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Abstract This paper presents a methodology for the realization of intelligent, task-based
reconfiguration of the computational hardware for mobile robot applications. Task
requirements are first partitioned into requirements on the system hardware and software.
Architecture is proposed that enables these requirements to be addressed through
appropriate hardware and software components. Hardware—software co-design and
hardware reconfiguration are utilized to design robotic systems that are fault-tolerant and
have improved reliability. It is shown that this design enables the implementation of
efficient controllers for each task of the robot thereby permitting better operational
efficiency using fixed computational resources. The approach is validated through case
studies where a team of robots is configured and the behavior of the robots is dynamically
modified at run-time. It is demonstrated through this implementation that the design
procedure results in increased flexibility in configuration at run-time. The ability to
reconfigure the resources also aids collaboration between robots, and results in improved
performance and fault tolerance.

Key words autonomous ground vehicles - fault-tolerance - FPGA -
hardware reconfiguration - intelligent robots

1 Introduction

The design of intelligent mobile robot teams is the next frontier in robotics research. Mobile
robots are now being implemented in a variety of applications from security patrols to space
exploration. While the use of mobile robots has been successfully demonstrated, their
adoption has not been widespread on account of their complexity and cost. Most
applications require a team of robots working cooperatively to accomplish the mission
objectives. Further, these applications require a high degree of fault tolerance and the ability
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to function under varying operating conditions. Design of such robotic systems cannot be
accomplished by the simple integration of smart controllers or transducers [21, 22].
Embedding intelligence into systems requires a new design paradigm that takes into
account the hardware and software complexities involved in the design of embedded
systems [3, 4]. Thus, it is necessary to design the systems ground-up in order to meet the
system requirements [31, 46].

In the conventional design process, the required system functionality and performance
targets are used to allocate computational resources. Once the hardware allocation is made,
system performance can be altered only by modification of the software. Thus, plug-and-
play capability of sensors/actuators, fault tolerance, changing the system functionality, etc.
can be achieved only by planning redundancies in the hardware and reconfiguring the
software during run-time to meet the changing requirements. This leads to a trade-off
between the system performance and its cost and flexibility [31, 46]. One of the early
approaches to intelligent control focused on the development of suitable hierarchical
architectures for system autonomy [2]. Mathematical approaches to the analysis of
intelligent systems were researched by Valavanis [43]. Approaches based on centralized
planning [9, 33] as well as on distributed controls [5, 23, 29] were also attempted to address
the requirements of efficiency and fault tolerance. As real time requirements for intelligent
embedded systems grew more stringent, researchers considered a combination of both
centralized and distributed architectures in their design [37]. Behavior based control was
also studied to reduce overall computational demands and to make task-handling robust.
Learning to coordinate the behaviors can lead to system robustness and to coordinating
multiple behaviors and goals [24]. However, the centralized coordination approaches are
difficult to apply to large scale systems with multiple behaviors and tasks [19, 32]. The
scheduling of tasks and the communication system for supporting real-time message
exchange in distributed architectures was addressed in Franchino, Buttazzo, and
Facchinetti, [16]. Huntsberger et al. [20] propose control architecture (CAMPOUT) for
cooperative robots performing tightly coupled tasks. Using this architecture, the mobility
and manipulation of multiple robots was demonstrated. It was also shown that this
architecture allows for autonomous adaptation to uncertainties in the environment. The
cognition oriented approach [1] on the other hand, uses a situation-operator model to
formalize the changes in the environment as a sequence of scenes and actions. This
formalization is then used to implement the cognition-based control for the system.

In spite of above mentioned advances, low-cost flexible mobile robots are still a distant
reality primarily due to the hardware and software issues in the design and the difficulty in
their integration. The performance improvements that can be realized through the
partitioning of applications in FPGA hardware are discussed in Galanis, Dimitroulakos
and Goutis [17]. The use of reconfigurable hardware components, like Field Programmable
Gate Arrays (FPGAs), for hardware and software reconfiguration has been discussed in a
number of recent publications [10, 14, 18, 25, 27]. In this paper, an alternate approach to
the design of intelligent mobile robots is addressed through the systematic partitioning of
the overall system. The functionalities that require changing execution paths or those that
impact performance are assigned resources that allow both hardware and software
reconfiguration. A hierarchical architecture that allows for plug-and-play and fault tolerance
at the lowest level and for learning and adaptive behaviors at the highest level is proposed
where both the real-time performance and system intelligence can be addressed. The
features of this architecture are then exploited in the design of reconfigurable hardware and
software modules that aid in the implementation of embedded controllers for intelligent
mobile robots [11, 28, 38, 44]. The proposed design methodology is demonstrated through
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the design of low cost robotic platforms that are easily configured at run-time, are capable
of intelligent fault handling, and can collaborate and attain higher levels of functionality.

The rest of the paper is organized as follows. Section 2 presents the architectural
requirements and a hierarchical architecture for intelligent mobile robots. The hardware and
software requirements for such systems are discussed in Section 3. The experimental setup
is presented in Section 4 and the experimental results in the implementation of
reconfigurable robots are presented in Section 5. The major contributions of the paper
and the future research directions are presented in Section 6.

2 Architectural Requirements for Intelligent Mobile Robots

An intelligent mobile robot must be capable of sensing the environment, have situational
awareness based on the world models and the perceived information, and be able to choose
appropriate behaviors that maximize the success of the task objectives. The architectures of
such systems must address issues such as:

* The ability to dynamically configure and retask individual robots,

* The ability of the robots to identify and accommodate system faults,
e Distributed /centralized control of the robot teams,

* Information and resource sharing between multiple robots, and

* The efficiency of fault tolerance and learning algorithms.

The design must also address real-time and non real-time issues in sensor fusion,
communication between network nodes, and the automation of the decision making
process. These issues will be addressed using the architecture shown in Fig. 1. The design
methodology developed in this paper is motivated by the 4D/RCS architecture [3] and
enables the design of simple components whose performance can be rigorously analyzed.
This architecture has evolved from the works of Passino [2] and the researchers at the
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Fig. 1 Architecture for intelligent reconfigurable mobile robots
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National Institute of Standards (NIST) in Gaithesburg, Maryland. Complex hierarchical
systems can them be constructed using these low-level building blocks. This architecture is
hierarchical in nature and allows system intelligence to be incorporated at all levels of the
hierarchy.

The architecture in Fig. 1 envisions one or more robotic agents working as a group. At
the lowest level (L1), each robot agent has a control agent (CA), an actuator agent (AA),
and a sensor agent (SA). The control agent is responsible for attaining the commanded
system performance at the lowest level. It can command the sensor agent to override its
output values, recalibrate its signal, as well as perform rudimentary signal processing like
filtering. The AA and SA have the lowest level of autonomy and are completely controlled
by the control agent. This level (L1) is characterized by stringent real-time requirements
and deterministic behaviors. At a very fundamental level, this design is adequate for a
robotic agent to function and perform repetitive tasks in a structured environment.

In the hierarchical model shown in Fig. 1, the layer L2 is designed to meet the
requirements of fault tolerance, uncertainty in the system model and the environment. In
this layer, the sensory signals from Layer L1 are processed by the Estimator Agent (EA).
The output of the Estimator is then used to modify/update the local representation of the
World Model (WM). The Planning Agent (PA) utilizes the information from the local
model of the world (WM) and the high-level task requirements to generate a plan that is
communicated to the control agent in layer L1. While L1 is characterized by reactive
control loops driven by tight real-time requirements, L2 incorporates elements that instill
“intelligence” in the robot and is characterized by increased autonomy and less stringent
real-time requirements.

A team of robots may consist of a number of individual robots possibly with differing
sensor/actuator suites and capabilities. Tasking of individual robots and coordination
between robots in a team are managed by the PA entity at the level of the robot group (L3).
Information sharing between L2 entities is controlled by the entities in L3. This increases
the security of the implementation because the L2 entities can function independently of
each other, while still functioning in a coordinated manner. Team-level sensor fusion
amongst the different robotic agents is accomplished by the EA at L3. This EA module is
used to update the world model (WM) in Layer 3. This WM also manages the information
sharing among the robot agents in L2. The planning agent (PA) in this layer does the task
decomposition from the mission requirements and updates the individual PAs in L2. Layer
4 (L4) manages the coordination between groups of robot agents. The highest level of
intelligence and autonomy and the lowest level of real-time criticality characterize L4.
Dynamic reassignment of the responsibilities of each group is handled by L4.

The architecture described above is flexible and is not dependent on the type of
controllers or algorithms implemented in any given layer. The hardware and software
design that implements this architecture is now described.

3 Hardware and Software Requirements

In this section, the features of the embedded controllers that are suited for use in the
architecture proposed in Section 2 are discussed. Traditionally, embedded controllers were
implemented as specialized algorithms in a microprocessor based system. While general
purpose microprocessors afford flexibility in the design of the software, this advantage is
usually offset by inefficiencies in the implementation. Application Specific ICs (ASICs)
offer high efficiency in the implementation but lack the flexibility required by many
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applications. Software based reconfiguration provides the required flexibility in the
implementation but is limited by the capability of the hardware and could also lead to
excessive computational overheads. The objectives of efficiency and flexibility can be
simultaneously met using Field Programmable Gate Arrays (FPGAs). Hardware—software
co-design methods can then be used to design systems that are not only flexible but are
highly efficient. The requirements for such a design are elaborated in this section.

3.1 Hardware Requirements for Reconfigurable Computing

Reconfigurable Computing is the ability of the system to reach through the hardware layer
and change the data path for execution. FPGA-based reconfigurable hardware facilitates the
implementation of intelligent robots where the configuration of individual robots can be
modified to suit the needs of the application and the behavior of the robot team can be
modified to accomplish overall mission objectives. In order to harness the power of
hardware reconfiguration, the system should be partitioned into tasks executable in software
and hardware. The tasks that require high levels of computations and stringent real-time
operation can be implemented in hardware while tasks for general purpose computing can
be implemented in software. The types of reconfigurations possible with these devices and
the partitioning of the tasks for co-design are now discussed.

3.1.1 Full Vs Partial Reconfiguration

Built in ‘Self Test’ is the first task executed on system startup to verify proper functioning
of the hardware. On successful completion of the startup sequence, the system transitions
into an operational mode. Traditionally, the test sequences that could be run were limited by
the functionality of the hardware. This limitation can be overcome by harnessing the
reconfiguration power of a FPGA. Here, a first configuration is loaded for self test, and on
successful completion, a run-time configuration is loaded onto the FPGA device. This type
of reconfiguration is called Full Reconfiguration. Since the system can be optimized for
every task separately, the overall performance is improved. Often, a system requires only a
portion of its functionality to be changed, especially during fault recovery where there
might be a need to reconfigure only the sensing module or simply bypass the sensor. This
can be done using Partial Reconfiguration. Partial Reconfiguration is supported by some
FPGAs where a portion of the circuitry is reconfigured while the rest of the device is
unaffected and remains in operation. Partial Reconfiguration is useful in robotic
applications where the sensing/actuation needs and task requirements change in a dynamic
fashion.

3.1.2 Static Vs Dynamic Reconfiguration

Static Reconfiguration is the process where the system has to be taken offline and
configured before it goes into operation. On the other hand, dynamic reconfiguration can
take place while the system is under operation. However, care has to be exercised to prevent
changing portions of the hardware during execution to prevent unforeseen outcomes.
Dynamic reconfiguration is essential when it is not feasible to take the system off-line to
implement changes. Depending on the system requirements, partial reconfiguration can be
static or dynamic.
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Fig. 2 Logical diagram of Layer 2 entities and interfaces to Layer 1

3.2 Software Architecture and Co-design

Reconfigurable hardware enables the implementation of optimized hardware components
for different tasks of the robot. For this approach to be successful, the associated software
components have to be designed simultaneously so that the changing execution paths in
hardware are supported by the required software functionality. In order to achieve this, each
layer in the architecture in Section 2 is packaged separately with well defined interfaces that
enable interlayer communications and data exchange. For example, the interactions
between the L1 and L2 entities are through well defined interfaces as shown in Fig. 2.
Such an abstraction will allow for both centralized as well as distributed implementation of
the controller software and is independent of the actual implementation. The desired
functionality is depicted as a ‘Use Case’ model in Fig. 3.

4 Experimental Setup

The architecture detailed in Sections 2 and 3 will be implemented in a team of robots and
the ability of each robot to be dynamically configured, tasked, as well as to coordinate with
other robots will be demonstrated. In this section, the experimental setup for the
implementation is first described. A mathematical model of the robot is developed and
the control strategy is then formulated.
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4.1 Robot Platform

The robot platform used for the experimental validation of the design concepts is built using
the ‘Tamiya Xtreme’ radio control truck with 1/10 scale monster truck chassis. This truck
has high performance servos for independent steering and all wheel drive (Fig. 4). The
dynamics of this robot are given as follows.

X=ugcosd; V= uysing; (ﬁ:w,- (1)

where (x, y) is the position of the robot in an arbitrary frame of reference and w; is the
desired angular velocity (Fig. 5). u = [uy u;,]T represents the control input to the robot and
comprises of the desired velocity (#,) and the steering command (u;). The range for the
steering angle 6 is 0°<0<180°, with 90° representing the straight ahead position. #<90°
corresponds to the robot steering left and #>90° corresponds to robot steering right. It can
be seen from Eq. 1 that the heading angle, ¢, of the robot is obtained by integrating the
steering angle along the trajectory of the robot.
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Fig. 4 Prototype mobile robot
testbed with Virtex II pro recon-
figurable platform

a. Controller for Wall Following: In a task where the robot is required to navigate along a
wall, the control problem can be decoupled and the steering control treated independent
of the velocity control for the robot. The robot is usually required to move forward at a
constant velocity unless this behavior is modified by the need to avoid obstacles or
other task requirements. The steering control in this case is specified as (Fig. 6):

up, = 90° + K, (K,, (df —d,) + Ky (df ; d _ d)) (2)

where dj;, d, are the distance of the front and the rear wheels from the wall. (dj; d,)
represents the deviation from the line parallel to the wall, d is the desired spacing, and
K, K are the feedback gains. K(= +1) is a constant that represents the location of the
robot with respect to the wall and ensures that the robot steers away from the wall
whenever @ > d. It can be easily seen that the control strategy ensures proper wall
following by correcting errors in heading (dj; d,) and the error in the average distance

from the wall (@ —d

Fig. 5 Kinematic representation 4
of the robot
Y e NS A .
U, - \Vehicle velocity
@ - Heading
g - Steering angle
0(0,0) X X
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b. Controller for Leader-following: A simple leader—follower configuration of two
autonomous robots is shown in the Fig. 7. Here R; is the lead robot with the control
input vector u; = [ug uhl]T and R, is the follower robot with the control input vector
uy = [ug  up)

The desired separation between the two robots is d?, and the desired relative bearing is
¢9,. The current separation between the robots d;, and the current relative bearing 5 can
be found based on the visual tag as seen in the follower camera image plane.

dip =ka + %

| ()
P12 = (ke + o (x —x))— ¢

12

where x = % and X' = @ (as seen in the image plane Fig. 7) and ‘N’ is the number of

? (%.5%.8,)

>
* | Il |

g X Xy X3
Fig. 7 a Leader/follower configuration for two robots b Image of beacon in the camera frame
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pixels of the visual tag as seen in the camera image plane. k1, kvp, kq1, and kg, are the gains
to be tuned to estimate the calculated distance and bearing values.

The above leader—follower robot system can be transformed to a new set of kinematic
equations where the states of the leader and follower can be taken as input and [d,-,- pj} " as
output [13].

X2 = Fiuy + Giup
: (4)

012 = up — up

where X, = [dij pr}r is the output of the leader—follower system, 8, = 6, — 6, is the
orientation of follower with respect to leader, u; = [ug uhl}r is the control input to Ry,
Uy = [up uhz]T is the control input to R,, and

[ .
COS Y2 5 siny, —cosp;, O
G = s Fi=| g (5)
—sinyj, % COSY|, sn;{ﬂ -1
dix dix 12

where ¥, = 6; — 6, + ¢, and [ is the length of the robot.
From Eq. 4, the input u; can be independently selected for the leader and the dynamics
of the follower robot can be linearized by the control u, = Gf‘ (P — Fyuy). Then, setting

P= [:EH) , and tuning k; and k, will minimize the separation error <d;j.—d,--) and the

"

heading error (gaj - gc,./.) [13].

4.2 Hardware Platform

The key requirement for the hardware is the ability to implement different circuit
combinations to address the needs of different tasks. Upegui and Sanchez [41] exploit the
reconfigurability of the FPGAs to load up different circuits at startup and at run-times. Fault
recovery based on partial run-time reconfiguration using FPGA was discussed addressed by
Will, Marzwell & Chau [45]; Wu & Madsen [47]; Paulsson, Hubner, Jung & Becker [30]
among others. In recent times, the design of dynamically reconfigurable robots was address
by many researchers. Ferrandi, Marco and Donatella [15] presented a design methodology
for dynamic reconfiguration. A reconfigurable mobile robot navigation system was
developed by Meng [25]. A framework for modular robotics was discussed in [36, 42].
A detailed description of designing partial and dynamically reconfigurable applications on
Virtex-II FPGAs is given in [6, 8, 12, 26, 34, 35, 40, 48]. In the experimental setup
described in this paper, reconfiguration of system hardware is accomplished using a Xilinx
Virtex-II Pro FPGA based controller card.

The Virtex-II Pro device is a user programmable gate array with embedded PowerPC
processor and embedded high-speed serial transceivers [49]. The architecture is coarse
grained and consists of a number of basic cells called configurable logic blocks (CLBs).
These logic blocks are arranged in rows and columns, with each CLB consisting of four
logic cells arranged in two slices (Fig. 8). Each CLB also contains logic that implements a
four-input look up tables (LUTs) [14]. Each slice contains two function generators, two
storage elements, arithmetic logic gates, large multiplexers, wide function capability, fast
carry look ahead chain, and horizontal cascade chains. The function generators are
configurable as four input look up tables (LUTs), 16-bit shift registers, or as 16-bit selective
RAM memory. Each CLB also has fast interconnect and connects to a generalized routing
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Fig. 8 Internal architecture of Xilinx Virtex II pro FPGA device

matrix (GRM) to access general routing resources. The Virtex-II Pro has SelectlO-Ultra
blocks (IOBs) that provide the interface between the package pins and the internal
configurable logic. Active ‘Interconnect Technology’ is used to connect these components.
The overall interconnection is hierarchical and is designed to support high speed designs.

The control and management of partial reconfiguration of SRAM-based FPGAs is done
through the JTAG or SelectMAP interfaces. The selection of the interface is based on the
Area Overhead and the Reconfiguration Latency. SelectMAP interface is highly suitable
when minimum reconfiguration latency is required. On the other hand, the JTAG interface
is preferable if significant control over the placement of reconfigurable modules in the
reconfiguration fabric of the FPGA chip is desired [39]. Virtex-II Pro FPGAs also has
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Internal Configuration Access Port (ICAP) which provides configuration access for the
partial reconfiguration of the FPGA logic. This interface is a subset of the SelectMAP
Interface [7, 8]. The ICAP resides in the static portion of the FPGA and care must be taken
during reconfiguration to prevent its modification.

The process of implementing a general purpose 1O is demonstrated in Fig. 9. The design
includes a PowerPC processor core (PPC405) connected to the high bandwidth processor
local bus (PLB) and a bridge connecting the PLB and the on-chip peripheral bus (OPB).
The required peripherals are simply connected to the OPB. If subsequent reconfiguration of
the system requires communication capabilities, say serial communication, then a different
module containing a UART can be generated and connected to the OPB. Module based
reconfiguration will then result in enhanced system capability. Since the reconfiguration can
be done in real time while the system is operational, system components can be added in
real time to address changing needs during the retasking of the system.

The Partial Reconfiguration design flow with two partially reconfigurable modules is
shown in Fig. 10. Hardware modules not required in the base operating mode are stored as
modules in an external memory, while the modules that are common to all the operational
modes are created in the static portion of the FPGA. Static Modules (Static Module 1 and
Static Module 2 in Fig. 10) communicate with the PR Modules through the Bus Macros. On
power-up, initial configuration bitstream is loaded onto the FPGA. The initial configuration
bitstream consists of the static modules and the initial PR modules. The internal
BlockRAMs are initialized with the program code for the PPC405, and the program
executes automatically after the configuration is loaded. The program running on the
PPC405 then loads the bitstream, and then sends it through ICAP port, partially reconfiguring
the PR Module. The new partial bitstream replaces the old partial bitstream. The program
running on the PPC405 retains its state throughout the partial reconfiguration process.

OPB
L) On-board
SRAM Controller —| " zram
ICAP

Wireless Transceiver
Interface Module

Motar Drive Interface
Module

PLB Wheel Encoder Interface
Module

Steering Drive Interface
g Module

Reconfigurable Module
I I’

Reconfigurable Module

l'

QOperations from
o= PowerPC

On Chip
Block RAM

Virtex Il Pro Development Board
Fig. 9 Architecture of the prototype testbed
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The programmable elements in the Virtex-II Pro, including the routing resources, are
controlled by values stored in the static memory cells. The device is configured by loading
the bitstream into the internal configuration memory. These values can be reloaded to
change the functions of the programmable elements. Partial reconfiguration can be achieved
in one of the two ways, namely module-based partial reconfiguration or small-bit
manipulations [48]. In the module-based reconfiguration, the entire module is reconfigured.
The height of the reconfigurable module is the height of the device and the module can
cover one or more columns. In small-bit manipulations, the reconfiguration is done by
making a small change in the design, and then generating a bit-stream based only on the
differences in the two designs. Switching the configuration from one implementation to
another is easy and very quick.

4.3 Fault Accommodation Using Dynamic Reconfiguration

Dynamic partial reconfiguration in the team of robots can be used to improve system
reliability in the event of system faults. Such fault accommodation strategy can be
centralized or implemented in an autonomous manner. Sequence diagrams for Centralized
and Autonomous fault handling are shown in Figs. 11 and 12, respectively.

In the Centralized fault handling, a Control Agent runs on a remote host machine and
formulates the strategy to handle the faults occurring in any robot in the team. Given the
overall team objectives and the availability of resources, the faulty robot and/or other robots
in the team can be reconfigured by the remote agent. On the other hand, in Autonomous
fault handling, the fault handling strategies are implemented on each of the robots. In the
event of a fault, individual robots collaborate with other team members to reconfigure and
accomplish a subset of overall task objectives.
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Fig. 11 Sequence diagram showing centralized fault handling and reconfiguration
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Fig. 12 Sequence diagram showing autonomous fault handling and reconfiguration

5 Experimental Results

The application of reconfigurable computing in the design of autonomous intelligent robots
is demonstrated through implementation case studies. In these case studies, the architecture
and hardware described in Sections 2 and 3, are implemented on the robotic platform
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described in Section 4. Using the interfaces specified in Fig. 2, system faults can easily be
simulated by overriding the “status” flag of a sensor object [38]. In each control cycle, the
sensed values and their status are taken into account and the control strategy is determined.
The response to specific faults is determined at design time and can require a combination
of software and / or hardware changes. The experimental results in this section demonstrate
the dynamic configuration of the robots, modification of runtime behaviors, and
reconfiguration based fault handling using both hardware and software modifications.

The prototype test bed of the robot is retrofitted with US Digital EM1 & HEDS-
9100-G00 transmissive optical encoders, SHARP GP2D02 Infrared range sensors, a low
power multi-channel wireless transceiver (RX-Wi 232 DTS manufactured by Radio-
tronix, Inc.), a CMUCam capable of transmitting 17 frames per second, and a HiTec
HS-945MG high torque servo for steering. The Mobile base uses the Virtex-II Pro
FPGA board (Memec V2PFF672) for on-board processing of vision, control algorithms,
and for initiating dynamic reconfiguration of robot behavior. In the base configuration
of the robot, only the wheel encoders and the servos are active. This enables the robot
to follow set trajectories and accomplish simple navigation tasks. The component
diagram for the software implementation is shown in Fig. 13, where the relevant modules
are loaded based on the configuration that is chosen. Reconfiguration of the system results
in the simultaneous modification of both the hardware components as well as the
associated sofiware modules. Therefore, only a minimal set of hardware and software
components are active at any given instant, thereby improving the efficiency of the system.
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Fig. 13 Component diagram — Software modules and their dependencies
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Fig. 14 Collaboration diagram — Activation and deactivation of robot behaviors

a.

Robot Configuration: At startup, each robot is assigned a unique ID and assigned to a

team. The configuration ‘spec sheet’ on each robot lists the available sensors, their
calibration information, and scaling parameters. This information is utilized to
download the specific hardware configuration files and base control software on each
robot. The collaboration diagram showing the configuration and activation of different
performance modes is shown in Fig. 14. In the base mode, navigation is accomplished
through the use of the wheel encoders and a PID controller for velocity control. This
behavior can be dynamically altered by the inclusion of an obstacle avoidance scheme
using infrared proximity sensors or the CMUCam. If obstacle avoidance is implemented
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Fig. 15 Processing of raw IR sensor data in hardware
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Fig. 16 a Distance to the wall vs raw data b Distance to the wall vs error

using IR sensors, then the FPGA is reconfigured to route and process the IR signal. The
processing of the IR signal in hardware is shown in Fig. 15. The hardware and software
combination implements the IR interface and provides the distance to the obstacle in a
convenient form to the software. This is in contrast to conventional systems where
hardware resources have to be assigned to the sensor irrespective of whether obstacle
avoidance is required or not.

b. Wall Following Configuration: In order for the robot to navigate along a wall while
maintaining the desired separation from the wall, the control algorithm is modified as
shown in Fig. 6. Here, two infrared sensors on the side of the robot towards the wall are
configured by loading the appropriate VHDL modules into the FPGA. Simultaneously,
appropriate software modules are also loaded and the calibration data of the sensors is
used to maintain a desired velocity as separation from the wall. The sensitivity of the
sensor in detecting a “white” wall versus a “gray” wall is shown in Fig. 16a and b. It
can be seen that the output of the sensor is identical for both white as well as gray
colored walls up to a distance of 0.8 m. However, the sensor output is nonlinear and
linearization of the sensor would result in unacceptable errors for distances below
0.25 m or above 0.4 m. The performance of the sensor can be improved by
incorporating a look up table that incorporates the performance data in Fig. 6a. The
performance of the robot while navigating along a straight wall and a curved wall is
shown in Fig. 17.
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Fig. 17 Wall following behavior: a Straight wall and b Curved wall
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c. Leader—follower Configuration: In this example, a lead robot is configured to navigate
by following along a wall. The second robot uses the information from the CMU Cam to
detect the lead robot and follow it. The CMU Cam is a small, relatively low-cost OV6620
Omnivision CMOS digital camera coupled with an SX28 microcontroller and provides
simple high-level image processing data for end-user applications. The CMUCam can
identify and track colored objects that fall within given RGB (Red, Green, Blue) values at
up to 17 frames per second with 80 % 143 resolution. It can also provide information about
the object such as the center, size (in pixels), and the confidence of detection. In the
leader-follower configuration, the lead robot is assigned a unique color tag and the
controller for leader—follower configuration is loaded into the second robot. The pixel
size of the tag indicates the separation between the leader and the follower. The horizontal
distance of the centroid of the tag from the center of the image represents the heading of
the follower relative to the leader. Proximity sensors are used to avoid collisions with the
wall. The performance of the follower robot is shown in Fig. 18. It can be seen that
vision based navigation results in larger errors but frees up the second robot from
complex computations for planning and executing specific tasks.

The tracking error in vision based navigation is influenced by the quality of the camera
and the sophistication of the image processing software. While the above experiment was
designed to illustrate the advantages of hardware/software based reconfiguration, in a
practical implementation, a tradeoff between cost and performance must be performed
before the selection of camera and other system components.

d. Autonomous Fault Handling Using Dynamic Reconfiguration of the Robots: In this
example, the ability of the robots to dynamically reconfigure is exploited for fail safe
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Fig. 18 Vision based tracking using CMUCam
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Fig. 19 Dynamic modification of behavior using partial reconfiguration of the hardware

operation and for improved reliability. Here the robot (Robot 2) is executing a task
navigating along a wall. The distance from the wall is measured using two infrared
sensors mounted on the side of the robot. The location of the robot is updated in each
control cycle using the outputs of the two wheel encoders. Sensing failures can be
catastrophic and incapacitate a robot. In such an instance, the failure is broadcast as an
‘SOS’ message and ‘Robot 1’ in the vicinity responds by approaching the last known
location of the failed robot. Robot 1 communicates its presence to Robot 2 and the list
of available onboard sensors is exchanged between the robots. The negotiation between
Robots 1 and 2 results in the selection of appropriate sensors necessary for both the
robots to function as a team in the leader—follower mode. In the case study, the onboard

OnReconfigurationFailure()
Fig. 20 State diagram of the three-behavior robot
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Table 1 Utilization of the FPGA by the Overall design without using partial reconfigurable FPGAs

Module Occupied slices Equivalent gate count
(total: 4,928)

Slice count Percentage

Static modules only 2,862 58.1% 1,967,380

Static modules + wall following behavior module 2,983 60.5% 2,061,154

Static modules + wall following + leader/follower behavior 3,273 66.5% 2,192,918
modules

Static modules + wall following + leader/follower + 3,463 70.3% 2,380,516
obstacle avoidance behavior modules

Overall design without using partial reconfigurable FPGAs 3,509 71.2% 2,412,137

camera on Robot 2 is configured and utilized to identify Robot 1. Robot 2 uses the
visual data to align itself with respect to the lead robot and then configures itself into
leader—follower mode. On reconfiguration, the team functions cooperatively and Robot
1 leads Robot 2 back to its destination. The performance of the robots is shown in
Fig. 19. The state diagram depicting the transition between the behaviors of the robots
is shown in Fig. 20.

The above example, while simple, illustrates the power of dynamic system reconfigu-
ration to modify functionality, as well as accommodate system failures. While the selection
of different behavior modules appears automatic, this can only be accomplished through the
creation of appropriate modules and switching criteria at the design time.

6 Summary

In this paper, the development of intelligent robots using reconfigurable computational
hardware and software was presented. The proposed design is modular and incurs minimal
hardware and computational overhead for each operational mode of the system. Case
studies in basic navigation, wall following and leader-following illustrate the design
procedure and the benefits of hardware/software co-design.

The basic navigation, wall following, and leader following modules are implemented in
the partially reconfigurable modules. It can be seen from Table 1 that the static modules,

Table 2 Utilization of the FPGA by the Overall design when implemented on partially reconfigurable
FPGAs

Module Occupied slices Equivalent gate count
(total: 4,928)

Slice count Percentage

Static modules only 2,862 58.1% 1,967,380

Static modules + wall following behavior module 3,001 61% 2,062,930

Static modules + wall following + leader/follower behavior 3,162 64.1% 2,170,551
modules

Static modules + wall following + leader/follower + 3,188 64.7% 2,190,868
obstacle avoidance behavior modules

Overall design using partially reconfigurable FPGAs 3,205 65.04% 2,202,382
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comprising of the PowerPC core, Bus interface modules, the OPB and PLB buses etc.,
occupy 58.1% of the available FPGA space (equivalent gate count of 1,967,380) while the
‘wall follower’ behavior module and the ‘leader follower’ behavior modules occupy 2.4%
(equivalent gate count 93,774) and 8.4% (equivalent gate count 225,538)of the FPGA
space, respectively. Implementing all these modules in the static portion of the FPGA
without partial reconfiguration would require 71.2% of the FPGA space (equivalent gate
count 2,412,137) with the additional software overheads. As the number of behavior
modules on the robot increases, the slice count also increases. This means that only a
limited functionality can be implemented in static designs. This would a serious problem if
a single robot is to be used for executing numerous tasks.

The problem discussed above can be addressed by implementing the same design in the
FPGA using partial dynamic reconfiguration and the results are shown in Table 2. In this
case, the overall slice count is the sum of slice count of the static portion and the slice count
of the partial reconfigurable module (PR Module in Figure 21). The size of the PR Module
should be at least of the largest behavior module size. In our design we allocated 9% of the
FPGA for the PR Module which is sufficient to accommodate any behavior. Using partial
reconfigurable FPGAs, all the three behavior modules can be accommodated within 65% of
the FPGA space (shown in Table 2). The bitstream of all the behavior modules are stored in
an external memory and the appropriate behavior is accommodated into the PR Module as
of when required. So as the number of the behavior modules increases, the slice count of
the FPGA doesn’t vary much. This gives the flexibility of using a single robot for
performing various tasks without increasing the slice count on the FPGA.

The bit-streams of each of the reconfigurable modules are stored in an external memory
(30 MB memory card) and the reconfiguration is accomplished through the SelectMAP
interface at 50 MHz clock speed. The average resulting bit-stream for each of the
configurations is 1,175 kB resulting in a reconfiguration time of 23.4 ms and a worst net
delay of about 9.686 ns. From these results, it can be seen that the reconfiguration can be
achieved within the duration of a standard control cycle. While these results demonstrate
the implementation for two simple behaviors in the robots, the FPGA utilization and
efficiency becomes significant as the number of required behaviors in a robot increase. This
also leads to an efficient implementation as online learning leads to the refinement of the
behavior modules.

7 Conclusions

In this paper, the design of intelligent robots based on reconfigurable FPGA based hardware
was addressed. Hardware—Software co-design techniques were used to implement a
hierarchical architecture that enables the implementation of fault tolerant designs. Concepts
from rapid prototyping were utilized to model and implement the hardware and software
components and for the development of teams of intelligent reconfigurable robots. Case
studies demonstrate that these robots can be individually configured and tasked at run-time.
These systems are also shown to be flexible, robust, and efficient. The case studies also
show that this methodology allows for the realization of complex behaviors in robots using
FPGA based reconfigurable hardware. The architecture and design methodology presented
opens new horizons in the development of evolvable systems that was not possible using
traditional design techniques.
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