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A Novel Neural Networ k-Based Asphalt Compaction Analyzer

S. COMMURI AND M. ZAMAN

Achieving the desired density during field compaction of asphalt méxesitical to
meeting the design specifications of an asphalt pavement. Existing techmegasure the
density of asphalt mixes at a discrete number of points. As such, dlcesgris
cumbersome, time consuming, and is not indicative of the overall compaciieved
unless large amounts of data is collected and analyzed. In this paperorieept of a
novel neural network-based asphalt compaction analyzer capable of predictidgribiey
continuously, in real time, during the construction of the pavement semtexl. The
concept is verified using laboratory data from an asphalt vibratory compa&ioc).

The compaction analyzer is based on the hypothesis that a vibratory conmgattie
hot mix asphalt (HMA) mat form a coupled system having unique vibration pespédithe
measured vibrations of the compactor along with the process paranstehsas lift
thickness, mix type, mix temperature, and compaction pressure caedbéoupredict the
density of the asphalt mat. Vibration data obtained during compaction of aspha#f mix
the laboratory is used to design and train the neural network (NN). réiveed neural
network is then used to continuously predict the degree of compactioal iime. The
proposed approach is validated through compaction studies in the laboratory. iRegfm
field studies demonstrate the capability of the analyzer in predi¢hiagdensity of an
asphalt pavement during construction.

Keywords. Intelligent Compaction, Asphalt Pavements, Neuralwdeks, Compaction

Analyzer
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1. Introduction
Improper compaction during the construction is an importaontributor to early
deterioration of asphalt pavements (Commuri and Zag@06; HAPI, 2003; Maher et al.,
2001). Not achieving the desired density during compaction carit nesypotholes,
excessive rutting, cracking and other signs of failure.aécurate measurement of density
in the field can be obtained by extracting cores from ¢cbhmpleted pavement. While
density measured from the core is an accurate représarddthe compaction quality at a
given location, this method may not provide an indicabdrihe quality of the overall
pavement. Also, coring locations are susceptible to dsti@ough moisture intrusion. So,
it is desirable to keep the number of cores to a minirftdughes, 1984; Sherocman, 1984;
Scherocman and Martenson, 1984).

A non-destructive approach used frequently involves measumteof density using a
nuclear density gauge. A nuclear gauge contains a smallrarad a radioactive isotope
that emits gamma radiation (HAPI, 2003). When the ramhais incident on the asphalt
pavement, part of the radiation is reflected from thye durface while the rest propagates
through the asphalt mat. A portion of the radiationt ttnavels through the mat gets
scattered back as it encounters different layerseftphalt pavement and the subgrade.

The percentage of backscattered radiation along witthibkness of the asphalt mat can

be used to predict the compaction density. Nuclear degsitges require special training
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and license for their use and have accuracy of about #®5(D.065 g/cri) (Burati and
Elzoghi, 1987; Sebesta et al., 2005). Another device used sureedensity in the field is
the PQI 301 non-nuclear density gauge from Pavement TechnologPTI, 2005). This
device works on the premise that the electrical propdrtthe® asphalt is related to its
density and has a level of accuracy of about 2.56 (/41 g/cr) (Sebesta et al. 2005).
While the nuclear density gauge and PQI 301 gauge provide dengitg @bmpacted
asphalt mat at discrete points, multiple reading® hiawe taken at each location and then
averaged in order to provide a more accurate assessmdensify. This further slows
down the quality control process.

The design of an Intelligent Asphalt Compaction AnafydACA) that can predict the
level of compaction of an asphalt specimen in reaétis presented in this paper. The
IACA is based on the hypothesis that a vibratory compaatdr the Hot Mix Asphalt
(HMA) form a coupled system which produces -characteristigrations during
compaction. These vibration frequencies are analyzed heil telationship to the
properties of the asphalt mat is studied. This reladhipns used to design and train a
neural network for predicting the density of the HMA rdating compaction. Laboratory
studies using an Asphalt Vibratory Compactor (AVC) argt tonducted to validate the
proposed technique. The results show that the vibratibttse compactor are influenced
not only by the density of the HMA, but also by the rtype, lift thickness, and the
compaction equipment used. The neural network is showawe the ability to classify the
features extracted from the vibration signals as thosesponding to specific densities of
the asphalt mat. Further, the generalization capabilifethe neural network enable it to

provide reasonable density predictions when presented wighdiferent from the set
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used to train the network. The vibration data collectesnfa compactor during field
compaction indicates that the proposed approach can temdex for continuously
predicting the density of an asphalt pavement in the diering construction.
2. Background and related work
2.1 Background

The importance of good construction practices and quadgyrance in the field for
achieving the desired levels of compaction is well understétmvever, the lack of
adequate tools for ensuring the compacted density has beesblanprfor the paving
industry and the Department of Transportation (DOT) nows states. Several researchers
have tried to develop techniques for continuous measuremérdensity of a HMA
pavement during construction. Intelligent compaction is pnocess of continuously
determining the density of the soil or asphalt during conraat real-time by studying
the response characteristics of the compaction equipri®®dam and Kopf, 2000).
Research in intelligent compaction traces back to dvdytyears. In recent years, it has
seen significant interest and applications, both iratta&lemia and the industry.

The behavior of the HMA under load conditions is dependéthe properties of the
individual components and of the volumetric compositidrthe mix. In mechanistic-
empirical design of HMA pavements, the response ofpgheement e.g., deflections,
stresses, and strains within the pavement structuraiding HMA layers), is computed
and these responses are used to predict the amount of rattd cracking. For linear

visco-elastic materials, such as HMA mixtures, thesststrain relationship under a

continuous sinusoidal loading is defined by its complex dynalmdulus(E*). The

complex modulus is defined as the ratio of the amplibfdee sinusoidal stress¢s) and
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the amplitude of the sinusoidal strafe). Thus, the complex dynamic modulus is

mathematically expressed by the following equation:

opsin(at)

£ = gsin(at-¢)’

(1)

* g
£

where

0y = Peak (maximum) stress,

& = Peak (maximum) strain,

@= Phase angle (radians),

a = angular velocity (radians/second),
t = time (seconds).

The “dynamic modulus” is defined as the absolute valuesottimplex modulus, i.e.

* g . *
E'|=—2, and is usually denoted &s.

€o

The material model for the asphalt cement (AC) lagean equation that relates the
dynamic modulus of the AC to parameters such as temperatsiphalt content and air
voids content. The “Witczak” model (Ayers et al., 1998) ascommon empirical
relationships used to predict the dynamic modulus basebeoimdividual components of
the HMA. In this model, the dynamic modulus at a giveading time and temperature is
assumed to be the elastic modulus and depends on a nomthesign factors like the

viscosity of the asphalfy), the effective asphalt content (% by volumehy ), etc., and

the construction parameters like the percentage air Vdid. dynamic modulusg” (in
10’ psi), can be expressed using the Witczak equation as fof{layers et al., 1998):

Vot

logE" =-1.24993% 0.029284- 0.0017f@,,)° - 0.00284%t  0.005869  O.
Ving +V,

+3.871977— 0.0024, + 0.0039p8; - 0.000Qp§8)2+ 0.0054y
-0.603313 0.313351l4g )~ 0.393532(a)

1+ e(
(2)

where‘f’ is the loading frequency (in HZ)y' is the binder viscosity at the temperature of

interest (in10° poise), V,’ is the air void content (% by volume) V.’ is the effective
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bitumen content (% by volume)p;,’ is the cumulative % retained on the 19 mm sieve (%
by mass), ps5’ is the cumulative % retained on the 9.5 mm sievéoyemass), p,’ is the
cumulative % retained on the 4.76 mm sieve (% by massd),0,,,’ is the cumulative %
retained on the 0.075 mm sieve (% by mass).

It can be seen from equation (2) that even when thgrdparameters are fixed, the
dynamic modulus is influenced by the amount of air voidghe HMA specimen being
compacted. Since the vibration of the asphalt compatitang the construction of the
pavement is a function of the dynamic modulus of the paw, these vibrations can be
monitored to estimate the amount of air voids in the catepaHMA.

The real-time analysis of the vibrations of the cochpato predict the compacted
density of the HMA pavement has been the focus of a nuofbesearch studies in the
past. Yoo and Selig (1979) studied the dynamic charactsristigibratory compactors
and developed an analytical model to predict the amoumnefgy transferred to the
asphalt mat during compaction. Machine parameters (freguepeed) can then be altered
to maximize the energy transferred, thereby increasingetied of compaction. However,
this method does not directly yield the compacted densége&chers also tried to study
the performance of a compactor by observing the vibratesponse of the compactor
(Mooney, 2004). Sandstrom (1998) utilized frequency and amplafidgbration of the
roller as it passes over the ground to compute the stadulus and a “plastic” parameter
pertaining to subgrade soil. These values were then usedljust the speed of the
compactor and its frequency and amplitude. Minchin (1999) estimthe ‘degree of
compaction’by comparing the amplitude of the fundamental frequencyilmétion with

the amplitudes of its harmonics. By relating the rafisexond harmonic of the vibratory
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signal to amplitude of third harmonic, it was possibleptedict the compacted density
with, in some cases, 80% accuracy. To estimate densitgns®dn (2000) attempted to
account for some of the variations seen in the wbyatesponses of compactors by
considering properties of HMA and site characteristios addition to the vibratory

response of the compactor. Jaselskis (1997) used an h&oghfferent approach using
microwave signals.

The research mentioned above achieved varying degrergadss in predicting the
density of the asphalt mat during compaction primarily duheir inability to account for
factors in the field such as the characteristicshef compactor, subgrade characteristics,
and mix properties. These unaccounted parameters makeattieglrapplication of the
techniques difficult. In recent years, some of theshriques have been used to develop
commercial prototypes by a number of equipment manufastufé@e primary Intelligent
Compaction products are (a) Compactometer (GEODYNAMIK, 20@) Bomag
VarioControl (BVC) (BOMAG, 2005), (c) AMMANN CompactiorExpert (ACE)
(AMMANN, 2005).

While the research in intelligent compaction was ss&fcé to some extent in
determining the relationships between measured quantitteslensity, these methods are
difficult to implement in the field. The primary reastor the lack of success is that many
of the previous studies focused on determining a set of neshsatues that would be
indicative of density under all conditions. Unforturkatéhere are many factors in the field
such as the characteristics of the compactor, subgradactéristics, and mix properties
that cannot be adequately taken into consideration indloellations. These parameters

can cause significant variations in the vibratory resparise compactor making these
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techniques inaccurate for most practical applicationsreftwe, successful intelligent
compaction techniques must be able to take into accoumhpagtant process parameters
in the computation or prediction of the HMA density. time following section, an
experimental setup is described that will be used to shalyariations in the vibrations of
the compactor as a function of different parameti#estang compaction of asphalt mixes.
2.2 Experimental setup

ST
j

Accelerometers

Figure 1. Experimental(i)etup for compaction of HMA ségz:tnierlhe laboratory
(a) Asphalt Vibratory Compactor; (b) xPC Reah& Computer

The experimental setup used to examine the changes ifretiigency content of
vibrations during the compaction process is shown in FigufEhis experimental set up
comprises of an Asphalt Vibratory Compactor (AVC) instented with accelerometers,
and a real-time data acquisition system to analyzeitination characteristics and predict
density. This compactor, manufactured by Pavement Techndteg (PTI, 2005), was
chosen because the compaction process using the AVQnikwrsto the compaction

process using a vibratory compactor in the field (JacksdnCamenby, 1998). Vibrations

of the AVC frame during compaction are translated intdtages using a tri-axial
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accelerometer capable of measuring accelerations alorgge tbrthogonal axes. A
CXL10HF3 accelerometer from Crossbow (Crossbow, 2005) btamd measuring 10 g
acceleration up to 10 kHz, was used to measure the vibratibtse AVC during
compaction tests. The signal produced by this acceleronsetinen read by the data
acquisition system. The data acquisition system usedisncase, the xPC target (The
MathWorks, 2005), is a rapid prototyping tool that can congephical models of the
data acquisition circuitry into software that canesecuted in real-time. The xPC target is
an Intel Pentium processor-based embedded computer andfiguoed using Simulink
(The MathWorks, 2005). The Simulink software is widely usedyfaphical programming
and has capabilities that allow designing and testing sgstsing real data. Furthermore,
models created in Simulink can be compiled to run in rea on different hardware
platforms.
2.3 Related work

The objective of compaction is to increase the demditthe asphalt mix so that the
desired mechanical properties of the asphalt mat &iewatl. Generally, the target density
is set on the basis of either relative or absolutasure of compaction. A relative
measurement of target density may use a percentagalodratory standard. For example,
a specification may require a minimum of 95% of the maxmdensity obtained from a
Marshall (AASHTO T 245-97) test. Another type of speafion commonly used is an
absolute measure of a void-less mix or a percentage afdkeanum theoretical density, as
determined by the AASHTO Test Method T 209-94. The compaofitime asphalt mix in
the field is achieved using vibratory compactors. Vibratmmypactors that are commonly

used in the field consist of two steel drums that asanted on the axle to which eccentric
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weights are attached. The rotation of the eccentaghts within the drum causes an
impact force at the contact between the drum and thieaismat. The amplitude of the
impact is a function of the displacement of the atae weights. The spacing between
subsequent impacts on the asphalt mat is a functidrecteed of rotation of the eccentric
weights and the speed of the roller. Thus, for a seecitompactor, the amount of
compaction achieved, i.e. the density achieved, is a functicthe frequency and the
amplitude of vibrations. Further, the compaction achiealed depends on the type of the
asphalt mix, the lay-down temperature, and the lift theds, among others. Since the
roller and the asphalt mat form a coupled system,vibmtions of the roller during
compaction depends on the mat properties. Thus, theigitsaif the roller, along with the
process parameters like mix type, lift thickness et lme used to predict the density of
the compacted mix.

The development of an intelligent compaction analyzdrased on determining the
relationship between the structural vibrations of the cabgpaand the compacted density
of an asphalt specimen. In order to accomplish tkigral tests are first conducted in the
laboratory to determine the repeatability and consigtefidhe results and to study the
effect of different process parameters on the congaof a HMA specimen. In the AVC,
Hot Mix Asphalt (HMA) is placed in a rectangular molddathe compaction time and
pressure are set. To start the compaction process.ekabric motors that rotate the
eccentric weights, thereby vibrating the compaction haesl turned on. The compaction
head is lowered till it comes in contact with the Boasphalt mix. The vibrating
compaction head is lowered further and pressure impartdeelgyneumatic cylinder for a

specified duration. The application of pressure and vibratrgrgy results in the
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compaction of the specimen. The vibrations of the AVid the HMA specimen being
compacted are measured using tri-axial accelerometexsdatio the AVC frame (Figure
1).

In the experimental study, 14.33 Ibs. (6.5 kgs) of HMA at®°BQa48.9C) was
placed in the mold and compacted using the AVC. The compagsts carried out for 35
seconds with a forward pressure of 14.5 psi (100 kPa) andkapbessure of 5.8 psi (40
kPa), corresponding to a compaction pressure of 19.5 psi (134.DkPlag¢ sample. The
accelerometer readings were sampled at 2000 Hz and tb&ogpam of the vibratory
signal was computed. The spectrogram in Figure 2 showsstinidution of the vibration
energy at different frequencies over time. In Figuré& 2an be seen that the vibration
head is initially not in contact with the mix and asamsequence the observed vibrations
are the free vibrations of the AVC. An analysis of 8pectrogram (Figure 2a) indicates
that the natural frequency of vibration of the AVC priorthe compaction head making

contact with the
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Figure 2. Spectrogram of the AVC vibrations during the cotmpaof a sample specimen
(a) High frequency components; (b) Low frequency compa@nent
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(a) (b)
Figure 3. Spectrogram of the AVC vibration during compacbéra pre-compacted
specimen: (a) High frequency components; (b) Low frequenayponents.

0 B

specimen is about 58 Hz. It is also clear that the tidoracharacteristics are significantly
different once the head comes in contact with the spti At this point (at 64 seconds),
the frequencies of vibration are predominantly in the 25-35réizge. This can be seen
from the spectrogram showing the low frequencies (Fi@me During the compaction
process, the spectral distribution of the energy coatiy changes till the vibration energy
is concentrated at about 28 Hz. After this point, thegneoncentration becomes constant
indicating that the maximum compaction has been achidoedhe specified mix,
temperature, compaction pressure and frequency.

In order to verify that the changes observed insgectrogram were a result of the
compaction of the HMA specimen, a pre-compacted specahdhe same temperature
(14.33 Ibs. (6.5 kgs) HMA at 30B (148.9C)) was placed in the AVC and the experiment
repeated. The spectrogram (Figure 3), in this case, didamé&in gradual variations in
frequencies, but exhibited the spectral distribution smudahat seen when the HMA mix
was originally compacted (Figure 2). Thus, the power spectmepresents the

characteristic of the material being compacted and theteiyr compactor. While it is
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difficult to estimate the density based on the reteiop between the harmonic content of
the vibratory signal as attempted in the literatures reliable to compare the vibrations of
the compactor with those obtained when the mat has bempacted to the specified
density. While the actual magnitude of the vibrations fé¢reint frequencies is different in
Figure 2 and Figure 3, the location of the frequencies winereenergy is distributed is

consistent. Thus, all other parameters being the ,sHmeobserved vibrations appear to

primarily depend on the density of the compacted specirBemce the operational
parameters are different for different compactors aso abry from job to job, the
analyzer should be designed in such a manner as to tseeitthio consideration during the
prediction process. These observations are used idetsign of the compaction analyzer
for predicting the density achieved during the compactiomga® The smearing of the
signal after 72 seconds in Figure 2(b) and 3(b) is due to ti®mof the AVC, as it
comes to rest on completion of the compaction process.

Figure 4 shows the spectrum of the vibrations of an safleRand DD-130 dual-
drum vibrating compactor during the construction of a HMAguagnt. These vibrations
were measured using a 5g tri-axial accelerometer mountdtedrame of the steel drum.
In Figure 4, the power spectrum of the vibrations is shfmwrhree passes over the same
stretch of an asphalt pavement under constructiocaritbe seen from the spectrograms
that the vibration response of the compactor is muteshvaélompacting loose mix that is
typically encountered during the first pass of compadtiogure 4(a)). During the second
pass over the same stretch of the pavement, theesisffof the mat is increased due to the
compaction. As a result, the frequency response dttimpactor - asphalt mat’ coupled

system is different (Figure 4(b)). Specifically, the wifton energy is concentrated in bands
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of frequencies; the locations and power content of thasds are indicative of the level of
compaction achieved. In the third pass of the compactor thhée same stretch, these
features are more pronounced as can be seen in FigureTg)location and magnitude
of these vibrations are a function of the propertiethefcoupled system. The progression
of compaction in both these cases, namely using the A\dGsdratory compactors in the
field, is the motivation for using the AVC in the labanatto study the effect of different

process parameters on the density achieved during compaction

Spectmogram of Vibmtions during the First Pass Spectmgram of Vibmations during the Second Pass
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(a) First Pass (b) Second Pass

Spectmgram of Vibmtions during the Third Pass
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(c) Third Pass
Figure 4. Spectrogram of the vibrations of a DD-130 compactangithie construction of
a HMA pavement.
3. Experimental procedure

The analysis of the compaction results in the prevéamesion shows that the primary

vibrations of the AVC are in the range of 0 Hz to 800 Hzr&fore, a sampling rate of
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2000 Hz is chosen so that the fundamental frequency arhtitmonics can be sampled
without any appreciable distortion. As noted earlier, degelopment of the compaction
analyzer is based on the hypothesis that the featuireg®&ed from the vibration signal of a
compactor are sufficient and reliable to determine thvellef densification achieved

during the compaction process. The following steps are osachteve this goal:

* Read the signals from the instrumented compactor ardthie signals to eliminate
noise and other undesirable quantities.

» Perform a Fast Fourier Transform (FFT) on the daienfthe accelerometer and
determine the power (in decibels) of the signal at diffefrequencies. Extract the
key features of the signals, i.e. frequencies and thhesgmynding power.

» Compare the extracted features with the features pamedgg to a set of known
densities.

» Calculate the predicted density based on the resultstiie previous step and the
knowledge of the process parameters, i.e. mix type, smapdrature, type of
compactor, etc.

The functional schematic of the compaction analygehown in Figure 5.

Acceleromete

Output
—> Sensol Feature Extract: Neural Networ Compactior
Module "I  (preprocessor) Classifier >  Analyzer |
Process| ]
Parameterfs I

Figure 5. Schematic representation of the process useéetinmining density.
The sensor module consists of accelerometers fasunmg the vibrations of the

compactor during operation, infrared temperature sensorsdasuring the temperature of
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the mix, means for selecting the amplitude and frequeriche vibration motors, and
means for recording the mix type and lift thickness. Theiature tri-axial accelerometer
(2 inch x 1 inch x 1 inch) used in the experimental setup wemeufactured by Summit
Instruments (Cleveland, OH). These accelerometeaulk goeasure up té 10 g with low
noise (5 mg rms) level and high sensitivity (420 mV/g)e Thbration signals were
sampled at 2000 samples/second using a Mathworks xPCmeatoimputer running on a
Intel Pentium 4 processor and with embedded data acquisitgtem. The sensor module
also contains an Analog to Digital converter that coisvére input from an analog to a
digital value. The input is sampled at a rate of 2 khtzia presented as input to the feature
extractor (FE) module. The FE module implements & Fasrier Transform (FFT) of the
input signal to extract the features corresponding to tdms at different salient
frequencies. Pre-processing the data to extract thedsateduces the amount of data to be
considered in the classification process, and therdfeealgorithmic complexity of the
classifier is reduced. The Neural Network Classifier msudti-layer Neural Network (NN)
that is trained to classify the extracted features ohfferent classes. The Compaction
Analyzer then post-processes the output of the NN aediqis the degree of compaction
in real time.

In the implementation of the FE module, the samplatg of 2 kHz implies that the
signals up to 1 kHz are effectively represented in thekhsignal. The FFT is computed
by taking a window of samples at each instant. The cizdne window determines the
accuracy in the time and frequency domain. For exampsamall window size would
represent high accuracy in the time domain but very @mouracy in the frequency

domain. On the other hand, a large window would lead tblhigccurate frequency
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measurements but poor time domain correlation. In théemgnmtation reported in this
paper, a window of 512 samples is considered for calcglaétie FFT. The output of the
FFT is an array of 256 elements, with the elementesenting the power spectrum of the
signal. These 256 frequency bands represent the vibratignefneies from 0-1000 Hz.
However, not all these frequency bands are of intarestonly 200 bands representing the
frequency range from 10-800 Hz are considered in the analyssseffectively eliminates
the influence of the DC components and the higher ordendmics of the fundamental
frequency in the vibration signal.

The NN classifier implemented is a three layer wibh 200 inputs, 10 nodes in the
input layer, 4 nodes in the hidden layer, and 1 node in thmublatyer. The inputs of the
NN correspond to the outputs of the feature extractioduie, i.e. in this case the 200
frequency bands in the spectrum of the vibrations. Sine€fundamental frequency, i.e.
the frequency setting of the AVC, is around 58 Hz, tguutinodes are adequate to
represent the effect of the fundamental frequency anthatmonics. The output of the
neural network corresponds to a signal indicative ofekellof compaction reached. The
method to extract the training data, and validate the pealoce of the Compaction
Analyzer is discussed in the next section.

3.1 Design of the density prediction module

The density prediction module post-processes the outptliteoNN and predicts the
degree of compaction achieved. Several tests were codductthe laboratory using
different mix types, lift thickness, compaction pressae] the vibration data from each
test was analyzed. The densities obtained during eatiesd tests are also measured after

the compacted specimen is cooled and cored. The vibratfathe AVC in the final few
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seconds of compaction are considered representatiVie afeinsity achieved at the end of
the specific run. In the implementation, a total of 1021& ¢g@ints were used to train the
NN to estimate four different levels of compactiomisTtraining data is presented to the
NN in the form of a matrix containing 200 rows and 1020 colunhss, each column of
the training pattern consists of the features extraatexh instant pertaining to a specific
density. The density achieved is specified as the targptiofor the NN to achieve. The
correlation between the density values and the NN ougpestablished by running the
vibration data obtained during these experiments througfe#tere extractor and the NN
classifier and correlating this output with the densitibtained.
4. Validation of the compaction analyzer in the laboratory
The first step in the validation process is the deteation of the important process
parameters and their effect on the density achieved throamgpaction of the mix. A S3
type mix was used in this part of the study and compaciwned out for a range of
design and operational parameters (see Table 1). Frone Tabit is seen that the
aggregates have a nominal size of 0.75 inch (19 mm). Pdrtmemesign parameters are
presented below, with the acceptable values indicatedrentbeesis: Voids in Mineral
Aggregates, VMA =13.9% (> 13%); Voids Filled with AsphMEA = 76.2% (70-80%);
and optimum Asphalt Cement (AC) content = 5%. PG 64yg2 binder was used in the
mix. Additional details on the mix properties are gilnGonalez (2006).

In the first set of tests, 14.33 Ibs. (6.5 kg) of loose asphalt was compacted in the
AVC at a compaction pressure of 120 psi (827.4 kPa). Thee logg was heated to
305.6F (152C) and compacted in the AVC for different durations. Attempaction, the

specimen was cooled and cores extracted. The denskig obmpacted specimen was
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Table 1. Gradation for Mix S3

Sieve No. Job Formula (% passing sieve)
25.4mm (1in) 100
19 mm (0.75 in) 98
12.7 mm (0.5 in) 88
9.52 mm (0.375 in) 72
No. 4; 4.75 mm (0.187 in) 40
No. 8; 2.36 mm (0.0929 in) 30
No. 16; 1.18 mm (0.0464 in) 21
No. 30; 0.6 mm (0.0236 in) 16
No. 50; 0.3 mm (0.0118 in) 11
No. 100; 0.15 mm (0.0059 in) 8
No. 200; 0.075 mm (0.0029 in) 4.2
Table 2. Summary of Tests
Test | Time | Temperature Pressure Specimen Frequency | % Air
ID s °C CF) kPa (psi) Weight Voids
kg (Ib)
TI1 40 152 (305.6)| 827.4 (120 6.5 (14.33 60 16
TI2 40 152 (305.6)| 827.4 (120 6.5 (14.33 60 17.5
TI3 45 152 (305.6)| 827.4 (120 6.5 (14.33 60 7.5
TI4 45 152 (305.6)| 827.4 (120 6.5 (14.33 60 6.7
TIS 50 152 (305.6)| 827.4 (120 6.5 (14.33 60 6.6
TI6 50 152 (305.6)| 827.4 (120 6.5 (14.33 60 6.9
TI7 55 152 (305.6)| 827.4 (120 6.5 (14.33 60 4.9
TI8 55 152 (305.6)| 827.4 (120 6.5 (14.33 60 4.9
TE1 60 122 (251.6)] 827.4 (120Q) 6.5 (14.33 60 8.8
TE2 60 122 (251.6)] 827.4 (120Q) 6.5 (14.33 60 100
TE3 60 132 (269.6)] 827.4 (120Q) 6.5 (14.33 60 6.6
TE4 60 142 (287.6)] 827.4 (120Q) 6.5 (14.33 60 7.3
TES 60 142 (287.6)] 827.4 (120Q) 6.5 (14.33 60 6.5
TE6 60 152 (305.6)] 827.4 (120Q) 6.5 (14.33 60 5.5
TE7 60 152 (305.6)] 827.4 (120Q) 6.5 (14.33 60 6.4
PR1 60 152 (305.6 551.6 (80 6.5 (14.33 60 18|0
PR2 60 152 (305.6 551.6 (80 6.5 (14.33 60 1719
PR3 60 152 (305.6 620.5 (90 6.5 (14.33 60 12}1
PR4 60 152 (305.6 620.5 (90 6.5 (14.33 60 10|8
PR5 60 152 (305.6 689.5 (100) 6.5 (14.33) 60 9.p
PR6 60 152 (305.6 689.5 (100) 6.5 (14.33) 60 8.p
PR7 60 152 (305.6 758.4 (110) 6.5 (14.33) 60 8.F
PR8 60 152 (305.6 758.4 (110) 6.5 (14.33) 60 8.p
WE1 60 152 (305.6)] 827.4 (120Q) 3.5(7.71) 60 8.6
WE2 60 152 (305.6)] 827.4 (120Q) 3.5(7.71) 60 5.6
WE3 60 152 (305.6)] 827.4 (120Q) 4.5 (9.9) 60 5.4
WEA4 60 152 (305.6)] 827.4 (120Q) 4.5 (9.9) 60 6.4
WES 60 152 (305.6)] 827.4 (120Q) 5.5(12.1) 60 5.5
WEG6 60 152 (305.6)] 827.4 (120Q) 5.5(12.1) 60 4.%
WE7 60 152 (305.6)] 827.4 (120Q) 6.5 (14.3) 60 5.1
WES 60 152 (305.6)] 827.4 (120Q) 6.5 (14.3) 60 5.0
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Table 3. Variation of Density with AVC Frequency.
Parameters: 6.5 kg (14.44 |b), 152 °C (305.6 °F) and 827.4 kPa (120 psi).

. Compacted Specimen Densit
Test ID AVC Frequency C(_)mpacnon Xveragsg/o air voids g
(H2) Time (secs)

FR1 20 40 17.7
FR2 20 80 17.5
FR3 20 120 16.2
FR4 40 40 9.5
FR5 40 80 9

FR6 40 120 8.8
FR7 60 40 8.6
FR8 60 80 7.2
FR9 60 300 5.4

measured according to AASHTO T-166 method. Results in Tableow that the density
achieved after compaction is consistent over repeatad.tiihe density increases with
compaction time, as expected. Tests were also condiecttddy the effect of compaction
pressure on the final density achieved (PR1-PR8 in Tablea®)ering the compaction
pressure increased the air void content in the compapeamen. For instance, reducing
the forward pressure from 120 psi to 80 psi resulted in apdserirthe air void content
from 6.4% to 17.9% for the same 80 seconds of compactiothefuat the lower pressure
of 80 psi, increasing the duration of compaction did notire@sa significant change in the
air void content. The effect of lift thickness waadéd by compacting different amounts
of loose mix. It was found that for the limited rangkthickness considered, the lift
thickness did not play any significant role in achievatdasities. However, for low lift
thicknesses, sometimes it was found difficult to obtadesired compaction level without
damaging the aggregates. Tests also reveal the difficultpmpacting the mix at lower
temperatures. It was found that lowering the temperaburéhe compacting pressure
resulted in less compaction for the same durationoofpaction (Tables 2 and 3). For

example, at a mix temperature of 262 the maximum allowed according to the mix
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specification, 60 seconds compaction resulted in an &roantent of 6 %. On the other
hand, reducing the mix temperature to ¥22esulted in an air void content of 8.8 % for
the same duration of compaction.

4.1 Analysis of the vibrations of the AVC during compaction

While the results presented in Tables 2 and 3 clearly demade the effect of different
process parameters on the density achieved on compaittismecessary to study the
vibrations of the AVC during each of these tests to deteritihe feasibility of predicting
the density based on the vibrations. The spectrogranige ahéasured vibrations indicate
that tests with identical process parameters and coegpaensity have similar vibration
characteristics. In order to facilitate this comparjsim key frequency bands were first
determined from the spectrogram. A bank of ten filteashewith a bandwidth of 0.5 Hz
was then used to isolate the vibrations of the AVChesé 10 regions at the end of the
compaction cycle. The output of this filter bank repréese¢he vibration signature of the
AVC that was then be correlated with the compactedityemisthe specimen.

The final second of the vibration data of the AVC fests WE7 and WES8 is shown in
Figure 6. The compaction in both these tests was pertowith a compactive pressure of
827.4 kPa on a 6.5 kgs of loose mix at ¥52The resulting density in the two cases after
compacting for 60 seconds was 5.1% and 5.0% air voids, resgegctihe vibration
signatures in both these tests are very similar angtawn in Figure 6. The vibration
signature for tests PR5 and PR6 are also similar (geed-r). The vibration signatures for
tests TE5 and TE7 are shown in Figure 8. In these tdstgjcal samples were compacted
at temperatures of 132 and 142c, respectively. The density of the specimen at the end

of the compaction cycle was measured to be 6.5% and &r496ids, respectively. From
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the vibration signatures in Figures 8(a) and 8(b), itlmarseen that the temperature does
not affect the vibration signature to any discernabtergxFurther from Figures 7 and 8, it
can be seen that the vibration signatures while diffédrem those in Figure 6, are similar
for a given set of process parameters. However, ibeaseen that the vibration signature
for compaction at 100 psi (689.5 kPa), Figure 7(b), is markefigreht from the vibration
signature seen when using a compaction pressure of 120 pgi KBj.(Figure 8(b)). The

same inference can also be drawn from Figures 8 and 9.

Vibration Signature with Specimen Weight of 6.5 kg Vibration Signature with Specimen Weight of 6.5 kg

[+ 5.1% AlrVoids | [+ 5.0%ArVoids |

12 12

1 1
ua 8and & I sar Band 6

Band 7 Band 7
06 06
Band8  Pand &

4 4
9 Band 5 9
02l Bandl Band2 Band3 Band \i:‘;o o2l Band1 Band2 Band3 Band4 Band8 Band§, Band 10

1

Figure 6. Vibration signature of identical tests run at 42{827.4 kPa)
(a) Test WE7; (b) Test WES

Vibration Signature with Compaction Pressure of 682.5 kPA(100 PSI) Vibration Signature with Compaction Pressure of 682.5 kPA(100 PSI)

L= St Alrdds | I = BZmArdds

1t 1t
Band 7
08 08 \k\i

Band 1 Band & Band 1

/‘\/w it s \’W i m/‘ - s
0z WM\W&W M"’Vv—v 02 V\Jm%w\w %m\m

Fandy: Band 5 Band 9 Band 2 Band 4 Band & Bana 8 8and 10

o 1 2 3 4 5 8 7 8 9 10 0 1 2 3 4 5 8 7 B El 10

(a) (b)
Figure 7. Comparison of vibration signatures for identests run at 100 psi (689.5 kPa):
(a) Test PR5; (b) Test PR6
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\ibration Signature with Specimen Temperaiure of 142 degrees Celsius \fibration Signature with Specimen Temperaiure of 152 degrees Celsius
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(a) (b)
Figure 8. Vibration signature of tests TE5 and TE7 atrdiffetemperatures:
(a) Test TES; (b) Test TE7

Vibration Signature with Specimen Weight of 3.5kg (7.71 Ibs)
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Figure 9. Vibration signature of Test WE2

The above analysis shows that while the vibration sigea are consistent for a given set
of process parameters and compacted density, theseusematre different when the

process parameters change. Thus, in order to predict thitydeased on the vibrations of

the compactor, one has to account not only for the tdms but also the design

parameters during compaction.

4.2 Performance of the compaction analyzer in predicting density during compaction

The data gathered in the previous tests was analyzed eonitet the key features of

interest in the spectrum of the vibratory signals.sTihformation was used to design the
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feature extractor and the NN classifier components efctimpaction analyzer. The NN
was trained to detect four primary regions correspondindifferent densities during
compaction. The four regions selected are a) free wimsat of the compactor
corresponding to zero compaction; b) vibrations correspgntb compaction head in
initial contact with the loose mix, i.e. start diet compaction process; c) vibrations
corresponding to 92% compaction; and d) vibrations corresppnaif4% compaction of
the specimen. Here, 100% compaction implies that thatgerighe specimen is equal to
its theoretical maximum density. The functioning of the paation analyzer was verified
by presenting it with vibration data collected while compaca specimen during different
tests. The different features extracted from the lacmeeter output during the compaction
process and the estimates of the density are showgureFLO.

The ability of the compaction analyzer to predict demsity was tested by manually
shutting down the AVC when the analyzer indicated thatrhix had reached the target
density. The target densities were selected as the ylehsiie specimen corresponding to
the four regions that the NN was trained to recogniablel4 shows the density specified
in each case and the density actually achieved during testirismiglear from these tests
that the compaction analyzer can be used to predictdémsity of the mix during

compaction in the laboratory.

Table 4. Use of the Analyzer in Compacting Asphalt Mix To A Desired Density.

S. No Desired Density Achieved Density

(% Gmm) Test 1 Test 2 Test 3 Test 4 Test 5
1 92.0 92.9 92.9 92.2 92.8 92.9
2 94.0 93.6 94.2 94.2 93.7 93.6
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The results in Table 4 indicate that for a specified tadgesity of 92%, the compacted
specimen reached a mean density of 92.7% with a standaatidewf 0.304. The 95%
confidence interval for the first set of tests olgdirusing the Student’s t-distribution is

[92.7+ 0.3, i.e. [92.32, 93.08]. Similarly when the specified target itheris 94%, the

compacted specimen was found to have reached a mearyddr&3t 9% with a standard
deviation of 0.313. The 95% confidence interval in this case [@8.48, 94.25]. The
results indicate that in both the cases, there©B% confidence that the achieved density is
within 1.25% of the target density.

5. Conclusions and Future Research

In this paper, the design and implementation of a neetalark-based asphalt compaction
analyzer was presented. The vibrations of the compakctang the compaction process
were shown to depend on the density of the mat and thesgrpaeameters like mix type,

lift thickness, mix temperature, etc. Data from labomaand field experiments was used

25 0f 31



to train and calibrate the compaction analyzer. Theselts demonstrate the ability of the
compaction analyzer to continuously predict the demsitgal time. Variability in mix and

design as well as the compaction equipment, can bey easibunted for by loading the
neural network with the appropriate weights obtained durmggttaining phase of the
calibration process. The ability of the compaction yrel to predict density of the HMA

pavement during construction has been validated in the dimddthe research results will
be presented in future publications. Currently, researcnderway to automate the
learning and density prediction process. Field calibrati@htasting is also underway to
validate the performance under a wide variety of cambti The use of such an intelligent
compaction analyzer will significantly aid in the qualigpntrol process during the
construction of a pavement and will result in long lasaing better quality roads while

reducing the cost of construction and maintenance o€tiisal infrastructure.
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