daugman [28] extended
Marcelja’s work into 2D and proved that the 2D Gabor filters achieves the low-
bound of the uncertainty principle. Jones and Palmer [61] confirmed the validity
of the 2D Gabor filter model by comparing the Gabor responses with numerical

data acquired from measurements in cat striate cortex.

The visual cortex model where the simple receptive field is modeled by 2D
Gabor filters has been used in many important image processing algorithms. Bovik,
Clark, and Geisler [17] used a 2D Gabor filterbank to perform image segmentation.
Fleet and Jepson [35] computed the instantaneous frequency from the responses of
a 2D Gabor filterbank to estimate optical flow in images. Manjunath and Ma [76]
applied a Gabor filterbank to extract features for content-based image retrieval.
Kovesi [66] computed the phase congruence from responses of Gabor filters. The
phase congruency measure acts as a descriptor for image features such as corners

and edges.

Besides the Gabor filterbank, multiscale transforms are also products of
early human vision research. Marr and Hildreth [80] used the second derivative
of a Gaussian to perform multi-scale edge detection. Burt and Adelson [20] de-
composed an image into subbands using Gaussian filters. They then used different
coding schemes for different subbands to achieve image compression gain. Koen-

derink [65] suggested that resolution can be a parameter describing images. Re-
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cently, wavelet transform has been a popular multiresolution signal analysis tool
for many practical application such as image compression and image analysis [73].
Freeman, Adelson, and Simoncelli introduced the steerable pyramid [38/107] where
the image is decomposed into multiple orientations and frequency subbands similar

to a Gabor filterbank.

To decompose an images into coherent and localized components, I adopt
the multi-scale and multi-orientation approach. Specifically, I decompose the in-
put image into multiple components of different scales and orientations using a
modified version of the original steerable pyramid [89]. Implementation details of

the modified steerable pyramid are given in Section [5.2.4]

5.2.2 Arguments for the Steerable Pyramid

In image analysis, texture orientation provides rich information about the object
of interest. Steerable filters was originally proposed by Freeman and Adelson [3§]
to compute filtered images at arbitrary orientations from a small number of basis
elements. Simoncelli, Freeman, and Adelson [107] built the steerable filters into a
multi-scale transform to create the steerable pyramid. A fast implementation for
the steerable pyramid was later introduced by Simoncelli and Freeman [106]. The
steerable pyramid is a multi-resolution signal processing structure which enables
a coarse to fine signal analysis. The input image is decomposed into subbands,
each with frequency support lying in a finite partition of the original spectrum.
The steerable pyramid has been used successfully in many computer vision ap-
plications such as image denoising [60], texture analysis [98], and image quality

assessment [105].

The steerable pyramid provides both perfect reconstruction and orientation
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selectivity. Therefore, it satisfies the requirements of the AM-FM decomposition.
I now argue that among the prominent signal transformation and decomposition
techniques the steerable pyramid is a suitable choice. Both the steerable pyra-
mid and the Gabor filterbank possess important localization properties for image
analysis. Both are multi-scale multi-orientation transforms. An important charac-
teristic that makes them popular in image analysis is that these filters can create
translation-invariant and rotation-invariant filterbanks. In addition, these filters
allow joint time-frequency localization, even though the steerable filter are not op-
timal filter in the sense of achieving the lower bound of the uncertainty principal.
However, the Gabor filters can not provide perfect reconstruction. This limitation
prevents the use of Gabor filters in a perfect reconstruction representation. On
the other hand, the steerable pyramid does provide perfect reconstruction. The
steerable pyramid is also more effective than the traditional wavelet transform in
the context of AM-FM applications. While the traditional wavelet transform al-
lows perfect reconstruction and is complete, i.e., free of redundancy, it does not
allow multi-orientation analysis. In addition, the transform is not translation-
invariant and rotation-invariant, which are both critical when filtering operations
are defined on the subbands. It is important to point out that there are other
transforms that provide multi-scale and multi-orientation analysis such as the con-
tourlet transform [29]. The contourlet was not considered because it is originally

not translation-invariant.

5.2.3 The Original Steerable Pyramid

Steerable filters can extract important features of images such as texture orienta-

tion and edges from the oriented filters [38]. Steerability refers to the ability to
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synthesize filters at arbitrary directions as a linear combinations of a small set of
basis filters. The steerable filter is based on the multidimensional derivative op-
erator [38]. The steerable pyramid decomposes an image according to the scheme
shown in Fig. [5.3] I refer to this decomposition as the original steerable pyramid
to distinguish it from the modified version that I will develop later in the chapter.

The pyramid consists of two phases, namely the analysis phase and the synthesis

Ho(~w) Ho(w)
Ly(—w) By(—w) By(w) Lo(w)
L By-1(-w) By-1(w)H
o ) |

Figure 5.3: Decomposition scheme of the original steerable pyramid [106].

phase. The analysis filterbank is on the left of the vertical dotted line in Fig. [5.3]

while the synthesis filterbank is shown on the right of the dotted line.

-~

Let f(w) be the Fourier spectrum of the input image. In the first de-

composition level, the image is decomposed into one highpass component with

~

frequency spectrum f(w)Hy(—w), M bandpass components with frequency spec-

tra f(w)Lo(—w)Bl(—w), e ,f(w)Lo(—w)BM(—w), and one lowpass component
with spectrum f(w)Lo(—w)Ll(—w). For all subsequent levels, the decomposition
starts over with a downsample image after the application of the lowpass filter

Li(—w). In other words, the output of the previous lowpass decomposition level
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is fed into the next level as the input signal. Hence, the steerable pyramid can
be implemented with a recursion approach [106]. In the steerable pyramid de-
composition, the highpass filter Hy(—w) is applied only at the first decomposition

level.

In order to yield a perfect reconstruction transform, the filters Hy(w),

Lo(w), Ly (w), and By(w) have to meet the following three constraints [106].

1. Aliasing-free subbands:

Li(w) =0, for |w| > 7/2 (5.2)
2. Recursion constraint:
M—1
Li(w)]” + ) |Bi(w)]” =1 (5.3)
k=0
3. Perfect reconstruction:
M-1
| Ho(w)[” + |Lo(w)* || L1 (w)]* + ) [Bu(w)]*| =1 (5.4)
k=0

The frequency responses of these filters are given in [98]. The same filter
shape was also suggested earlier by Castleman, Schulze, and Wu [22]. The lowpass

filter Lo(w) has a frequency spectrum in polar coordinates given by

1 ifr <7,
Lo(r,0) = < cos [Zlog, ()] if Z<r<m, (5.5)
0 ifr >

The frequency response of the highpass filter Hy(w) is

0 ifr <7,
Hy(r,0) = < cos [g log, (ﬁ)] if 7 <r<m, (5.6)
1 ifr >,
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Finally, the oriented filter G(w) has a frequency response given in polar form by

\1M— : us s
Gk(r7 (9) — {ak’ [COS( B kﬁ)} 1 if ’9 B kﬁ‘ < 27 (57)

0 otherwise,

where 0 < £ < M — 1 indicates orientation index and the constant « is defined by

2001
a = —g (5.8)
N(20)!
I show in Appendix [A] that
M-1
|Gr(w)]” = 1. (5.9)
k=0

I now verify that the choices of Ly(w) and Hy(w) satisfy the three perfect

reconstruction constraints.

1. Aliasing-free subbands:
Let Ly(r,0) = Lo(2r,6). The spectrum of L;(r,0) is

1 ifr <17,
Ly(r,0) = § cos [5log, ()] if T <r<3, (5.10)
0 ifr> 7.

It is clear that Ly(r,0) =0 if r > w/2.

2. Recursion constraint:

Let Hy(r,0) = Ho(2r,0). Let By(r,0) = Hy(r,0)Gx(r,0).

M-1 M-
1By (w)]? = Z |Hy(r,0)Gy(r,0)|
k=0 k=0
M-1
= [Hy(r,0)? ) |Gi(r,0)
k=0
= |H(r,0)]*. (5.11)
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[ aimed to show that |Li(r,0)]* + |Hi(r,0)]* = 1, where Ly(r,6) is given
in (5.10) and Hy(r, @) is given by

0 it r <7,
Hy(r,0) =  cos [Zlog, (£)] if T <r<3, (5.12)
1 ifr> 7.

From these definitions, for r < T and r > %, we have |Ly(r, 0)|*+|Hy(r, 0)|* =

1. For T <r <%, let S=|L(r,0)|* + |Hy(r,0)[*. Thus,

~ o5 | Tlog, (2 S
S = cos {QIOgQ(W)}—i—cos [210g2<ﬁ)}
o | 2r T 5| 2r
= cos” |=logy | — ) + = logy(2)| + cos” | =log, | —
2 7r 2 2 T
2 2
= sin? [Z log, (_r)} + cos? [Z log, (_r)]
2 T 2 m
= 1 (5.13)

Therefore, |Li(r,0)|? + |Hy(r, 0)> = 1.

3. Perfect reconstruction:

The result follows directly from (5.13) that |Lo(r, 0)* + |Ho(r, 0)]* = 1.

Since the chosen filters satisfy the three perfect reconstruction constraints,
the steerable pyramid is a perfect reconstruction transform. I show the frequency
responses of Lo(—w) and Hyp(—w) in Fig. |5.4 The frequency magnitude varies
from zero to one where one is represented with white and zero is represented with

black.

While the original steerable pyramid allows perfect reconstruction, the
highpass filter Hy(—w) in Fig. is not orientation selective. As a result, it

is unsuitable for generating locally narrowband AM-FM image components. In
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(b) Ho(—w). (a) Lo(—w).

Figure 5.4: Frequency responses of Hy(—w) and Lo(—w).

Section [5.2.4] T break this highpass component into M orientation selective sub-
channels. In addition, I decompose the residual lowpass channel into M separate
sub-channels of different orientations. With these two modifications, I develop a
multi-component perfect reconstruction AM-FM image transform in Section [5.3]
The modified steerable pyramid is a true multi-scale multi-orientation decomposi-

tion.

5.2.4 The Modified Steerable Pyramid

As mentioned in Section [5.2.3] the original steerable pyramid (OSP) retains one
highpass component. Depending on the input image, the highpass component
may have pixels that exhibit multiple orientations. The single component AM-FM
model is insufficient to represent such component. Therefore, I further decom-
posed this component into M oriented components. The decomposition scheme
for the highpass component is illustrated Fig. [5.5] Compared to the original de-
composition in Fig.[5.3] the highpass component of the modified steerable pyramid

(MSP) has an additional element denoted with dotted lines. The output of the
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Figure 5.5: Highpass decomposition scheme of the MSP.

analysis highpass filter is filtered with M oriented filters G resulting M oriented

components.

~

Let f(w)Ho(—w) be the output of the highpass filter Hy(—w). Each ori-

ented component 5 (w) is computed as

~

Sp(w) = f(w)Ho(—w)Gr(—w), (5.14)

where k € [0, M —1]. I show in Appendix[A]that the M component decomposition

with filters G, 0 < k < M —1 is invertible. In other words, the highpass component

~

f(w)Hy(—w) can be reconstructed from the M oriented components without error,

Flw)Ho(~w) — JZ:f<w>Ho<—w>Gk<—w>Gk<w>
. >Ho<—w>]:[§_§ak<—w>ak<w>
_ f<w>Ho<—w>A:§_§|Gk<w>|2
= flw)Hy(~w). 1 (5.15)

The residual lowpass component, which is obtained with the lowpass filter

Li(—w) and the downsampling by a factor of two in Fig. [5.3] can also form M
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oriented components. Such additional decomposition is necessary if the residual
lowpass component contains significant image structures that a single component
AM-FM model can not fully capture. To generate M oriented components from
the lowpass residual, I applied the same decomposition scheme as for the highpass
component to the lowpass residual component. I illustrate the orientation de-
composition of the highpass component and of the lowpass component in Fig. [5.6
and 5.7 The frequency response of the original lowpass component is shown in
Fig.5.6(a), while its decomposition into eight oriented sub-channels are illustrated
in Fig. [5.6(b)-(i). The frequency response of the original highpass channel is shown
in Fig. |5.7(a) which is then decomposed into eight oriented sub-channels. These

oriented sub-channels are depicted in Fig. |5.7(b)-(i).

With these two modifications, I depict the MSP decomposition scheme in
Fig.[5.8l Compared to the OSP in Fig.[5.3], the MSP in Fig.[5.8 has two extra signal
processing boxes indicated by dotted lines. In each of these boxes, I performed an
additional decomposition step to obtain M oriented components. Together, the

MSP has 2M — 2 more filter channels than the OSP.

After decomposing the highpass channel and lowpass channel of the OSP
into 2M orientation selective sub-channels, one can choose to compute the AM-
FM representation either after the analysis step or after the synthesis step. Both
approaches yield perfect reconstruction AM-FM representations of the original
image. Specifically, one can compute the AM-FM representation from responses
of analysis filters Gj(—w) and Bj(—w) and then use the synthesis filters Gj(w)
and By (w) to reconstruct the original image. Alternatively, one can compute the
AM-FM representation from the image components fi(x) individually by setting

all but one input of the synthesis filterbank in Fig. to zero. This produces
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(g) (h) (i)

Figure 5.6: Decomposition of the lowpass channel into eight orientation selective
sub-channels. (a) Original lowpass channel. (b) 1°! component. (c) 2"¢ component.
(d) 3" component. (e) 4 component. (f) 5" component. (g) 6" component. (h)
7t component. (i) 8" component.
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(8) () ()

Figure 5.7: Decomposition of the highpass into eight orientation selective sub-
channels. (a) Original highpass channel. (b) 1*! component. (c) 2"¢ component.
(d) 3" component. (e) 4 component. (f) 5" component. (g) 6 component. (h)
7t component. (i) 8" component.
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Hy(~w) Go(-w) Go(w) Ho(w)
Gy-1(-w) Gr-1(w)

—Lo(—w) By(-w) By(w) Lo(w) —
. —Bu-1(-w) Bh-1(w) |
——_— - - ——= _

— Ly(~w) | Go(—w) Go(w) 1 Ly(w) —

|
|
| —Grn-1(-w) Gr-1(w) —:

Figure 5.8: Decomposition scheme of the MSP.

the individual component component shown in Fig. [5.9] which may be added to
obtain the reconstructed image. Here, I show that both approaches produce the
same reconstructed image. Let fop be the reconstructed image obtained from the
MSP in Fig. Fig. by setting all but the top input to the synthesis filterbank
on the right half of the figure equal to zero. Let fyo be the top output of the MSP

in Fig. 5.9 I show this equality in the frequency domain as
foolw) = Flw)Ho(~w)Go(~w)Go(w) How)
= f(w)[Ho(w)[*|Go(w)[?

= ﬁ;o(w). (5.16)

Similar calculation shows that zeroing out all but the £** input to the synthesis

filterbank in Fig. produces exactly the k" output of the MSP in Fig. .

I prefer to perform the image decomposition according to the latter ap-
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proach, i.e., performing AM-FM modeling on the image components after the
synthesis filters. This approach saves computational resources because the analy-
sis and synthesis filters of the steerable pyramid can be implemented together in

one filtering process as shown in Fig. 5.9 More importantly, if signal processing

S [Ho(w)[? |Go(w)]?> F——/fo,0
Grr—1(w)]? ———fo,m-1

| Lo(w)]? |Bo(w)* ——f10
: |By—1(w))? ———f1,m—1

| Ly (w)]? |Go(w)]? ——fno
Gt 1 (w)]2 —— F

Figure 5.9: Alternative interpretation of the decomposition scheme of the MSP.

is to be performed on the AM and FM functions, this implies that they will be
the modulating functions of the fully reconstructed image component, which re-
late well to human visual perception, as opposed to those of the unreconstructed
image components occurring in the center of Fig. which is less intuitive and

significantly more difficult to interpret.

Let N be the number of decomposition levels (scales) and let M be the

number of orientations in a level. The MSP decomposes an input image into (NN +
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1)M subcomponents. I show the frequency spectrum of the OSP and the MSP in
Fig.[5.10 where the number of scales is N = 5 and the number of orientations M =
8. These numbers are chosen to be comparable with the widely used biologically
motivated 43-channel Gabor filterbank in [49]. The range of intensities in these
two spectral plots varies from zero to one where one is represented with white and
zero is represented with black. In actuality, the frequency responses of adjacent
channels overlap to some degree. For clarity, only magnitude of the channel with

maximum response is shown at each point on the frequency plane in Fig.

The difference between between the original filterbanks and the modified
filterbank is obvious in the inner most and outer most rings of the filters in the
figure. The inner most and outer most rings of the original filterbank in Fig. a)
are each decomposed into M orientation selective channels in the modified steerable

pyramid of Fig. [5.10(b).

(a)

Figure 5.10: Steerable Pyramid filterbanks. (a) OSP filterbank. (b) MSP filter-
bank.
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5.3 The Multi-component PR AM-FM Transform

Before describing the multi-component AM-FM transform, I review the demodu-
lation process by which the AM and FM functions are computed. I first construct
the imaginary image ¢(n) from the real input image using the partial Hilbert trans-
form (pHT) described in Section . From these two signals, the complex image
z(n) = f(n) + jg(n) is created, where g(n) = Hy[f(n)] and Hy is the pHT acting

in the direction . The AM and FM functions may then be computed as [49]

a(n) = |z(n)|, (5.17)

Vo) = Im [Vz(n)] (5.18)

5.3.1 The Rotated Hilbert Transform

Because the pHT requires the direction of action to be specified, the output of the
pHT is directional dependent; different angles 6 can result in different imaginary
image ¢(n). Consequently, the computed AM and FM functions also depend on
6. The singularity in the pHT kernel can induce strong artifacts in the computed
AM and FM functions along a line perpendicular to € in the image. These are
most often manifested as amplitude rippling artifacts and potentially as significant
distortions of the FM. One of the important contributions of this dissertation is
that I devised a novel scheme for rotating the pHT axis away from the significant
spectral support of the image on a component by component basis in a multi-
component AM-FM representation. Since the channels of the modified steerable
pyramid used to isolate the image components fi(x) (or fi(n) in the discrete case)
in are highly orientation selective, an effective approach is to rotate the di-

rection of action of the pHT, which used to compute the complex extension of each
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image component, as far as possible away from the significant spectral content of
the component. This can be achieved by setting 6 in the pHT Hy orthogonal to
the orientation of the center frequency vector of the steerable pyramid channel
filter. This can be done on a component by component (e.g., channel by chan-
nel) basis to ensure that the arisen artifacts has little or no energy. Therefore,
this new approach drastically reduces impact of the amplitude rippling artifacts
and FM orientation distortions relative to a naive approach of applying a fixed
pHT (e.g., Ho) to all the channels in the steerable pyramid. This rotation results
in substantially improved correspondence between the computed modulations and
human visual perception of the image structure. This improvement is an important
advance that effectively overcomes one of the main obstacles that has precluded
the development of practical perceptually motivated signal processing directly in

terms of the AM and FM functions.

I illustrate the amplitude rippling artifacts, FM distortions, and improve-

ments obtained with the rotated pHT in Fig. [5.11] and |5.12| Fig. [5.11)(a) shows

the original Barbara image. The real image component f,; from the first oriented
filter in level four is given in Fig. [5.11(b). The computed imaginary images ob-
tained with the rotated pHT Hy and with the standard pHT H, are depicted in
Fig. 5.11[c) and (d). The spectral support of the complex images z(n) obtained
for fi1 using Hy and H, is illustrated in Fig. [5.11f(e) and (f), respectively. While
the differences between the two imaginary images may appear subtle, the arti-
facts that are induced in the corresponding AM and FM functions are different
in Fig. [5.1(c)-(f). The amplitude rippling artifacts induced by H, are obvious,
whereas they are entirely suppressed in the AM computed with the Hy. In addi-

tion, the direction 0 of the pHT also affects the computed FM. Observe that the
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FM field computed with Hg in Fig. [5.12{f) shows needles pointing to wrong texture
orientations. Similar examples of Mandrill image appear in Fig. and [5.14]

5.3.2 The Multi-component AM-FM transform

Equipped with the PR filterbank discussed in Section and the single com-
ponent PR AM-FM model described in Sec. [£.5] I defined the lossless multi-
component AM-FM transform (xAMFM). The xAMFM consists of the analysis

(forward) transform and the synthesis (backward) transform.

Fig. [5.15 shows the block diagram of the analysis xAMFM. First, the input
image f(n) is decomposed into K" components using the modified steerable pyramid
described in Section[5.2.4] I then compute the AM function ay(n) and FM function
Vi from each component f; using the perfect reconstruction FM demodulation
algorithm described in Section[4.5 Fig.[5.15]indicates that the whole demodulation
process of K components can be done in in parallel. The overall complexity of the
analysis xAMFM is O(N log(N)), where N is the larger of the horizontal and

vertical image dimensions.

The synthesis transform is shown in Fig. [5.16] I reconstruct the original
real image component fi(n) from the AM and FM functions according to the
synthesis algorithm described in Section .5l In particular, the phase function
©(n) is reconstructed by integrating the FM functions. Finally, I obtain the original

image as the linear sum of K component according to
K K
fm) =) fin) =) ai(n)cosp(n)]. (5.19)
k=0 k=0

Since each component fi(n) is perfectly reconstructed as described in Sec-

tion [4.5 the reconstructed image from K components is identical to the original
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(e) (f)

Figure 5.11: Barbara: imaginary image computed with rotated pHT and with H,.
(a) Original Barbara image. (b) Component fy1. (c) g4 with rotated pHT. (d)
qs1 with Hy. (e) Rotated pPHT. (f) pHT with 6 = 0.
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Figure 5.12: Barbara: computed AM-
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(e) (f)

Figure 5.13: Mandrill: imaginary image computed with rotated pHT and with H,.
(a) Original Mandrill image. (b) Component fi1. (c¢) g4 with rotated pHT. (d)
qs1 with Hy. (e) Rotated pPHT. (f) pHT with § = 0.
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Figure 5.14: Mandrill: computed AM
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image. I measure error between the reconstruction error in terms of the mean
squared error (MSE) and peak signal to noise ratio (PSNR). Definitions for these
two measures are given in (4.30) and (4.31). The test images include standard

grayscale test images and some color images from the Kodak image library [37].

The reconstruction errors statistics are shown in Table [5.11

Table 5.1: Reconstruction error of the multi-component AM-FM transform.
| | Dimension | PSNR (dB) | MSE |

Lena 512x512 | 80.903801 | 4.874747 x 10~%
Barbara 512x512 74.902187 | 1.957273 x 10793
Boat 512x512 | 78.522112 | 9.138380 x 10~%
EinSlack 375x500 | 78.706215 | 8.085571 x 10~
Fingerprint | 512x512 | 74.680474 | 2.213262 x 1079
Flintstones | 512x512 | 73.169935 | 3.133912 x 109
House 256x256 | 84.772617 | 1.903418 x 10~%
kodim01 512x768 | 74.077160 | 2.543105 x 10~
kodim05 512x768 | 73.993926 | 2.592315 x 10~
kodim08 512x768 70.226141 | 6.172573 x 1079
kodim17 768x512 | 78.422051 | 9.351371 x 1079
kodim22 512x768 | 77.991403 | 1.032619 x 10~
kodim23 512x768 | 79.323793 | 7.598032 x 10~%*
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5.4 Summary

In this chapter, I argued that the single component AM-FM model is not sufficient
to represent most images of practical interest. A multi-component approach is
required to fully capture important image features in a way that is natural, in-
tuitive, and corresponds well to human visual perception. In addition, I claimed
that a multi-scale multi-orientation filterbank such as the steerable pyramid is a
suitable technique for decomposing an image into meaningful, locally narrowband

components for the AM-FM representation.

To integrate the original steerable pyramid into the AM-FM transform,
I modified the original design to create a true multi-scale and multi-orientation
image decomposition. The modified filterbank is similar in many respects to the
perceptually motivated Gabor filterbank, particularly with regards to its joint time-

frequency localization properties.

I overcame one of the most important problem associated with the partial
Hilbert transform (pHT). The computed AM and FM functions generally contain
artifacts if the image component has frequency content perpendicular to the pHT
filtering axis. I effectively solved this problem by rotating the filtering axis of the
pHT on a component by component basis. Finally, I defined the multi-component
AM-FM transform (xAMFM) and showed quantitatively that the xAMFM pro-

vides perfect reconstruction.

With the perfect reconstruction xAMFM, the door is open to begin devel-

opment of practical processing operations in the modulation domain.
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Chapter 6

AM-FM Image Processing

6.1 Motivation for Transform-Domain Filtering

Discrete image filters are usually designed to operate on the pixel grey levels inten-
sities, which I refer to as pixel domain processing. There is a rich and established
theory of linear shift-invariant (LSI) filters which may equivalently be implemented
in the frequency domain by multiplication of the Fourier transforms. In the pixel
domain, LSI filtering is implemented by the sliding window technique. The filter
output at a pixel location (m,n) is obtained by computing the dot product of the
filter kernel and the pixel values lying under the kernel support centering at (m, n).
The filter kernel is translated to every pixel in the image in order to compute the

full output image.

For any given signal processing task, an important question is whether filters
operating in another domain yield better performance than a direct pixel domain
implementation. The answer depends on the applications. There are applications
where transform domain approaches offer significant advantages compared to the
pixel domain. For example, higher compression rates can be obtained when the
compression takes place in the transform domain such as those associated with the
discrete cosine transform (DCT) [126] or wavelets [3]. In JPEG image compres-
sion, the image is first transformed to the DCT domain on a block by block basis

where each block is encoded in terms of its quantized and entropy coded DCT
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coefficients. In the DCT domain, high value coefficients are more important than
low value ones. Therefore, compression gain is achieved by allocating fewer bits for
small coefficients in the encoding process. In addition, the selection of a suitable
transform affects the final result. For instance, image coding in the wavelet domain

generally yields a higher compression rate than that of the DCT domain [111].

Wavelet image denoising is another example of transform-domain applica-
tions that achieves state of the art performance. First, the noisy image is trans-
formed from the pixel domain to the wavelet domain. The wavelet coefficients
are then thresholded because low coefficients tend to correlate with noise [30]. Ad-
vanced statistical techniques such as wavelet coefficient modeling [99] and transform-

domain collaborative filtering [27] can improve the denoising performance.

The main advantage of transform domain approaches over pixel domain
approaches is that transform domain techniques can capture important signal fea-
tures that are not salient in the pixel domain. Bovik, Clark, and Geisler [13]
used the AM-FM model to capture nonstationary image features such as texture
orientations and texture granularity. They represented an image with a multicom-
ponent AM-FM image models [14,149]. Given the image f(x), a computed
AM-FM model consists of estimates of the K AM functions ax(x) which provide a
dense local characterization of the local texture contrast and the K FM functions
Vr(x) which provide a dense characterization of the local texture orientation and

pattern spacing.

Such models have been used with great success in a variety of image analysis
applications, including texture segmentation, 3D shape from texture, texture-based
stereopsis, fingerprint classification, content-based retrieval, and regeneration of

occluded and damaged textures [52], as well as for infrared target tracking [51] and
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in the analysis of 2D spectrograms of human speech signals [32]. Prior to the work
described in this dissertation, however, they have been considerably less successful
in applications requiring image synthesis in addition to analysis (to the best of my
knowledge, reconstruction from a computed AM-FM model has been attempted
previously only in [48,49,/52}(72,{108,109]). The reason is that some means must be
devised for decomposing the image into a sum of components that are locally
coherent [14,49] and for isolating these components from one another on a jointly
localized basis in space and spatial frequency prior to demodulation. Because of
their excellent joint localization properties, banks of Gabor or Gabor-like bandpass
filters have been used almost universally for this purpose. Unfortunately, the
properties that make these filters attractive, viz., localization and smoothness of
the impulse and frequency responses simultaneously, also imply that they cannot

provide perfect reconstruction [52].

While the continuous Gabor filter is optimal in the sense of attaining the
low bound on joint localization of the time-frequency uncertainty principle, it is
not invertible because it fails to admit compact frequency support. Hence, it is
not suitable for image synthesis applications. The steerable filters, despite being
suboptimal relative to the Gabor filters with respect to joint localization, offers per-
fect reconstruction while still providing excellent joint time-frequency localization.
These properties are crucial in AM-FM image synthesis applications. Therefore, I

incorporated the steerable filters in the xAMFM as described in Chapter [5]

I illustrate the AM-FM image processing framework in Fig.[6.1] The input
signal f is first decomposed into K component f, 1 < k < K. Demodulation
algorithm is performed on each component f; to compute the AM function ay

and FM function V. Upon completion of the demodulation step, the image f
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Figure 6.1: AMFM-based Image Filtering.

has been transformed into the modulation domain, i.e., it has been represented
with K AM-FM components. I now define the AM-FM image processing block
in Fig. [6.1] where the AM and FM functions are filtered with modulation domain
filters, the design of which is the main subject of this chapter. Subsequent to
AM-FM filtering, the processed image component fk is reconstructed from the
filtered modulating functions a; and V. The overall output image is computed
as a linear sum of the K reconstructed components fk For applications using the
FM, the FM function is usually represented in polar form Vg (n) = [rx(n) 6, (n)],
where ri(n) = |Vyg(n)| is the frequency magnitude of the FM vector and 0 (n) =
argVor(n) is the orientation of the FM vector.

I divide the discussion of AM-FM image filters into two major classes,
namely the AM-based filters and the AM-FM filters. The AM-based filters in-
teract primarily with the AM functions, while the AM-FM filters operate on both

the AM and FM functions. I compare the effectiveness of the AM-based and AM-

FM filters with traditional LSI filters in several illustrative image filtering tasks.
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6.2 AM-based Filters

ag
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Figure 6.2: AM-based Image Filtering.

I define the AM-based filters to be operations where the AM functions
are filtered. A block diagram of AM-based filtering for the component fi(n) is
illustrated in Fig.[6.2] In the AM-based scheme, the FM functions are not modified.
The FM is used as an auxiliary measurement to provide texture orientations and
frequency content that may be used to determine what processing is applied to the
AM functions and at what pixels. For each component fi(n), I apply the same
filter G to the AM function ax(n). The output of this filtering process is denoted
ar(n). The phase p(n) is obtained by integrating the FM Vg (n). Notice that
the frequency and phase are not affected by the filtering process because the FM
functions were not modified. The processed component f; is then reconstructed

according to

fr(n) = a(n) cos[iox(n)). (6.1)

6.2.1 Orientation Selective AM Filtering

Orientation Selective Attenuation of Structure in Synthetic Image

A synthetic radial chirp image is shown in Fig. (a). By construction, the AM
is constant and the phase is quadratic along radials emanating from the center of
the image. The signal processing goal is to attenuate nonstationary structure that

is oriented at odd multiples of w/4. As a baseline for comparison, I implement an

LST notch filter with frequency response given in Fig. [6.3(b). The nonlinear AM
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notch filter is given by

o Be(x)ar(x), dk(x) < /16,
() = {ak(x), otherwise, (6.2)
Vor(x) = Vir(x), (6.3)

where 0 (x) = |(|0k(x)| — 7/4)| is an amplitude scaling factor equal to the radian

angular distance between 6y (x) and £7/4.

The output of the LSI filter is shown in Fig. [6.3c) and exhibits undesir-
able artifacts as expected: the LSI filter attenuates Fourier components on a spa-
tially global scale, which achieves the desired result but also degrades the subtle
constructive and destructive interference between Fourier components that cre-
ates the image structure at orientations other than odd multiples of 7/4. This is
demonstrated by Fig. [6.3|(e), which gives the residual between the original image
in Fig. [6.3[a) and the LSI processed image in Fig. [6.3(c). On the other hand,
the AM-based filter is able to produce the desirable output which is shown in
Fig.6.3(d). The residual image in Fig.|6.3(e) indicates that texture components at
odd multiples of 7/4 are attenuated. Moreover, because the AM filter is capable
of attenuating oriented structure on a spatially local basis, it delivers a result that
is free of the undesirable artifacts seen in the LSI filter output. In contrast, the
LSI filter tends to spread the filtering effects to a broader range of orientations and

frequencies as seen in the residual image in Fig. |6.3(e).

Orientation Selective Attenuation of Structure in a Natural Image.

The natural wood grain texture image Tree given in Fig. |6.4{a) bears strong sim-
ilarity to the synthetic chirp in Fig.[6.3(a). Here, I repeat the texture attenuation

experiment on this image, but with a more aggressive notch of half-width 7/8 in
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Figure 6.3: AM-based selective orientation attenuation. (a) Original chirp image.
(b) Notch filter response. (c¢) LST result. (d) AM-based result. (e) LSI residual.
(f) AM-based residual.

126



order to attenuate a wider band of orientations. The result is given in Fig. |6.4{(b)
where it may again be seen that the perceptually-based signal processing goal has
been achieved. The effect of this AM-based filtering is clearly visible in the left
upper and lower quadrants of the image. Interesting subtle effects are also present.
For example, careful examination of the center of the original image in Fig. [6.4(a),
just to the right of the knot of the wood grain, reveals a small “hook” that is
oriented along the main diagonal. Consistent with the processing goal, this hook

is smoothly but totally obliterated in the result image of Fig. [6.4(b).

Spatially Selective Removal of Oriented Structure from a Natural Image.

The signal processing goal is to remove the bands from Lena’s hat. The original
image is given in Fig.|6.4(a). Let X denote the interior of the black rectangle shown
superimposed on Fig. [6.4{(b). AM-based filtering is applied to the components
fr(n), but only for n € X. With §x(n) = |0x(n) — 7/4|, the AM-based filtering

operation is given by

|0, dg(n) <7m/8andn e X,

x(n) = { ap(mn), otherwise (6-4)

and V@r(n) = Vpr(n). As shown in Fig. [6.4(c), the perceptually-based signal
processing goal is achieved with a smooth, natural appearance. There are a few
unwanted artifacts that result from the fact that we were quite imprecise in the
specification the spatial region X desired for processing. For example, the central
portions of the upper and lower edges of the hat brim were attenuated, as were
certain orientations in the upper portion of the feather, and a slight shadow was
induced on Lena’s forehead. Interestingly, the shadow appearing on the upper

portion of the hat is virtually unaffected. All of the unwanted artifacts could be
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avoided by specifying the region X more precisely, but doing so would require

increased effort in designing the filter.

Figure 6.4: AM-based texture removal. (a) Original Lena. (b) Operating window.
(¢) AM-based texture removal.

6.2.2 Frequency Selective Filtering

In addition to orientation selective processing, AM-based filters can also be used
to perform spatially local amplification and attenuation based on magnitude fre-
quency. To isolate a certain frequency range, I design the AM-based bandpass

filter according to

5= { 0% e 63
Vor(x) = Vipr(x), (6.6)

where rj(x) is given in units of cycles per pixel.

I apply the AM-based bandpass filter to the synthetic chirp image. The
filtering result is given in Fig. The image processing task is to isolate a circular
ring from the original chirp image in Fig. [6.5(a). The frequency response of an
appropriate LSI bandpass filter is given in Fig. [6.5(b). The cutoff frequencies were
set to 0.2 and 0.35. The AM-based result is shown in Fig. |6.5(d). The AM-based
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filter is able to isolate a ring of the original chirp image. I construct an equivalent
LSI filter in the Fourier domain and depict its filtering result in Fig. [6.5(c). The
LSI filter again spreads the filtering effects to a broader range of frequencies as
seen in Fig. [6.5(c). The residuals of the LSI filter and the AM-based filters are
shown in Fig. [6.5|e) and (f).

6.2.3 Selective Contrast Enhancement

Simplistic AM-based image enhancement is illustrated in Fig. [6.6l The original
image is given in Fig. [6.6(a), while the image in Fig. [6.6(b) was obtained by
applying a low-pass linear blur and adding Gaussian white noise. As a baseline
comparison, the result of a naive high-pass LSI filter approximating the pseudo-
inverse is shown in Fig. [6.6{c). The design concept for the AM-based enhancement
filter combines elements similar to both wavelet shrinkage and unsharp masking.
The noise power is distributed widely throughout the steerable pyramid channels
resulting in a relatively small contribution to the individual AM functions ay(n),
whereas the coherent image structure tends to be jointly localized resulting in
strong contributions to the AM functions, particularly in the vicinity of edges. I
apply a simple threshold to the amplitude modulations computed from Fig. [6.6]a)
to attenuate the noise, reconstruct, and then apply the same high-pass filter that
is used in Fig. (C) to generate a high-pass mask. This mask is added back to
the degraded image in Fig.[6.6[b) to obtain the enhanced/restored result shown in
Fig.[6.6[(d). We can see that the AM-based filter is able to attenuate the noise and
enhance edges in the image. The pixel domain filter enhances the blurry image,

but it also amplifies the noise.
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Figure 6.5: AM-based bandpass filter. (a) Original chirp image. (b) AM-based
bandpass filter. (c) LSI result. (d) AM-based result. (e) LSI residual. (f) AM-
based residual.
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Figure 6.6: AM-based image enhancement by unsharp masking. (a) Original Lena.
(b) Linear blur plus additive noise. (c¢) LSI highpass result. (d) AM-based enhance-
ment result.
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6.2.4 AM-based Image Fusion

Elementary examples of AM-based image fusion based on local contrast are given
Fig. [6.7 The main idea is that sharp intensity edges imply high contrast and
are associated with local AM values ay(x) that are relatively large, whereas defo-
cused surfaces are associated with lower contrast and AM values that are relatively
smaller than those in sharply focused or edge-rich regions. Thus, for a problem like
the well-known pair of clock images shown in Fig. |6.7(a) and (b), a fused image
showing both clocks in focus can be obtained as follows. I first compute a multi-
component AM-FM model for each of the two input images shown in Fig. [6.7((a)
and (b). For each pixel ﬁ(x) of AM-FM image component k in the fused image,
we take ax(x) and V@i (x) directly from the input image for which the product
ay(x)|[Vr(x)|? is larger on a pixel-by-pixel basis. The fused image result is given
in Fig. [6.7(c). An identical AM-based algorithm was used to obtain the result
shown in Fig. [6.7(f) by fusing the CT image of Fig. [6.7(d) and the MR image of
Fig.[6.7(e) (CT and MR images courtesy of imagefusion.org [53]).

Quantitative evaluations of the AM-based image fusion technique using
three objective assessment metrics are shown in Tab. [6.1], Tab. and Tab. [6.3
Here, I compare the performances of the AM-based image fusion against the well-
known multi-scale image fusion techniques such as the Laplacian pyramid (LP)
fusion and the wavelet fusion |69]. Best results are emphasized with bold-face num-
bers. Simulation results indicate that the AM-based image fusion technique gen-
erally does not perform as well as the Laplacian fusion technique and the wavelet
fusion technique. The AM-based fusion only performs better than the other two
techniques in a three cases. However, the current AM-based fusion scheme is pixel-

wise and it does not exploit orientation information, which is an important feature
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Figure 6.7: AM-based image fusion. (a) Clock A. (b) Clock B. (c¢) Fusion of (a)
and (b). (d) CT image. (e¢) MR image. (f) Fusion of (d) and (e).
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of the AM-FM image representation. My future work will be in the direction of

incorporating orientation information into fusion algorithms.

Table 6.1: Objective performance of image fusion techniques measured by the
mutual information metric [101].

’ ‘ Wavelet ‘ LP ‘ AM-based ‘
clock 0.577370 | 0.630707 | 0.610730
tiffany 0.669841 0.64423 | 0.671626
lena 0.747307 | 0.72831 0.704051
medical 0.413435 | 0.365575 | 0.305687
navigation | 0.242832 | 0.25451 0.239581

Table 6.2: Objective performance of image fusion techniques using the objective
pixel-level image fusion metric |128§].

’ \ Wavelet \ LP \ AM-based ‘
clock 0.731238 | 0.754339 | 0.742081
tiffany 0.735087 | 0.739462 | 0.738636
lena 0.741060 | 0.739007 | 0.728825
medical 0.692751 | 0.789651 | 0.716454
navigation | 0.613523 | 0.697676 | 0.640881

Table 6.3: Objective performance of image fusion techniques measured by the
SSIM metric [127].

’ \ Wavelet \ LP \ AM-based ‘
clock 0.490198 | 0.509316 | 0.502113
tiffany 0.531843 | 0.535119 | 0.534410
lena 0.548370 | 0.549710 | 0.544959
medical 0.301499 | 0.279124 0.261661
navigation | 0.198293 | 0.295320 | 0.417149

6.3 AM-FM Image Filtering

The AM-FM filters perform signal processing by operating on the computed AM
a(n) and FM functions Vy(n). A schematic diagram for the FM-based filtering
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is illustrated in Fig. [6.8] In this filtering scheme, the FM function Viy(n) is
modified by the filter G, producing V@, (n). The modified phase image, p(n), is
reconstructed from the filtered FM using the least squares integration approach
discussed in Chapter @l The AM may also be changed in general. The output

image is then obtained as

fe(n) = ax(n) cos[pp(n)]. (6.7)
fi—=| DEMOD [ G [~ RECON ]

Figure 6.8: FM-based Image Filtering.

Let 1x(n) be the reconstructed least-squares phase function. In Sec. m,
the least-squares phase ¢ (n) can be different from the true ¢(n). The reason is
that 1 (n) is obtained from a least-squares optimization approach. In other words,
¥r(n) is generally inconsistent with the principle phase values arccos[fy(n)/a(n)]
obtained from the original image components at some pixels. Sivley and Havlicek |109]

defined the function pg(n) according to

er(n) = Yp(n) + pi(n), (6.8)
where the phase congruence term pi(n) is chosen to enforce agreement between
the principle values of 1;(n) and the principle values of ¢ (n).

The phase model is generally satisfactory for performing image synthe-
sis on the discrete lattice Z? — even after AM-based image filtering or elementary

FM-based processing have been applied. However, the phase congruence term
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pr(n) generally fails to be smooth and, consequently, the presence of pg(n) in (6.8)
tends to introduce undesirable artifacts in the reconstructed image when sophisti-
cated FM filtering or geometric transformations requiring interpolation to a new
spatial sampling lattice are applied. These artifacts arise because the integrated
phase pr(n) contains jumps that are introduced to the phase by the phase con-
gruence term pg(n). These discontinuities subsequently generate artifacts in the

filtered output [88].

[ ameliorate the phase congruence problem by removing px(n) out of each

term in to define new generalized AM functions Ajx(n) and Agx(n) through

fr(m) = ax(n) cos[pr(n)] = ar(n) cos[yy(n) + pj(n)]

= a(m) coslps(n)] cos|yi(n)] — ax(n) sin|p(n)] sin[vy(n)]

A1k(n) Azp(n)
Aji(n) cos[tg(n)] + Agk(n) sinfyy(n)]. (6.9)

In order to define modulation domain signal processing operations capable of de-
livering filtered images that are free from undesirable phase reconstruction arti-
facts, AM-only processing should be applied to the (non-generalized) amplitude
modulation functions ax(n). However, for joint AM-FM filtering, the generalized
AM functions Ajx(n) and Agg(n) should be processed. FM processing should be
applied only to the generalized FM functions Vi, (n) and not to Vig(n). Sub-
sequent to such processing, the generalized AM and FM functions can be inter-
polated to synthesize image samples on a modified sampling lattice as required to
implement geometric image transformations. I collaborated with Adrian Campell,
Johnathan Williams, and Murad Ozaydin in developing this AM-FM filtering tech-

nique [88,/92]. This AM-FM filtering is a a new and largely unexplored area. For
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the remainder of this chapter I will restrict my attention to only on class of AM-FM

filters which I have investigated, the AM-FM geometric image transformations.

6.3.1 Translation

The discrete image f(n) is modeled as f(n) = Zgzl ax(n) cos[pr(n)]. The filtered

image translated by the displacement vector u = (ug, v) is given by
N

f(n—u) = Z ax(n — u) cos[pr(n — u)], (6.10)

k=1

where u € R?. Therefore, the modulation domain translation operation can be
achieved by translating ax(n) and ¢x(n) by u, which generally yields samples that
fail to lie on the discrete sampling lattice of the original image f(n). Consequently,
I apply bicubic interpolation to the resulting generalized AM and FM functions to

synthesize new image samples on the translated sampling lattice.

An illustration of the image shifting is shown in Fig. [6.9] The original
image Barbara is shown in Fig. (a). The image processing goal is to shift the
original image by u = (14.01,27.01) where (0,0) is the top left of the image.
Fig. (b) is result of the shift operation in the pixel domain. The AM-FM result
is given in Fig. (C) It is very difficult to spot any differences between the two
approaches visually. Similar experiments are given for the fingerprint image in
Fig. [6.9(d) with u = (34.70,50.30). The outputs of the pixel domain approach
and the AM-FM approach are shown in Fig.[6.9(e) and (f). The boat example has
u = (24.50,37.70).

6.3.2 Scaling

Here, scaling refers to magnification or “zoom”. The modulation domain scaling

operation is designed to admit positive real scaling factors. For example, if the

137



Figure 6.9: AM-FM image shift. (a) Original Barbara image. (b) Spatial shift. (c)
AM-FM shift. (d) Original fingerprint image. (e) Spatial shift. (f) AM-FM shift.
(g) Original boat image. (h) Spatial shift. (i) AM-FM shift.
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image is enlarged by a factor of two, the magnitudes of the FM frequency vectors in
the enlarged image must be decreased by two. Consequently, to produce consistent
modulation domain image scaling operations, I design an AM-FM filtering scheme
to accommodate changes of the FM function t;(n). The modulation domain
scaling operation is depicted in Fig. m The AM signals A;;(n) are first up/down
sample by a predefined positive real factor L and then are interpolated by either
bilinear or bicubic interpolants. The FM signal Vi, (n) is also up/down sampled
by the predefined factor L. This modified gradient signal is then compensated
by 1/L in order to preserve the texture structure spacing and orientations. The
modified gradient is then integrated to find the modified phase function Jk(n) As
the processed gradient field szk(n) may not be conservative, the modified phase is
computed by performing the least squares phase unwrapping method proposed by
Ghiglia and Romero [42]. The scaled output signal is then given as a summation

of the filtered components fi(n).

Alk—> up/down L Interp
1 cos( )
Vi, —> up/down L (X Interp | j —fk
sin()
Asj—s| up/down L Interp

Figure 6.10: FM-based Image Scaling.

An illustration of AM-FM image magnification by a factor of two is shown
in Fig. 6.11 The original image Barbara, Lena, and boat are shown in the first

column in Fig.[6.11[(a),(d),(g). The second column shows the spatial domain image
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magnification using the standard bicubic interpolation technique. The last column

depicts the AM-FM image magnification results.

While it is difficult to see the difference between the spatial domain tech-
nique and the proposed technique visually, a quantitative evaluation of these two
approaches is given in Table. [6.4f The bicubic interpolation is a classical image
magnification method [62]. I restrict the comparison to the upsampling operation
because of the lack of ground truth data for the rotation and translation opera-
tions. I measure the performance of the two techniques in terms of the peak signal
to noise ratio measure (PSNR) and the perceptually motivated structural
similarity index (SSIM) index [127]. For the upsampling operation, the proposed
algorithm outperforms the classical bicubic interpolation in the PSNR and in the

SSIM.

Table 6.4: Comparison of the upsampling operation.

PSNR (dB) SSIM
Bicubic | AM-FM | Bicubic | AM-FM
Boat 33.488 | 33.697 | 0.765 | 0.799
Barbara 32.091 | 32.179 | 0.716 | 0.728
Lena 35.018 | 35.214 | 0.852 | 0.862
Fingerprint | 30.362 | 30.488 0.864 0.869

6.3.3 Image Rotation

A classical image rotation involves a rotation of the image grid and an interpolation
scheme. In the modulation domain, a rotation on the image grid will also rotate

the orientation of the FM function Vi, (n). In order to preserve the visually
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Figure 6.11: AM-FM image 2x zoom. (a) Original barbara image. (b) Spatial
zoom. (c) AM-FM zoom. (d) Original Lena image. (e) Spatial zoom. (f) AM-FM
zoom. (g) Original boat image. (h) Spatial zoom. (i) AM-FM zoom.
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Figure 6.12: FM-based Image Rotation.

important texture structure and orientation, I implement the orientation change

of the gradient field by multiplying with a rotation matrix O,.

The modulation domain image rotation operation is depicted in Fig. [6.12]
The rotation operator R, is first applied to the AM signals A;,(n). The rotated
AM signals are then interpolated to find values lying on the pixel lattice. The
rotation operator R, is also applied to the gradient field Vi, (n) and then multi-
plied with the rotation matrix O,. Therefore, the rotation operation for the FM
signal Vi, (n) is defined as R,O,Vr(n). Similar to Section the modified
FM function szk is then integrated to find the modified phase @Zk by solving for
the least squares solution of the phase unwrapping problem. Finally, the rotated

output image is computed as a linear sum of the rotated components fk(n)

In addition, for the rotation of the FM field, I showed that the counter

rotation operator O, commutes with the lattice rotation operator R,:

Theorem: R,0,V¢i(n) = O, R.Vi(n).
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Proof.

R.OU
Ra@avw(n) = {'R OV
R

{ cos(a)U(n) + sin(a)V (n) ]
@ (n) + cos(a)V(n)

)—l—sin( )R V(n ]
n) + sin(a@)R,V(n

( (n)
[ cos(a) sin((a)H . n”

a Il

]

I illustrate the AM-FM image rotation in Fig.[6.13] Test images are Barbara
in Fig.|6.13((a), boat in Fig.[6.13(d), and Lena in Fig.[6.13(g). The original Lena is
rotated clockwise 27°. The pixel domain rotation of Lena is shown in Fig. |6.13{(b)
and the AM-FM rotation result is depicted in Fig.|6.13(c). Visually, the two results
look the same. Similar to the scaling, quantitative evaluation is not given because
the ground truth values are not available. Rotation results of the boat image and

the Lena image are shown in Fig. |6.13(e),(f) and Fig.|6.13(h),(i), respectively.

6.4 Summary

For the first time, I introduced a systematic, high fidelity practical framework
for AM-FM image processing. The AM-FM filters offer intuitive designs with
fewer parameters and specifications compared to the traditional LSI filters. I

provided two classes of AM-FM image filters, the AM-based and AM-FM filters.
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Figure 6.13: AM-FM image rotation. (a) Original Barbara. (b) Spatial domain
rotation 27°. (¢) AM-FM rotation 27°. (d) Original boat. (e) Spatial domain
rotation 45°. (f) AM-FM rotation 45°. (d) Original Lena. (e) Spatial domain
rotation 65°. (f) AM-FM rotation 65°.
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I designed AM-based filters for selective orientation filtering, selective frequency
filtering, image enhancement, and image fusion. In addition, I designed the AM-
FM geometric image transformation including translation, rotation, and scaling.
The experimental results indicate that the AM-based can achieve filtering results
that are difficult or impossible to achieve with LSI filters, while the AM-FM image
transformations deliver result with fidelity comparable to the pixel domain. For

the image magnification operation, the AM-FM filter outperforms the LSI filter.

The proposed AM-FM filters are important as they establish the foundation
for future research in high fidelity FM image processing research. The design of
filters in the AM-FM framework is intuitive and requires fewer parameters than
traditional filter design methods. In addition, the framework produces results that

correspond well with human visual perception.
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Chapter 7

Extended Results of the xAMFM

In this chapter, I described three extensions of the xAMFM for image analysis
applications. These extensions are discussed in a separate chapter because they
do not fit in the modulation domain image filtering framework. They are analysis
applications and do not require the AM-FM synthesis transform. Therefore, I
discussed each extension separately. In particular, I first motivate the problem,
then discuss the use of the xAMFM for that problem, and finally evaluate the
effectiveness of the proposed approach with experiments. Readers will see some

equations and concepts discussed in previous chapters.

7.1 Coherent Texture Decomposition

Decomposing a complicated signal into perceptually meaningful components is
an important problem that has received increasing attention recently [4}[74}/113,
125]. Well-known examples include the cocktail party speech separation problem
and image restoration from multiple sub-image sources. Here, I am interested in
the image decomposition problem where a texture image is broken into multiple
visually meaningful components, e.g., simple and locally coherent constituents.
Unfortunately, such decomposition is an ill-posed inverse problem [4,/113]. Starck,
et al. [113] illustrated that a K component image of N pixels will require N x K

unknowns to be solved. Therefore, prior knowledge of the signal components should
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be incorporated, e.g., signal statistics, image models, and sparsity.

Early approaches used multiresolution techniques to describe the image as
a sum of localized parts. Daugman [28] proposed a human visual system (HVS)
inspired Gabor filterbank to decompose an image into smooth and localized compo-
nents. The computed components are band-pass and orientation selective. Alter-
natively, Simoncelli and Freeman [38] introduced the steerable pyramid for image
analysis. The steerable pyramid decomposes an image into multiple scales and mul-
tiple orientations. In the past two decades, wavelets have been used extensively in
denoising and compression applications. Wavelets offer good time-frequency local-
ization and a compact representation [73]. While these techniques are essential in
many image processing applications, they lack specific models for coherent texture
components. Consequently, the decomposed components obtained by these anal-
ysis techniques frequently fail to correspond well with human visual perception of

the image.

Recently, Meyer [84] pioneered a nonlinear partial differential equation
(PDE) approach to image decomposition. In this formulation, an image is broken
into a sum of two parts: a cartoon part and a texture part. The cartoon describes
a homogeneous region with sharp boundaries, and is modeled by a bounded vari-
ational function. The texture part is modeled by certain energy norms. Both
of these components are computed simultaneously by a total variation minimiza-
tion framework [4,/125]. Similar to Meyer’s cartoon and texture decomposition
idea, Starck, et al. [113] formulated an image decomposition using a combination
of basis pursuit denoising and total-variation regularization. They used two op-
timized and sparse dictionaries, one for the cartoon and one for the texture, to

extract image components. Even though the two component image decomposition
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model delivers meaningful results, this approach does not generate locally coherent

components.

In contrast to the two component image model approach, cartoon and tex-
ture, this dissertation has developed techniques to decompose images into sums
of multiple locally narrow-band components. Each component is represented with
smoothly varying amplitude modulation (AM) and frequency modulation (FM)
functions, thereby explicitly computing AM-FM image models in the modulation
domain. A Kalman filtering framework was developed in [48] to track texture
multi-components spatially across the channels of a Gabor filterbank and extract
them. While this approach did not prove sufficiently robust to enable reliable
analysis of general images, it should be noted that extended Kalman filtering
was applied successfully in [72] to track multicomponent amplitude and frequency
modulations temporally in human speech. The spatially adaptive Kalman filters
of [48] were replaced by a static global decomposition into components based on
the filterbank structure in [49], which led to a robust and readily computable mul-
ticomponent image model. However, such decomposition precluded the possibility
of perfect reconstruction and produced components that were less strongly con-
nected to human visual perception. Evangelopoulos and Maragos [31] also used
the modulation domain model for image decomposition, but their approach was

limited to the two component decomposition model, cartoon and texture.

In this section, I propose a novel iterative algorithm for decomposing a
texture image into homogeneous textural patches that are locally coherent and
visually meaningful. I introduce a new quantitative modulation domain coherency
measure. The components are iteratively extracted by a greedy algorithm that is

similar to matching pursuit [74]. The experimental results show that the extracted
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components are locally coherent and agree well with human perception.

7.1.1 Modulation Domain Texture Decomposition

Let f(x) be an image defined on R%. The modulation domain image model for

f(x) is given by

Fx) =Y fulx) =Y a(x) cosfp(x)]. (7.1)

Let m,n € N and let I(m,n) contain the samples of the continuous image f(x)
in (7.1). Let I;(m,n) contain the samples of component ¢;(x) in (7.1). Then
Ix(m,n) admits a modulation domain representation I'y = [Ax(m,n) Ri(m,n) Ox(m,n)]
which may be computed using the spline-based demodulation framework given
in [109] or in Chapter. [dl Ry(m,n) and argVey(m,n) are the polar representa-
tion of the FM function, and they are computed as Ri(m,n) = |Vpr(m,n)| and
Or(m,n) = argVpg(m,n). The overall K component image I(m,n) is described in
the modulation domain by the multicomponent representation I' = [I'; T'y ... I'x]T
obtained by concatenating the representations of the individual components. The
vector I' is then used as a dictionary for matching orientations as the dominant

texture components are extracted.

Let A, Ry, and 6, be the be the AM, FM magnitude, and FM orienta-
tion functions computed for component Ij(m,n). I computed AM-weighted FM

functions

O(m,n) = A (m,n)0;(m,n), (7.2)

[M] =

k=1
where ©(m,n) is the dominant orientation. I illustrate the dominant orientation
estimation process in Fig. The dominant FM field of the woven brass image

is shown in Fig. [7.1{(b). From this dominant FM field, a dominant orientation
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The second dominant orientation is depicted in

is estimated as in Fig. [7.1)(c).

Fig. [7.1)(d).
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Figure 7.1: Dominant orientation estimation of the woven brass image. (a) Wo-
150

)

C

(

ven brass image. (b) Dominant FM field. (c) 1** dominant orientation. (d) 2™
The dominant orientation ((7.2)) is matched against the overcomplete dictio-
nary I to assign a weight to the AM and FM functions in each I'y, on a pixel-by-pixel

dominant orientation.



basis. The dominant texture component is then defined by the linear combination

Ca(m,n) = Z ag(m,n)Ax(m,n) cospr(m,n)], (7.3)

k=1

where the coherency measure ag(m,n) is defined by

) 6k(m7 n) < %7
ap(m,n) =9 1—={2[6c(m,n) — F]}?, & < dx(m,n) < Z, (7.4)
0, otherwise

and ogx(m,n) = |0x(m,n) — O(m,n)|. Intuitively, the coherency measure cy, works
in local spatial neighborhoods to group together and blend components Iy(m,n)
having FM orientations that are close to the dominant orientation at each
pixel. The blended sum then constitutes a coherent, textural component
that is extracted from the image and the process is repeated iteratively until all
coherent dominant orientations have been extracted from the image. The thresh-
old bandwidth 7/6 in was chosen for agreement with the eight orientations

present per level in the adapted steerable pyramid.

Algorithm 3 AM-FM Texture Decomposition Algorithm
L « original image I(m,n)
domOrien «+
while 1 =1 do
1. Compute feature vector I' for image L
using demodulation algorithm in Chapter.
2. Estimate the dominant orientation ©(m,n) using (7.2).
if (© € domOrien) break;

3. Extract texture component Cy using (7.3)) and (7.4).

4. L+ L — Cd
5. domOrien < [domOrien O]
end while

The pseudo code for AM-FM texture decomposition is given in Algorithm[7.1.1]
The proposed algorithm can be interpreted as a frequency-based feature extrac-

tion technique. It is, however, different from other traditional techniques such as
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Fourier and orientation-selective Gabor filtering. Our algorithm is capable of find-
ing the dominant texture orientation of a component and extract it by matching
its orientation against an overcomplete feature dictionary. Other frequency-based
techniques rely on an energy-based analysis step to estimate texture orientations,
and subsequently require one to design filters with appropriate bandwidths and
orientations for the feature extraction process. Both of these estimation steps are

sensitive to errors if the image structures and orientations are not known a priori.

7.1.2 Results and Discussion

I evaluated the algorithm described in Algorithm [7.1.1] against a variety of Brodatz
textures. For each extracted component, we computed the modulation domain fea-
ture dictionary I'. The dominant texture orientation © was estimated as in ([7.2)).
The extracted component Cy(m,n) was then found by matching the dominant
orientation ©(m,n) against the dictionary I' as described in and (7.4). The
results are illustrated in Fig. and Fig. [7.3] Each column depicts the decompo-
sition result of a test image. In each column, the first row contains original images.
The second and third row show the first and second dominant components and the
last row shows the residual after extraction of the first two dominant components.
Images in the second, third, and fourth rows of each column are contrast stretched

together and directly comparable in terms of gray scales.

The original burlap image is shown in Fig. [7.2(a). It can be interpreted
as a two component image with horizontal and vertical stripes. The algorithm
produces two dominant components shown in Fig. [7.2(b)-(c). These components
are locally coherent and coincide with human perception. The lack of organized

texture in the residual image in Fig. [7.2(d) demonstrates that the horizontal and
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(1)

Figure 7.2: Examples. (a) Original burlap image. (b) First component of burlap.
(¢) Second component of burlap. (d) Residual of burlap. (e) Original reptile skin
image. (f) First component of reptile skin. (g) Second component of reptile skin.
(h) Residual of reptile skin. (i) Original straw image. (j) First component of straw.
(k) Second component of straw. (1) Residual of straw.
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=) 0)
Figure 7.3: Examples. (a) Original wood/paper image. (b) First component of
wood /paper. (¢) Second component of wood/paper. (d) Residual of wood/paper.
(e) Original tree image. (f) First component of tree. (g) Second component of
tree. (h) Residual of tree. (i) Original cloth image. (j) First component of cloth.
(k) Second component of cloth. (1) Residual of cloth.

.
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vertical stripes of the original image are successfully extracted.

A more complex decomposition example of reptile skin texture is shown
in Fig. [7.2(e). The two dominant texture components are shown in Fig. [7.2[f)-
(g). The algorithm is capable of decomposing the original image into three locally
coherent image components. It is interesting to observe that these components are
not easily identified from the original image. Similar perceptually motivated results
can be seen for the straw image in Fig. (1) Straws having vertical orientations
are successfully grouped into the first coherent component in Fig. [7.2[j). The
second extracted component in Fig. [7.2(k) depicts remaining textures that are

orthogonal to the first.

Fig. [7.3(a) shows a composite image which contains a wood grain texture
on the left and a uniform grainy texture on the right. The decomposed texture
components are shown in Fig. [7.3[(b)-(c). The first component in Fig. [7.3(b) is
able to capture the wood grain texture part of the original image, while the second
component in Fig. [7.3(c) extracts the remaining texture. This example suggests
that better decomposition results can be achieved if the original image is segmented

into homogeneous regions prior to applying this algorithm.

The proposed algorithm, however, is not effective for circularly symmetric
texture images like the tree image in Fig. m(e). Although the extracted compo-
nents in Fig. [7.3(f) and Fig. [7.3{g) are locally coherent, they do not agree with
human perception which interprets the image with one circular component. Such
limitation can be explained by the range restriction imposed on the angular band-
width threshold of the coherency measure in . The angular bandwidth was

set to m/6, which is not wide enough to handle circular textural patterns.
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7.1.3 Summary

In this section, I proposed an iterative texture analysis algorithm capable of ex-
tracting locally coherent and meaningful components from textural images. I intro-
duced a new quantitative coherency measure in the modulation domain for image
components. The effectiveness of the proposed algorithm is demonstrated with a
variety of well-known Brodatz textures. The decomposed image components are

visually motivated and their interpretations coincide with human perception.

The proposed algorithm, however, is limited to texture images with com-
ponents having limited orientation bandwidth. The future work will be focused on
fine-tuning the coherency measure in ([7.4) to accommodate circularly symmetric

textural patterns and apply the algorithm to nature images.

7.2 Cartoon + Texture Decomposition

In Section [7.1] the goal is to decompose an image into coherent components. The
coherent components must be locally smooth varying. Here, I consider the problem
of decomposing an image into a structural component and textural component.
The structural portion, which is referred to as cartoon, carries broad information
about an image and is usually piece-wise smooth curves. The texture component,
subsequently referred to as texture, describes oscillating patterns of image textures
and noise |18}|113]. For example, in a striped T-shirt, the cartoon consists of lines

in the borders of the shirt and the texture are the stripes within the shirt.

A successful texture-cartoon decomposition can lead to improvements for
subsequent image processing operations such as compression, edge detection, and

image inpainting. For instance, higher overall compression gain can be obtained
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by decomposing the image into different types of signals and designing optimized
encoders to compress these type of signals separately [83]. The cartoon-texture
decomposition can eliminate extraneous edges that can partially due to noise or
unimportant objects [18]/113]. Such decomposition can retain important edges in
image denoising [2,[102] or improve inpainting results with better texture replica-

tion [7].

The texture-cartoon decomposition is, however, an ill-posed problem. As
texture and cartoon are loosely defined, image features can be considered as texture
in one scale, but they can be cartoon at another scale. For example, when we look
at a tree at a far distance, leaves can be classified as textures. However, one can
consider these leaves as cartoon at a closer viewing distance. In addition, human
judgement can also play an important role in deciding whether an object is part

of texture or not.

Most works in the texture-cartoon decomposition are in the partial differen-
tial equation (PDE) setting. The texture and cartoon are modeled to lie in different
functional spaces. The solution is found by solving a convex regularized optimiza-
tion problem [4,84,102,/125]. The quality of texture and cartoon decomposition
depends on signal models used to describe them and the regularization parameter.
Despite approaches to find suitable values for the regularization parameter |4} 104],

the cartoon edges often bleed into the texture components.

Meyer, Averbuch, and Coifman [83] proposed an image compression scheme
where an image is decomposed into multi-layered components such as texture and
cartoon. The authors used a suitable basis for each each layer of signal in or-
der to increase compression gain. Stark, Elad, and Donoho drew ideas from [83]

and [125] to create a hybrid approach that used total variation regularization and
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basis matching. They designed two dictionaries, each of which contains basis func-
tions that are tuned for either cartoon or texture. The texture and cartoon were

subsequently extracted by projecting the image onto these basis functions.

Apart from the PDE and basis representation approaches, Buades et al. |1§]
proposed a nonlinear texture-cartoon decomposition. They observed that the total
variation of texture and cartoon features behave differently before and after a
lowpass filtering. A weight assignment scheme were then used to classify texture
and cartoon features. While the algorithm produced good texture and cartoon

separation, the results depended on the bandwidth parameter of the lowpass filter.

In this section, inspired by the work of Buades et al. [18], I proposed an
automatic nonlinear texture-cartoon decomposition algorithm. In particular, I
measured the ratio of gradient magnitude across modulation domain components
and used this ratio to determine the component where the change between cartoon
and texture of a pixel is most likely to occur. Once the component is determined,
we used a hard threshold strategy to classify texture and cartoon pixels to obtain a
weight matrix. The texture component is then obtained by multiplying the original
image with the weight matrix. The cartoon is the difference between the original

image and the texture component.

7.2.1 Background

Let f : R? — R be a continuous image. Let u : R> — R be the cartoon component.
Let v : R?> — R be the texture component. The cartoon-texture decomposition
aims to extract v and v as

f=u+wv. (7.5)
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Total variation reqularization approaches

Most of the texture-cartoon decomposition approaches are formulated in the partial
differential equation setting, we will give a short description of the underlying

models. Readers can refer to [4,/102}/125] for deeper analysis.

Rudin, Osher, and Fatemi [102] solved in the context of a denoising
problem. They assumed that the cartoon u belongs to a class of bounded variation
(BV) functions and the texture v is a finite energy function. Both u and v are
solved simultaneously in the convex minimization setup

arg min (/ Dul + A||v||§2> , (7.6)

ueBV,vel?
where A is a positive tuning parameter and the integral of Du measures the total
variation of signal u. The computed texture v, however, contains cartoon edges.
Aliney [2] proposed an L' model for the texture component v in to capture
the salt and pepper noise property of corrupted signals. Meyer [84] provided an
alternative model for the texture component in . Instead of being L' or L2,
v belongs to functions in a Banach space featured by a G-norm model which
allows features to have high oscillation but can still retain low energy norm. Many
successful texture-cartoon decomposition algorithms have been derived from the

Meyer formulation, e.q., [4,(125].

The Linearized Meyer Model

Buades et al. [18] observed that a linearized version of the original Meyer model
is indeed the classical highpass-lowpass filtering problem. Let K, be a lowpass

filter; the texture-cartoon decomposition problem can be viewed as a problem of
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designing a suitable lowpass filter K, to capture u and v as

u = Kyxf

v = [—K,xf, (7.7)

where o is the scale parameter that determines the filter bandwidth and * denotes

the convolution operator.

Intuitively, the bandwidth parameter o controls the amount of high fre-
quency features that will be retained. Therefore, this model can not separate the

texture and cartoon features when their frequencies are overlapped.

Nonlinear texture-cartoon classification

Buades et al. [18] observed that the local total variation (TV) of texture features
and cartoon features behave differently when filtered by a lowpass filter K,. The
ratio of local TV before and after the lowpass filter K, is applied tends to be lower
in the texture region than that in the cartoon region. Based on this observation,
the authors used a nonlinear mapping similar to soft-thresholding to classify pixels

into the two categories.

Even though the decomposition algorithm does not compute solutions that
converge to those of the TV regularization approaches [18], it produces good quality
texture-cartoon separation with a non-iterative implementation. The solutions of
this method, however, depend on the selection of the bandwidth ¢ of the lowpass

filter K,. Without a properly tuned o, the solutions can change drastically.
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7.2.2 Texture-Cartoon Decomposition

I represented the image f as a sum of K non-stationary amplitude modulation

(AM) functions and frequency modulation (FM) functions

f= Z Jr= Z ar, cos(py), (7.8)

where a;, : R?> — R* is the AM function and ¢}, : R? — R is the phase modulation
function [49]. Both a; and ¢y, are assumed to be locally smooth. The FM functions
are given by the gradient of py, i.e., Vior = [prs ¢ry]”, where the second subscript
denotes partial differentiation. The discrete AM and FM functions are computed
using the demodulation algorithm in [91}/108]. T arranged the K" AM-FM compo-
nents in ascending order based on the magnitude of the FM vector in , i.€.,

f1 carries low-frequency components and fx contains high-frequency components.

The key ingredient the cartoon-texture separation in [18] as well as in this
paper lies in the computation of image gradient. For 1D AM-FM signal represen-

tation, the derivative of component fj is obtained as

fr = aj cos(pr) — pragsin(py). (7.9)

I performed an approximation to ([7.9)) to make it more robust to noise. Since the
AM function ay is locally smooth, we estimated the 1D derivative of f; in (7.9)) as

fr = =i sin(py). (7.10)

Extended the 1D derivative in ([7.10) to 2D, we computed a metric T, to quantify

the gradient magnitude of the first £ AM-FM components according to

T, =~ (Z Ozl sin(gpk)) + (Z Py Ok sin(gpk)> (7.11)

k=1 k=1
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In (7.11)), 77 is the approximated gradient magnitude of the lowest frequency com-

ponent while Tk is the approximated gradient magnitude of the image f.

Similar to Buades et al. [18], I defined the gradient magnitude ratio at every

pixel as

Tk T,
= =5
where 1 < ¢ < K. At a pixel (m,n) in the image grid, Dy(m,n) measures the

D, (7.12)

relative difference between the gradient magnitude of the whole image and the
gradient magnitude of the first ¢ components. D, is maximum when ¢ = 1 and

decreases monotonically towards 0 as ¢ increases.

I defined f3 to be the AM-FM component where the change between texture
and cartoon is likely to happen at each pixel. I first created a mask M such that
M(m,n) = « if D, > 0.25 and M(m,n) = 0 otherwise. The index (3 is then
estimated according to

B = median(M). (7.13)

Finally, I applied a hard threshold strategy to create a weight matrix w

where a weight of one means texture and a weight of zero means cartoon

1, if T3 >0.25
= Drs=e (7.14)
0, ifTp < 0.25.
The cartoon and texture are then computed as
u = w-f,
v = f—u. (7.15)

7.2.3 Simulation Results

I tested the proposed algorithm on the Kodak image dataset and standard test

images. The results are shown in Fig. [7.4] For each test image, the texture-
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cartoon decomposition results are demonstrated by row. The original image is in
the left column, the cartoon component w is in the middle column, and the texture
component v is on the right. Fig.|7.4{(b) and Fig. [7.4(c) show the cartoon and the
texture component of the image kodim08.In these figures, overall structure of the
image is retained in the cartoon, while the fine textures in the roofs and windows
are extracted into the texture. Fig. [7.4[(h) and Fig. [7.4{i) depict the cartoon
and the texture component of the fingerprint image. The algorithm is able to
extract most of repeating curves in the original image and put into the texture
component. The cartoon contains mostly low-frequency residual. Fig. [7.4{(k) and
Fig. [7.4(1) illustrates the cartoon and the texture component of the Babara image.
Oscillating patterns in her pant, shirt, and in the table are successfully extracted to
the texture. The edges in her hands and table are still kept in the overall structure

of the image.

7.2.4 Summary

I proposed an automatic nonlinear texture-cartoon decomposition based on the fre-
quency behavior of texture and cartoon across different scales. I measured the ratio
of gradient magnitude across modulation domain components and use this ratio to
classify the texture and cartoon pixels. The simulation results demonstrated that
the proposed algorithm is able to extract texture and cartoon components from
images efficiently. While this work followed a similar path as Buades et al. [18],
the results do not depend on the lowpass filter bandwidth which is critical to the
separation process. Currently, I set the threshold parameter in the hard thresh-
old process empirically to 0.25. T am investigating machine learning techniques to

overcome this limitation.
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(f)

Figure 7.4: Texture Cartoon Decomposition Examples. (a) Original kodim08
from Kodak. (b) Original kodim05 from Kodak. (c¢) Cartoon component of (a). (d)
Cartoon component of (b). (e) Texture component of (a). (f) Texture component

of (b).
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Figure 7.5: Texture Cartoon Decomposition Examples. (a) Original fingerprint.
(b) Original Barbara. (c) Cartoon component of (a). (d) Cartoon component of
(b). (e) Texture component of (a). (f) Texture component of (b).
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7.3 Relationship with the Monogenic Signal

Fourier analysis is an important tool for analyzing and representing a stationary
signal as a sum of pure sinusoids having constant amplitudes and constant fre-
quencies. However, in practice many important signals are nonstationary in the
sense that the amplitude envelope and frequency content are time varying (or space
varying). Obvious examples include seismic survey data, radar returns, a variety

of communication signals, and many biomedical signals [9]. The AM-FM model

f(x) = a(x) cos[p(x)] (7.16)

has been widely used to represent such signals, where, for the 2D case we are
concerned with in this paper, a(x) : R? — RT is a slowly varying non-negative
amplitude modulation (AM) function and ¢(x) : R* — R is the phase modulation
function. The frequency modulation (FM) function V(x) carries a rich local

description of the surface pattern orientation and granularity.

The AM-FM model is ill-posed in the sense that infinitely many
pairs of a(x) and ¢(x) exist which satisfy the equality (7.16)). In his seminal 1D
paper [41], Gabor used the Hilbert transform (HT) to disambiguate the AM-FM
modeling problem by constructing a complex signal extension called the analytic
signal. In arbitrary dimensions, any given complex extension associates unique
AM and FM functions with a real signal which may be obtained directly by taking
the magnitude of the complex signal and by differentiating the argument of the
complex signal. More recently, Huang et al. developed the data adaptive Hilbert-
Huang transform (HHT) technique to iteratively compute multicomponent AM-
FM models. At each iteration, the HHT uses the empirical mode decomposition

method to extract signal components and subsequently compute AM and FM
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functions by applying the HT.

While Gabor’s analytic signal is well-defined in 1D, extension to higher di-
mensions is nontrivial. The main reason is that there is no straightforward means
of extending the Hilbert transform into multiple dimensions. Peyrin, Zhu, and
Goutte [97] defined a 2D complex signal by performing a 1D Hilbert transform
along a specified direction; such transforms are frequently referred to as partial
Hilbert transform (pHT). Havlicek, Havlicek, and Bovik proposed an adjusted mul-
tiplier [53] to enforce harmonic correspondence [124] of the multidimensional pHT
and used it to define a multidimensional analytic image [49]. Other related devel-
opments include Hahn’s single orthant complex signal [45] and the hypercomplex
signal of Biilow and Sommer [19], both of which are important but of limited
interest for our purposes here because they do not provide a complete representa-
tion of all possible signal orientations. Felsberg and Sommer [34] introduced the
multidimensional monogenic signal where the 1D HT is replaced by an nD Riesz
transform. Independently, Larkin et al. [67] used the same signal model to study

fingerprints.

While other approaches exist for computing AM-FM models without an
explicit complex extension such as the Teager-Kaiser energy operator [77] and the
quasi-local approximation [43,87], the explicit complex extension approaches in-
cluding the pHT model and the monogenic signal have remained highly popular.
These two models have been successfully applied in many practical applications
such as motion estimation [5], target tracking [90], fingerprint modeling [67], and
texture analysis [96] just to name a few. Both compute an explicit complex exten-
sion for the real signal by adding an imaginary part that is equal to the pHT for

the partial Hilbert approach and equal to the Riesz transform for the monogenic
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signal. The main advantage of the monogenic signal lies in the isotropic kernel of
the Riesz transform, which tends to avoid undesirable rippling in the AM function;
such amplitude ripples are characteristic of the AM functions typically obtained
via the pHT. As will be described in more detail below, the main advantage of the
pHT approach is that it enables the FM functions to be obtained directly without
the need for an auxiliary orientation estimation procedure as is required with the

monogenic signal approach.

In this section, I focus on the pHT and monogenic signal approaches. I pro-
pose a new alternative algorithm for computing the monogenic signal FM functions
that avoids the need for an auxiliary orientation estimation procedure. In addi-
tion, I demonstrate that in situations where a multi-scale multi-orientation signal
decomposition is required, the pHT approach can deliver equivalent modulation
functions to those obtained with the monogenic signal while maintaining a simpler
representation. I argue that the pHT method and monogenic signal are both viable
approaches. For signals that admit orientations (e.g., spectral support) orthogonal
to the direction of action of the pHT, the pHT approach will always suffer from
undesirable amplitude rippling that is not present in the monogenic signal. How-
ever, pHT based models are always more efficient than the monogenic signal in the
sense of requiring only one imaginary component as opposed to two. For signals
that do not admit significant spectral support orthogonal to the pHT direction of
action, both approaches typically deliver equivalent but slightly different AM-FM

interpretations of the signal.
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7.3.1 A new algorithm for computing the monogenic FM

As discussed in the complex signal extension approaches in Section [3.2.1] the pHT
computes the imaginary part of the complex signal as ae(x) sin[pe(x)] using (3.2),
whereas the monogenic approach, without the local orientation ¢(x), actually com-
putes the imaginary part as amo(X)|sin[pme(x)]|. Therefore, computation of the
monogenic FM function involves estimation of the local orientation ¢(x) to deduce
the correct sign of the imaginary component. For instance, Larkin, Bone, and Old-
field [67] and Unser, Sage, and Ville |[123] adopted the classical tensor structure

orientation estimation [64].

I observe that the local orientation ¢(x) in (3.27)) is not required for the
computation of the FM functions. Taking the derivative of the model in both
horizontal and vertical directions, we obtain a relationship between the derivatives
of the real signal f(x) and the FM function Vo) = [¢z(x) ¢y (x)]" according

to
Je (X) = O (X) COS[‘Pmo (X)] - Pz (X)amo (X) Sin[SDmo (X)]a
fy(x) = ay(x) cos(Pmo(X)) — ¥y (X)amo(X) sinpmo(X)],

where Van,(x) = [a,(x) a,(x)]T and Vf(x) = [f.(x) f,(x)]7. T then rearranged

these derivatives to compute the magnitude of the monogenic FM functions

 Jan(x) coslpme(x)] — £(x)
(= R sl
g9 cosfgme()] ~ £y(x)]
Pl = ) sl (7.17)

where the denominator is obtained from ([3.27)) as
|amo (X) sin[pmo(X)]| = |/ f7(x) + f3(x). (7.18)
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I calculated the orientation of the FM vector as

— arctan ay(X)COS[ o(x)] — fy()
o) = arct ( (%) 03 pma(0)] — ful(x >) (7.19)

where —7/2 < §(x) < 7/2. Notice that the range restriction of #(x) is the result

of the phase ambiguity of the model ((7.16) where both —@me(x) and +¢me(x)
are valid representations because cos[¢omo(X)] is an even function. From ([7.17)

and ((7.19), the FM functions are obtained according to

po(x) = V]ea(x) + lpu (x)]? cos[I(x)], (7.20)

eo(®) = e O + 9y (x)[2sin[6(x)]. (7.21)

I compare the computed FM function of the proposed method and the
computed FM of the original monogenic signal. The simulation results are given
in Fig. [7.60 The chirp image is shown in Fig. [7.6{a). The magnitude of the
FM computed from the original monogenic signal model and from the proposed
method are depicted in Fig. [7.6(c) and (d), respectively. The absolute difference
between the two magnitude FM functions is given in Fig. [7.6(b). The artifact
of the computed FM magnitude is clearly visible and dominates the image in
Fig. [7.6(c). These high magnitude values occur at locations where the computed
phase is wrapped - the phase contains jumps that are integer multiples of m. These
discontinuities do not exist in FM magnitude computed by the proposed method.
I also showed the FM field plots of the original monogenic signal in Fig. [7.6(e) and
of the proposed method in Fig. |7.6(f).

7.3.2 Relationship between Monogenic and partial Hilbert approaches

In practical applications, a multipartite signal may admit multiple orientations at

a given pixel. Therefore, it is desirable to decompose the signal into individual
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components of different orientations so that the assumptions inherent in ((7.16|) are
valid. For instance, the monogenic model has been used with multi-scale multi-
orientation representations such as wavelets [94}/123] and the steerable pyramid [54]
to analyze local signal features. Given an input signal specified by a single orien-
tation, both the pHT and the monogenic approach produce the same frequency

magnitude for the imaginary components go(x) and gmo(x).

Assume that s(x) is the output from one channel in a multi-scale multi-
orientation realization of the steerable pyramid filterbank [38] modified as described
in [89]. In particular, let 6y be the orientation of filter center frequency; the

spectrum of s(x) can be written in polar form as

5(r,0) = £(r, 0)[cos(8 — 6,)]%, (7.22)

~

where £(r, ) is the Fourier spectrum of the original image f(x) at a given scale

and ¢ denotes the number of orientations per scale.

For a real signal s(x), the Riesz transform of s(x) produces two components
s1(x) and so(x). Similar to [67,|123], we represent these two components by a
complex signal p(x) = s1(x) + js2(x). Note that the complex signal p(x) plays
the role of the imaginary image in the context of the complex signal extension

approach. It may be shown that the Riesz transform has unity gain:

B = 1R M—WHZ—H]
= |[3(w)]. (7.23)

To demonstrate that the pHT also has unity gain for the specific type of
signal in ((7.22)), let g(x) = Hg,{s(x)}, let e = [cos(fy) sin(fy)]” be the unit vector
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with angle 6y, and let x = [cos(d) sin(f)]”7 be the polar representation of the

rectangular frequency w = [w, w,]’. The pHT of g(x) can be written as

g(r,0) = —jsgn(x’e)s(r,0)

= —jsgn[cos(f — 6y)]5(r, 0). (7.24)

The frequency magnitude of g(x) is then given by

[I5(r, )7, if cos(6 — 6o) # 0,

7.25
0, if cos(f — ) = 0. (7.25)

1g(r, O)I* = {

According to (7.22), 5(r,0) vanishes when cos(d — 6y) = 0. Hence, |[g(w)||* =

[15(w)I]* = [[p(w)|]*.

While the frequency magnitude of the imaginary signals in the two ap-

proaches are the same, the computed AM functions are not necessarily equal.

Fig. [7.7 shows the AM computed by the two approaches. The original
barbara image is given in Fig. [7.7(a). A spectral depiction of the modified steerable
pyramid is given in Fig.|7.7(b). Fig.|7.7|(c) shows one component of the multipartite
image obtained as a steerable pyramid filterbank channel response. The absolute
difference of the computed AM from the two approaches is given in Fig. (d),

where brighter pixels denote a greater difference.

Figs. [7.7(e) and (f) depict the computed AM functions of the monogenic
signal and the pHT approach respectively. In this example, the mean difference
between the two AM functions is 0.022037 with reference to the range of AM
functions [0, 12.3618]. While the pHT approach does not compute the exact
AM and FM functions as those obtained by the monogenic signal, it provides an

equivalent AM-FM representation.
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Figure 7.7: Computed AM using the monogenic signal and pHT. (a) Original
barbara image. (b) Steerable pyramid filterbank. (c) One component of (a). (d)
|(e) - (f)|]. (e) Monogenic AM. (f) pHT AM.
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7.3.3 Discussion and Conclusion

As noted in Section [3.2.1] the pHT kernel is not isotropic and does not have unity
gain. However, for the particular signal model in , the pHT kernel no longer
causes undesirable amplitude rippling because the spectrum $(r, §) vanishes at the
same places where the pHT kernel is zero. In other words, the pHT kernel can
be interpreted as being effectively isotropic for signals of type . In addition,
the pHT offers a simpler representation as the associated complex signal contains
two components whereas the monogenic signal requires three. Because the pHT
computes the imaginary image as a(x) sin[p(x)] instead of |a(x) sin[¢(x)]| of the
monogenic signal, we can use a simpler computation method in Section to
compute the FM function Vp(x) without having to estimate the local orientation

¢(x) as is required in the pure monogenic signal model.

In this section, I proposed a new algorithm to compute the FM functions
for the monogenic signal. 1 showed that the proposed algorithm is simpler than the
monogenic signal model as it does not require the local orientation estimation step.
In addition, I showed that in situations where a multi-scale multi-orientation signal
decomposition is required to analyze a signal, both the pHT and the monogenic
signal deliver similar AM and FM functions. However, the pHT provides simpler
computations. Therefore, I advocated for use of the pHT in multi-scale multi-

orientation AM-FM applications.
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Chapter 8

Conclusions and Future Work

In this dissertation, I developed a new the multi-component perfect reconstruc-
tion AM-FM image transform called the xAMFM. I argued that the xAMFM is
an attractive representation for image processing applications. First, I reasoned
that the xAMFM is a perceptually motivated image transform. The xAMFM is
equipped with a multi-orientation joint time-frequency localized filterbank which
was designed to mimic the operation of the human visual system. Second, the
xAMFM is able to capture nonstationary features in signals by computing the
instantaneous amplitude modulation function (AM) and instantaneous frequency
modulation function (FM). For images, the AM and FM offer intuitive interpreta-
tion of the local contrast and local texture structures. Finally, the xAMFM opens
up a new research area where image processing filters are designed and operate
in the AM-FM domain, rather than in the classical pixel domain or the Fourier
domain. I showed that the the xAMFM can produce high fidelity image filtering
results that are difficult or impossible to obtain with traditional LSI filtering in
the pixel domain or in the Fourier domain for texture and orientation filtering

applications.

In Chapter 2] I introduced the 1D AM-FM signal model as a viable represen-
tation for nonstationary signals. I discussed the limitations of the classical Fourier

representation in cases where the signals of interest are nonstationary. I reviewed
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many practical applications where importance nonstationary features of signals
can be captured by the instantaneous frequency (IF, or FM). I then discussed
three major computational techniques for obtaining the AM and FM functions for
1D signals, namely the Gabor analytic signal approach (AS), the Teager-Kaiser
energy operator approach (TKEO), and the quasi-local method (QL). I evaluated
the performance of these three methods in terms of the mean squared error be-
tween the computed AM and computed FM with respect to their corresponding
true signals. Among the IF computation approaches, the AS remains a popular
method because its implementation is straight forward and the method is more

robust to noise compared to the TKEO.

In Chapter [3| I explored extensions of the 1D AM-FM signal model into
multiple multidimensions, with emphasis on the 2D case. I first reasoned that the
phase and IF play an important role in many image processing applications, such as
image restoration, image segmentation, and optical flow estimation. We discussed
the generalization of the 1D AM-FM approaches into 2D. Finally, I evaluated their
effectiveness with respected to the mean squared error via simulations using both
synthetic and real images. The partial Hilbert transform (pHT') and the monogenic
signal produce satisfactory results with low MSE. In addition, the AM and FM
computed from these two methods offer perceptually meaningful interpretations of

the underlying image structures. The relationship between these two approaches

is discussed Chapter [7]

In Chapter 4] T introduced the single component perfect reconstruction AM-
FM image model. First, I argued that most previous AM-FM image processing
techniques were limited to analysis applications. I then discussed the importance

of phase unwrapping in the 2D analysis and reconstruction problems. The least-
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squares approach is chosen as the phase reconstruction technique for the xAMFM
because it is more resilient to noise than other discussed techniques. With perfect
reconstruction FM transform, I defined the single component perfect reconstruction
AM-FM image transform. I provided two algorithms for obtaining AM and FM
functions from a single component image and reconstructing the original image
from the AM and FM functions without errors. I verify the perfect reconstruction

property by calculating the MSE between the reconstructed and original images.

In Chapter [f I introduced the xAMFM for general images. I showed that
the signal component AM-FM model in Chapter [4]is not sufficient to represent most
images. As aresult, I used a filterbank to decompose the image into K components.
For this purpose, I modified the well-known steerable pyramid to create a full multi-
scale, multi-orientation perfect reconstruction filterbank. In addition, I discussed
the problems associated with the pHT wherein the computed AM and FM functions
can show artifacts if the image component has frequency support perpendicular to
the pHT filtering axis. I overcame this problem by rotating the axis of action of
the pHT. Finally, I developed the xAMFM for general images. I verified that the

xAMFM allows perfect reconstruction theoretically and experimentally.

In Chapter [0}, T introduced the AM-FM image processing framework where
filters may be designed to operate directly on the AM and FM functions of an
image. I defined two classes of AM-FM image filters, namely the AM-based and
the FM-based filters. I showed the performance gain of the AM-based filters over
the traditional LSI filters in applications such as selective orientation attenuation,
frequency selective filtering, image enhancement, and image fusion. For the FM-
based filters, I performed geometric image transformation in the AM-FM domain. I

compared the results of the AM-FM filters and the LSI filters using the peak signal
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to noise ratio (PSNR) and the structure similarity index (SSIM). In both measures,

the AM-FM filters outperform the LSI filters in the image scaling application.

In Chapter [7], I demonstrated the use of the xAMFM transform in image
analysis applications. In addition, I showed the relationship between the pHT and

the monogenic signal.

The main original contributions of this dissertation include the following.

e [ proposed a perfect reconstruction FM algorithm. I used a least-squares
approach to recover the phase signal from its gradient. In order to allow
perfect reconstruction of the phase function, I enforced an initial condition
on the reconstructed phase. The perfect reconstruction FM algorithm plays

a critical role in the overall AM-FM transform.

e [ constructed a perfect reconstruction multidimensional filterbank by modi-
fying the well-known steerable pyramid. This modified filterbank ensures a
true multi-scale multi-orientation signal decomposition. Such a decomposi-

tion is required for a perceptually meaningful AM-FM image representation.

e [ overcame the problems associated with the partial Hilbert transform by
rotating the direction of action of the pHT. This rotation results in artifact

free filtering results in the AM-FM domain.

e [ proposed the first practical framework for designing filters and performing
signal processing directly in the modulation domain. I constructed two new
classes of practical modulation domain filters. I showed that these modu-
lation domain filters comparable traditional linear shift invariant (LSI) fil-

ters qualitatively and quantitatively in applications such as selective orienta-
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tion filtering, selective frequency filtering, and fundamental image geometric
transformations. In applications such as orientation and texture filtering and

image magnification, the AM-FM outperforms the LSI filters.

e [ provided extensions of the xAMFM for image decomposition problems. I
illustrated that the AM-FM approach can successfully decompose an image

into coherent components such as texture and structure components.

o [ investigated the relationship between the two prominent AM-FM computa-
tion models, namely the partial Hilbert transform approach (pHT) and the
monogenic signal. The established relationship helps unify these two AM-FM

algorithms.

This dissertation lays a theoretical foundation for future nonlinear modu-
lation domain image processing applications. For the first time, one can apply
modulation domain filters to images and obtain high fidelity, predictable, and sys-
tematic results. The design of modulation domain filters is intuitive and simple,
yet these filters produce superior results compared to those of pixel domain LSI

filters.

Besides modulation domain image processing, this dissertation reopens sev-
eral fundamental research problems in image processing. For instance, classical
image analysis applications such as segmentation and edge detection can be re-
investigated in the modulation domain setting. In addition, as the modulation
domain image transform possesses properties such as good correspondence with
human visual perception and perfect reconstruction, it can potentially yield per-

formance gains in image and video quality assessment and coding.
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While the proposed modulation domain image filtering framework offers
several advantages over the traditional pixel domain image processing, it is inter-

esting to investigate its current limitations.

e The current transform is data independent. The transform assumes that the
number of scales and the number of orientations per scale are predefined. In
other words, the filterbank can produce more components than the original

image actually has.

e The current phase reconstruction algorithm is global, meaning that changes of
the gradient in a small neighborhood can lead to changes of the reconstructed

phase in the entire image.

e The FM-based filters lack a mathematical stability analysis. Since the xAMFM
transform creates nonlinear components, constraints must be enforced on the

these components in order to produce stable and meaningful filtered outputs.

This dissertation opens up many future research directions. An obvious
path is to overcome the limitations of the current work. For example, one can
design data dependent algorithms to adaptively compute the AM-FM components
instead of using a fixed filterbank. Another challenging topic is to study the

performance of the xAMFM for corrupted signals.
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Appendix A

Orientation Decomposition

Let M be the number of orientation, M € Z. We define S as a sum of K compo-

nents. We write S as

LY (A1)

g LZ [ez’w—%me—iw—%)}

where 0 <m < 2¢ and m € Z.

For ¢ = m, S can be reduced to
G_ M 20\ M [(20)!
2\ g ) ||
For [ # m, let the sum of the second term in (A.2)) be B. We can see that

B is a geometric series

M-1 ,
i 27k 1— ez(f—m)ZTr
k=0 -
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As m € [0, 2/], then [ —m € [—{, {]. Therefore,

— _{—m l

— < < —.

M~ M — M
Hence, the denominator of (A.3]) is non-zero if M > ¢. In addition, the numerator
of (A.3)) is always zero, because ¢, n € Z. Therefore, B =0 if M > {, V¢, m € Z.

Therefore, we arrive at the following result for S

M—

—_

S cos (¢ — —) = )

0 otherwise.

(A4)

k {2% 2] it =tand M >
k=0
As discussed in Chapter , the oriented filter G (w) has the frequency

spectrum in polar form as

Ex\1M-1 : km T
Gh(r,0) = Ok [COS (0 - M)} if ’ _'M‘ < (A.5)
0 otherwise,
where 0 < k < M — 1 indicate orientation index and the constant « is defined as
2401
M(20)!

Let ¢ € Z,0 = M — 1. We define the sum of K components G(r,0) as S

M-1
S = Y |Guw)P
k=0
M-1
k
= « cos® (¢ — W— (A.7)
k=0
From (A.4), (A.6), and (A.7), we get

_[2e Ju a0
B M(20)| 22 [ 0(0)
= 1. (A.8)
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Appendix B

2D Least-squares Phase Unwrapping

Let ¢(m,n) be a discrete unwrapped phase. Let p(m,n) be the measured phase
difference. m, n are indices in the rectangular grid [0, M — 1] x [0, N —1]. The
2D least-squares phase unwrapping aims to solve

wmm(mm)
N

r(‘P(m +1,n) —2p(m,n) + p(m — 1,n)5+

$nn (m,n)
7\

-~

(<P(m, n+1)—2p(m,n) + p(m,n — 1)) =

(pm(m,n) — pm(m — 1,n)) + (pn(m,n) — pn(m,n — 1)), (B.1)

where ©m(m,n) and ¢,,(m,n) are the discrete approximation of the second
derivatives in the vertical direction and the horizontal direction, respectively. The
sum of @,,m(m,n) and @,,(m,n) is the discrete Laplacian of the image ¢(m,n).
The equation (B.1)) means that the second derivative of the unwrapped phase and

that of the wrapped phase must be equal.

Let @ be the 2D DCT transform of ¢(m,n). ¢(x) can be represented from
the DCT coefficients as

p(m,n) = 2 i w(i, j)P(i, j) cos [%i@m +1)

i=0 j=0

. (B2)

m
— (2 1
cos[QN](n—i- )
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where

0.25
0.5
0.5
1.0

w(i, j)

ifi=j=0,
ifi=0andj#0,
if 7 =0 and i # 0,

otherwise.

Let T" be the 2D DCT transform of v(m,n). ~(m,n) is represented by DCT

coefficients as in (B.2)).

Substituting the definition in (B.2)) to each element of the left hand side
(LHS) in (B.1]) and expanding the first cosine term, we have

M—-1N-1 r
m
1 = 1, 7)P(2, 2 1 1 — (2 1
p(m+1,n) 2 jzow(z,J) (i, ) cos 201 i(2(m +1) +1)| cos [2NJ( n+1)
M—-1N-1 r - -
= 2.2 w(i, j)®(i, 5) cos mz@m +1)+ M@ oS [2N i(2n 4+ 1)
M-1N-1
= w(i, j)®(i,7)| cos iz'(2m+1) cos | —i| cos | — —j2n+1)|—
Lo £ I 2M M 2N
sin [ﬁi@m + 1) | sin [%z] cos LN (2n + 1) )
(B.3)
M-1N-1 = -
-1 = 1, 1) (2, —(2(m—1) +1 —7(2 1
ol = L) = 3 37wl )0(65) cos | i2m 1)+ ) co [2N9< net 1)
M—1N-1 r - -
= 2.2 w(i, j)P(i, j) cos mz@m +1) — Mz] cos [ﬁ (2n + 1)
M—-1N-1

(e

. .
cos [—2] cos [Wj(Zn +1)

)

_|_

S

I
<)

i

w(i, §)®(i, §) <cos [ﬁi@m +1)

J=0

in | ~—i(2m + 1)
Sin 2MZ m

N
sin [MZ] cos [2N (2n+1)

(B.4)
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Repeating the same expansion for every element on the left hand side
of (B.1]) and simplifying the overall sum, we arrive at the frequency representation
of the LHS in DCT domain

X

LHS = Z_ Z_ w(i, §)®(i, §) cos [ﬁi&m +1)

=0 j=0
(2 cos [%z + 2cos [%j] — 4) (B.5)

Repeating the same expansion for every element on the right hand side

m™ .

—3(2 1
cos [2Nj( n+1)

(RHS) of (B.1]) and simplifying the overall sum, we arrive at the frequency repre-

sentation of the RHS in DCT domain

M—-1N-1
T T
RHS = L, 9)0(2, g —1(2 1 —7(2 1 B.6
> 3l o )| e[ S e ] o
From (B.5)) and (B.6)), we have the DCT relationship according to
o L',
2(i. ) = ) (B.7)

2 cos <%2> + 2 cos <%j> — 4.
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