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Achieving the desired density during field compaction of asphalt mixes is critical to 

meeting the design specifications of an asphalt pavement. Existing techniques measure the 

density of asphalt mixes at a discrete number of points. As such, the process is 

cumbersome, time consuming, and is not indicative of the overall compaction achieved 

unless large amounts of data is collected and analyzed. In this paper, the concept of a 

novel neural network-based asphalt compaction analyzer capable of predicting the density 

continuously, in real time, during the construction of the pavement is presented. The 

concept is verified using laboratory data from an asphalt vibratory compactor (AVC). 

 The compaction analyzer is based on the hypothesis that a vibratory compactor and the 

hot mix asphalt (HMA) mat form a coupled system having unique vibration properties. The 

measured vibrations of the compactor along with the process parameters such as lift 

thickness, mix type, mix temperature, and compaction pressure can be used to predict the 

density of the asphalt mat. Vibration data obtained during compaction of asphalt mixes in 

the laboratory is used to design and train the neural network (NN). The trained neural 

network is then used to continuously predict the degree of compaction in real time. The 

proposed approach is validated through compaction studies in the laboratory. Preliminary 

field studies demonstrate the capability of the analyzer in predicting the density of an 

asphalt pavement during construction. 

Keywords: Intelligent Compaction, Asphalt Pavements, Neural Networks, Compaction 

Analyzer 
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1. Introduction 

Improper compaction during the construction is an important contributor to early 

deterioration of asphalt pavements (Commuri and Zaman, 2006; HAPI, 2003; Maher et al., 

2001). Not achieving the desired density during compaction can result in potholes, 

excessive rutting, cracking and other signs of failure.  An accurate measurement of density 

in the field can be obtained by extracting cores from the completed pavement. While 

density measured from the core is an accurate representation of the compaction quality at a 

given location, this method may not provide an indication of the quality of the overall 

pavement. Also, coring locations are susceptible to distress through moisture intrusion. So, 

it is desirable to keep the number of cores to a minimum (Hughes, 1984; Sherocman, 1984; 

Scherocman and Martenson, 1984).  

 A non-destructive approach used frequently involves measurement of density using a 

nuclear density gauge. A nuclear gauge contains a small amount of a radioactive isotope 

that emits gamma radiation (HAPI, 2003). When the radiation is incident on the asphalt 

pavement, part of the radiation is reflected from the top surface while the rest propagates 

through the asphalt mat. A portion of the radiation that travels through the mat gets 

scattered back as it encounters different layers of the asphalt pavement and the subgrade. 

The percentage of backscattered radiation along with the thickness of the asphalt mat can 

be used to predict the compaction density. Nuclear density gauges require special training 
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and license for their use and have accuracy of about 4.05 lb/ft3 (0.065 g/cm3) (Burati and 

Elzoghi, 1987; Sebesta et al., 2005). Another device used to measure density in the field is 

the PQI 301 non-nuclear density gauge from Pavement Technology Inc (PTI, 2005).  This 

device works on the premise that the electrical property of the asphalt is related to its 

density and has a level of accuracy of about 2.56 lb/ft3 (0.041 g/cm3) (Sebesta et al. 2005). 

While the nuclear density gauge and PQI 301 gauge provide density of the compacted 

asphalt mat at discrete points, multiple readings have to be taken at each location and then 

averaged in order to provide a more accurate assessment of density. This further slows 

down the quality control process. 

 The design of an Intelligent Asphalt Compaction Analyzer (IACA) that can predict the 

level of compaction of an asphalt specimen in real time is presented in this paper. The 

IACA is based on the hypothesis that a vibratory compactor and the Hot Mix Asphalt 

(HMA) form a coupled system which produces characteristic vibrations during 

compaction. These vibration frequencies are analyzed and their relationship to the 

properties of the asphalt mat is studied.  This relationship is used to design and train a 

neural network for predicting the density of the HMA mat during compaction.  Laboratory 

studies using an Asphalt Vibratory Compactor (AVC) are first conducted to validate the 

proposed technique. The results show that the vibrations of the compactor are influenced 

not only by the density of the HMA, but also by the mix type, lift thickness, and the 

compaction equipment used. The neural network is shown to have the ability to classify the 

features extracted from the vibration signals as those corresponding to specific densities of 

the asphalt mat. Further, the generalization capabilities of the neural network enable it to 

provide reasonable density predictions when presented with data different from the set 
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used to train the network. The vibration data collected from a compactor during field 

compaction indicates that the proposed approach can be extended for continuously 

predicting the density of an asphalt pavement in the field during construction. 

2. Background and related work 
 
2.1 Background 

 The importance of good construction practices and quality assurance in the field for 

achieving the desired levels of compaction is well understood. However, the lack of 

adequate tools for ensuring the compacted density has been a problem for the paving 

industry and the Department of Transportation (DOT) in various states. Several researchers 

have tried to develop techniques for continuous measurements of density of a HMA 

pavement during construction. Intelligent compaction is the process of continuously 

determining the density of the soil or asphalt during compaction in real-time by studying 

the response characteristics of the compaction equipment (Adam and Kopf, 2000). 

Research in intelligent compaction traces back to over thirty years. In recent years, it has 

seen significant interest and applications, both in the academia and the industry. 

 The behavior of the HMA under load conditions is dependent of the properties of the 

individual components and of the volumetric composition of the mix. In mechanistic-

empirical design of HMA pavements, the response of the pavement e.g., deflections, 

stresses, and strains within the pavement structure (including HMA layers), is computed 

and these responses are used to predict the amount of rutting and cracking. For linear 

visco-elastic materials, such as HMA mixtures, the stress-strain relationship under a 

continuous sinusoidal loading is defined by its complex dynamic modulus ( )*E . The 

complex modulus is defined as the ratio of the amplitude of the sinusoidal stresses ( )σ  and 
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the amplitude of the sinusoidal strain ( ).ε  Thus, the complex dynamic modulus is 

mathematically expressed by the following equation: 

( )
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The “dynamic modulus” is defined as the absolute value of the complex modulus, i.e. 
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 The material model for the asphalt cement (AC) layer is an equation that relates the 

dynamic modulus of the AC to parameters such as temperature, asphalt content and air 

voids content. The “Witczak” model (Ayers et al., 1998) is a common empirical 

relationships used to predict the dynamic modulus based on the individual components of 

the HMA. In this model, the dynamic modulus at a given loading time and temperature is 

assumed to be the elastic modulus and depends on a number of design factors like the 

viscosity of the asphalt ( ),η  the effective asphalt content (% by volume – effVb ), etc., and 

the construction parameters like the percentage air void. The dynamic modulus, *E  (in 

510 psi), can be expressed using the Witczak equation as follows (Ayers et al., 1998): 
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(2) 
where ‘f’  is the loading frequency (in Hz), ‘η’ is the binder viscosity at the temperature of 

interest (in 610  poise), ‘ aV ’ is the air void content (% by volume),  ‘beffV ’ is the effective 
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bitumen content (% by volume), ‘34ρ ’ is the cumulative % retained on the 19 mm sieve (% 

by mass), ‘ 38ρ ’ is the cumulative % retained on the 9.5 mm sieve (% by mass), ‘ 4ρ ’ is the 

cumulative % retained on the 4.76 mm sieve (% by mass), and ‘ 200ρ ’ is the cumulative % 

retained on the 0.075 mm sieve (% by mass).  

 It can be seen from equation (2) that even when the design parameters are fixed, the 

dynamic modulus is influenced by the amount of air voids in the HMA specimen being 

compacted. Since the vibration of the asphalt compactor during the construction of the 

pavement is a function of the dynamic modulus of the pavement, these vibrations can be 

monitored to estimate the amount of air voids in the compacted HMA.  

 The real-time analysis of the vibrations of the compactor to predict the compacted 

density of the HMA pavement has been the focus of a number of research studies in the 

past.  Yoo and Selig (1979) studied the dynamic characteristics of vibratory compactors 

and developed an analytical model to predict the amount of energy transferred to the 

asphalt mat during compaction. Machine parameters (frequency, speed) can then be altered 

to maximize the energy transferred, thereby increasing the level of compaction. However, 

this method does not directly yield the compacted density. Researchers also tried to study 

the performance of a compactor by observing the vibratory response of the compactor 

(Mooney, 2004). Sandstrom (1998) utilized frequency and amplitude of vibration of the 

roller as it passes over the ground to compute the shear modulus and a “plastic” parameter 

pertaining to subgrade soil. These values were then used to adjust the speed of the 

compactor and its frequency and amplitude. Minchin (1999) estimated the ‘degree of 

compaction’ by comparing the amplitude of the fundamental frequency of vibration with 

the amplitudes of its harmonics. By relating the ratio of second harmonic of the vibratory 



 

7 of 31 

signal to amplitude of third harmonic, it was possible to predict the compacted density 

with, in some cases, 80% accuracy. To estimate density, Swanson (2000) attempted to 

account for some of the variations seen in the vibratory responses of compactors by 

considering properties of HMA and site characteristics, in addition to the vibratory 

response of the compactor. Jaselskis (1997) used an altogether different approach using 

microwave signals.  

 The research mentioned above achieved varying degrees of success in predicting the 

density of the asphalt mat during compaction primarily due to their inability to account for 

factors in the field such as the characteristics of the compactor, subgrade characteristics, 

and mix properties. These unaccounted parameters make the practical application of the 

techniques difficult. In recent years, some of these techniques have been used to develop 

commercial prototypes by a number of equipment manufacturers. The primary Intelligent 

Compaction products are (a) Compactometer (GEODYNAMIK, 2004), (b) Bomag 

VarioControl (BVC) (BOMAG, 2005), (c) AMMANN Compaction Expert (ACE) 

(AMMANN, 2005).  

 While the research in intelligent compaction was successful to some extent in 

determining the relationships between measured quantities and density, these methods are 

difficult to implement in the field. The primary reason for the lack of success is that many 

of the previous studies focused on determining a set of measured values that would be 

indicative of density under all conditions. Unfortunately, there are many factors in the field 

such as the characteristics of the compactor, subgrade characteristics, and mix properties 

that cannot be adequately taken into consideration in the calculations. These parameters 

can cause significant variations in the vibratory response of a compactor making these 
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techniques inaccurate for most practical applications. Therefore, successful intelligent 

compaction techniques must be able to take into account the important process parameters 

in the computation or prediction of the HMA density. In the following section, an 

experimental setup is described that will be used to study the variations in the vibrations of 

the compactor as a function of different parameters affecting compaction of asphalt mixes. 

2.2 Experimental setup 

           
   (a) (b) 
Figure 1. Experimental setup for compaction of HMA specimens in the laboratory 
      (a) Asphalt Vibratory Compactor; (b) xPC Real-Time Computer 
 
 The experimental setup used to examine the changes in the frequency content of 

vibrations during the compaction process is shown in Figure 1. This experimental set up 

comprises of an Asphalt Vibratory Compactor (AVC) instrumented with accelerometers, 

and a real-time data acquisition system to analyze the vibration characteristics and predict 

density. This compactor, manufactured by Pavement Technology Inc. (PTI, 2005), was 

chosen because the compaction process using the AVC is similar to the compaction 

process using a vibratory compactor in the field (Jackson and Owenby, 1998). Vibrations 

of the AVC frame during compaction are translated into voltages using a tri-axial 

Accelerometers 
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accelerometer capable of measuring accelerations along three orthogonal axes. A 

CXL10HF3 accelerometer from Crossbow (Crossbow, 2005), capable of measuring 10 g 

acceleration up to 10 kHz, was used to measure the vibrations of the AVC during 

compaction tests. The signal produced by this accelerometer is then read by the data 

acquisition system.  The data acquisition system used in this case, the xPC target (The 

MathWorks, 2005), is a rapid prototyping tool that can convert graphical models of the 

data acquisition circuitry into software that can be executed in real-time. The xPC target is 

an Intel Pentium processor-based embedded computer and is configured using Simulink 

(The MathWorks, 2005). The Simulink software is widely used for graphical programming 

and has capabilities that allow designing and testing systems using real data. Furthermore, 

models created in Simulink can be compiled to run in real time on different hardware 

platforms.  

2.3 Related work 

 The objective of compaction is to increase the density of the asphalt mix so that the 

desired mechanical properties of the asphalt mat are achieved. Generally, the target density 

is set on the basis of either relative or absolute measure of compaction. A relative 

measurement of target density may use a percentage of a laboratory standard. For example, 

a specification may require a minimum of 95% of the maximum density obtained from a 

Marshall (AASHTO T 245-97) test. Another type of specification commonly used is an 

absolute measure of a void-less mix or a percentage of the maximum theoretical density, as 

determined by the AASHTO Test Method T 209-94. The compaction of the asphalt mix in 

the field is achieved using vibratory compactors. Vibratory compactors that are commonly 

used in the field consist of two steel drums that are mounted on the axle to which eccentric 
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weights are attached. The rotation of the eccentric weights within the drum causes an 

impact force at the contact between the drum and the asphalt mat. The amplitude of the 

impact is a function of the displacement of the eccentric weights. The spacing between 

subsequent impacts on the asphalt mat is a function of the speed of rotation of the eccentric 

weights and the speed of the roller. Thus, for a specified compactor, the amount of 

compaction achieved, i.e. the density achieved, is a function of the frequency and the 

amplitude of vibrations. Further, the compaction achieved also depends on the type of the 

asphalt mix, the lay-down temperature, and the lift thickness, among others. Since the 

roller and the asphalt mat form a coupled system, the vibrations of the roller during 

compaction depends on the mat properties. Thus, the vibrations of the roller, along with the 

process parameters like mix type, lift thickness etc., can be used to predict the density of 

the compacted mix.  

  The development of an intelligent compaction analyzer is based on determining the 

relationship between the structural vibrations of the compactor and the compacted density 

of an asphalt specimen. In order to accomplish this, several tests are first conducted in the 

laboratory to determine the repeatability and consistency of the results and to study the 

effect of different process parameters on the compaction of a HMA specimen. In the AVC, 

Hot Mix Asphalt (HMA) is placed in a rectangular mold and the compaction time and 

pressure are set. To start the compaction process, two electric motors that rotate the 

eccentric weights, thereby vibrating the compaction head, are turned on. The compaction 

head is lowered till it comes in contact with the loose asphalt mix. The vibrating 

compaction head is lowered further and pressure imparted by the pneumatic cylinder for a 

specified duration. The application of pressure and vibratory energy results in the 
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compaction of the specimen. The vibrations of the AVC and the HMA specimen being 

compacted are measured using tri-axial accelerometers affixed to the AVC frame (Figure 

1). 

  In the experimental study, 14.33 lbs. (6.5 kgs) of HMA at 300oF (148.9oC) was 

placed in the mold and compacted using the AVC. The compaction was carried out for 35 

seconds with a forward pressure of 14.5 psi (100 kPa) and a back pressure of 5.8 psi (40 

kPa), corresponding to a compaction pressure of 19.5 psi (134.5 kPa) on the sample. The 

accelerometer readings were sampled at 2000 Hz and the spectrogram of the vibratory 

signal was computed. The spectrogram in Figure 2 shows the distribution of the vibration 

energy at different frequencies over time.  In Figure 2, it can be seen that the vibration 

head is initially not in contact with the mix and as a consequence the observed vibrations 

are the free vibrations of the AVC. An analysis of the spectrogram (Figure 2a) indicates 

that the natural frequency of vibration of the AVC prior to the compaction head making 

contact with the 

 
   (a) (b)   
Figure 2.  Spectrogram of the AVC vibrations during the compaction of a sample specimen  
 (a) High frequency components; (b) Low frequency components.  
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   (a) (b)   
Figure 3.  Spectrogram of the AVC vibration during compaction of a pre-compacted 

specimen: (a) High frequency components; (b) Low frequency components. 
 

specimen is about 58 Hz. It is also clear that the vibration characteristics are significantly 

different once the head comes in contact with the specimen. At this point (at 64 seconds), 

the frequencies of vibration are predominantly in the 25-35 Hz. range. This can be seen 

from the spectrogram showing the low frequencies (Figure 2b). During the compaction 

process, the spectral distribution of the energy continually changes till the vibration energy 

is concentrated at about 28 Hz. After this point, the energy concentration becomes constant 

indicating that the maximum compaction has been achieved for the specified mix, 

temperature, compaction pressure and frequency.   

  In order to verify that the changes observed in the spectrogram were a result of the 

compaction of the HMA specimen, a pre-compacted specimen at the same temperature 

(14.33 lbs. (6.5 kgs) HMA at 300oF (148.9oC)) was placed in the AVC and the experiment 

repeated. The spectrogram (Figure 3), in this case, did not contain gradual variations in 

frequencies, but exhibited the spectral distribution similar to that seen when the HMA mix 

was originally compacted (Figure 2). Thus, the power spectrum represents the 

characteristic of the material being compacted and the vibratory compactor. While it is 
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difficult to estimate the density based on the relationship between the harmonic content of 

the vibratory signal as attempted in the literature, it is reliable to compare the vibrations of 

the compactor with those obtained when the mat has been compacted to the specified 

density. While the actual magnitude of the vibrations at different frequencies is different in 

Figure 2 and Figure 3, the location of the frequencies where the energy is distributed is 

consistent. Thus, all other parameters being the same, the observed vibrations appear to 

primarily depend on the density of the compacted specimen. Since the operational 

parameters are different for different compactors and also vary from job to job, the 

analyzer should be designed in such a manner as to take these into consideration during the 

prediction process. These observations are used in the design of the compaction analyzer 

for predicting the density achieved during the compaction process. The smearing of the 

signal after 72 seconds in Figure 2(b) and 3(b) is due to the motion of the AVC, as it 

comes to rest on completion of the compaction process. 

  Figure 4 shows the spectrum of the vibrations of an Ingersoll-Rand DD-130 dual-

drum vibrating compactor during the construction of a HMA pavement. These vibrations 

were measured using a 5g tri-axial accelerometer mounted on the frame of the steel drum. 

In Figure 4, the power spectrum of the vibrations is shown for three passes over the same 

stretch of an asphalt pavement under construction. It can be seen from the spectrograms 

that the vibration response of the compactor is muted when compacting loose mix that is 

typically encountered during the first pass of compaction (Figure 4(a)). During the second 

pass over the same stretch of the pavement, the stiffness of the mat is increased due to the 

compaction.  As a result, the frequency response of the ‘compactor - asphalt mat’ coupled 

system is different (Figure 4(b)). Specifically, the vibration energy is concentrated in bands 
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of frequencies; the locations and power content of these bands are indicative of the level of 

compaction achieved. In the third pass of the compactor over the same stretch, these 

features are more pronounced as can be seen in Figure 4(c).  The location and magnitude 

of these vibrations are a function of the properties of the coupled system. The progression 

of compaction in both these cases, namely using the AVC and vibratory compactors in the 

field, is the motivation for using the AVC in the laboratory to study the effect of different 

process parameters on the density achieved during compaction. 

 
          (a) First Pass (b) Second Pass   

 
  (c) Third Pass 

Figure 4. Spectrogram of the vibrations of a DD-130 compactor during the construction of 
a HMA pavement. 

 
3. Experimental procedure 
 
 The analysis of the compaction results in the previous section shows that the primary 

vibrations of the AVC are in the range of 0 Hz to 800 Hz. Therefore, a sampling rate of 
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2000 Hz is chosen so that the fundamental frequency and its harmonics can be sampled 

without any appreciable distortion. As noted earlier, the development of the compaction 

analyzer is based on the hypothesis that the features extracted from the vibration signal of a 

compactor are sufficient and reliable to determine the level of densification achieved 

during the compaction process. The following steps are used to achieve this goal: 

• Read the signals from the instrumented compactor and filter the signals to eliminate 

noise and other undesirable quantities. 

• Perform a Fast Fourier Transform (FFT) on the data from the accelerometer and 

determine the power (in decibels) of the signal at different frequencies. Extract the 

key features of the signals, i.e. frequencies and the corresponding power. 

• Compare the extracted features with the features corresponding to a set of known 

densities.  

• Calculate the predicted density based on the results from the previous step and the 

knowledge of the process parameters, i.e. mix type, mat temperature, type of 

compactor, etc. 

The functional schematic of the compaction analyzer is shown in Figure 5.  

 
 
 
 
 
 
 
 

Figure 5. Schematic representation of the process used for determining density.  
 

  The sensor module consists of accelerometers for measuring the vibrations of the 

compactor during operation, infrared temperature sensors for measuring the temperature of 
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the mix, means for selecting the amplitude and frequency of the vibration motors, and 

means for recording the mix type and lift thickness. The miniature tri-axial accelerometer 

(1 inch x 1 inch x 1 inch) used in the experimental setup were manufactured by Summit 

Instruments (Cleveland, OH). These accelerometers could measure up to ± 10 g with low 

noise (5 mg rms) level and high sensitivity (420 mV/g). The vibration signals were 

sampled at 2000 samples/second using a Mathworks xPC real-time computer running on a 

Intel Pentium 4 processor and with embedded data acquisition system.  The sensor module 

also contains an Analog to Digital converter that converts the input from an analog to a 

digital value. The input is sampled at a rate of 2 kHz and is presented as input to the feature 

extractor (FE) module. The FE module implements a Fast Fourier Transform (FFT) of the 

input signal to extract the features corresponding to vibrations at different salient 

frequencies. Pre-processing the data to extract the features reduces the amount of data to be 

considered in the classification process, and therefore the algorithmic complexity of the 

classifier is reduced. The Neural Network Classifier is a multi-layer Neural Network (NN) 

that is trained to classify the extracted features into different classes. The Compaction 

Analyzer then post-processes the output of the NN and predicts the degree of compaction 

in real time.  

  In the implementation of the FE module, the sampling rate of 2 kHz implies that the 

signals up to 1 kHz are effectively represented in the sampled signal. The FFT is computed 

by taking a window of samples at each instant. The size of the window determines the 

accuracy in the time and frequency domain. For example, a small window size would 

represent high accuracy in the time domain but very poor accuracy in the frequency 

domain. On the other hand, a large window would lead to highly accurate frequency 
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measurements but poor time domain correlation.  In the implementation reported in this 

paper, a window of 512 samples is considered for calculating the FFT. The output of the 

FFT is an array of 256 elements, with the elements representing the power spectrum of the 

signal. These 256 frequency bands represent the vibration frequencies from 0–1000 Hz. 

However, not all these frequency bands are of interest and only 200 bands representing the 

frequency range from 10-800 Hz are considered in the analysis. This effectively eliminates 

the influence of the DC components and the higher order harmonics of the fundamental 

frequency in the vibration signal. 

  The NN classifier implemented is a three layer NN with 200 inputs, 10 nodes in the 

input layer, 4 nodes in the hidden layer, and 1 node in the output layer. The inputs of the 

NN correspond to the outputs of the feature extraction module, i.e. in this case the 200 

frequency bands in the spectrum of the vibrations. Since the fundamental frequency, i.e. 

the frequency setting of the AVC, is around 58 Hz, ten input nodes are adequate to 

represent the effect of the fundamental frequency and its harmonics. The output of the 

neural network corresponds to a signal indicative of the level of compaction reached. The 

method to extract the training data, and validate the performance of the Compaction 

Analyzer is discussed in the next section. 

3.1 Design of the density prediction module 

 The density prediction module post-processes the output of the NN and predicts the 

degree of compaction achieved. Several tests were conducted in the laboratory using 

different mix types, lift thickness, compaction pressure, and the vibration data from each 

test was analyzed. The densities obtained during each of these tests are also measured after 

the compacted specimen is cooled and cored. The vibrations of the AVC in the final few 
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seconds of compaction are considered representative of the density achieved at the end of 

the specific run. In the implementation, a total of 1020 data points were used to train the 

NN to estimate four different levels of compaction. This training data is presented to the 

NN in the form of a matrix containing 200 rows and 1020 columns. Thus, each column of 

the training pattern consists of the features extracted at an instant pertaining to a specific 

density. The density achieved is specified as the target output for the NN to achieve. The 

correlation between the density values and the NN output is established by running the 

vibration data obtained during these experiments through the feature extractor and the NN 

classifier and correlating this output with the densities obtained. 

4. Validation of the compaction analyzer in the laboratory 
 
The first step in the validation process is the determination of the important process 

parameters and their effect on the density achieved through compaction of the mix. A S3 

type mix was used in this part of the study  and compaction carried out for a range of 

design and operational parameters (see Table 1). From Table 1, it is seen that the 

aggregates have a nominal size of 0.75 inch (19 mm). Pertinent mix design parameters are 

presented below, with the acceptable values indicated in parenthesis:  Voids in Mineral 

Aggregates, VMA =13.9% (> 13%); Voids Filled with Asphalt, VFA = 76.2% (70-80%); 

and optimum Asphalt Cement (AC) content = 5%. PG 64-22 type binder was used in the 

mix. Additional details on the mix properties are given by Gonalez (2006). 

 In the first set of tests, 14.33 lbs. (6.5 kg) of loose mix asphalt was compacted in the 

AVC at a compaction pressure of 120 psi (827.4 kPa). The loose mix was heated to 

305.6oF (152oC) and compacted in the AVC for different durations. After compaction, the 

specimen was cooled and cores extracted. The density of the compacted specimen was  
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Table 1. Gradation for Mix S3 

Sieve No. Job Formula (% passing sieve) 
25.4 mm ( 1 in) 100 
19 mm (0.75 in) 98 
12.7 mm (0.5 in) 88 

9.52 mm (0.375 in) 72 
No. 4;  4.75 mm (0.187 in) 40 
No. 8;  2.36 mm (0.0929 in) 30 
No. 16;  1.18 mm (0.0464 in) 21 
No. 30;  0.6 mm (0.0236 in) 16 
No. 50;  0.3 mm (0.0118 in) 11 

No. 100;  0.15 mm (0.0059 in) 8 
No. 200;  0.075 mm (0.0029 in) 4.2 

 
Table 2. Summary of Tests 
Test 
ID 

Time 
s 

Temperature 
oC (oF) 

Pressure 
kPa (psi) 

Specimen 
Weight 
kg (lb) 

Frequency 
Hz 

% Air 
Voids 

TI1 40 152 (305.6) 827.4 (120) 6.5 (14.33) 60 16 
TI2 40 152 (305.6) 827.4 (120) 6.5 (14.33) 60 17.5 
TI3 45 152 (305.6) 827.4 (120) 6.5 (14.33) 60 7.5 
TI4 45 152 (305.6) 827.4 (120) 6.5 (14.33) 60 6.7 
TI5 50 152 (305.6) 827.4 (120) 6.5 (14.33) 60 6.6 
TI6 50 152 (305.6) 827.4 (120) 6.5 (14.33) 60 6.9 
TI7 55 152 (305.6) 827.4 (120) 6.5 (14.33) 60 4.7 
TI8 55 152 (305.6) 827.4 (120) 6.5 (14.33) 60 4.9 

       
TE1 60 122 (251.6) 827.4 (120) 6.5 (14.33) 60 8.8 
TE2 60 122 (251.6) 827.4 (120) 6.5 (14.33) 60 10.0 
TE3 60 132 (269.6) 827.4 (120) 6.5 (14.33) 60 6.6 
TE4 60 142 (287.6) 827.4 (120) 6.5 (14.33) 60 7.3 
TE5 60 142 (287.6) 827.4 (120) 6.5 (14.33) 60 6.5 
TE6 60 152 (305.6) 827.4 (120) 6.5 (14.33) 60 5.5 
TE7 60 152 (305.6) 827.4 (120) 6.5 (14.33) 60 6.4 

       
PR1 60 152 (305.6) 551.6 (80) 6.5 (14.33) 60 18.0 
PR2 60 152 (305.6) 551.6 (80) 6.5 (14.33) 60 17.9 
PR3 60 152 (305.6) 620.5 (90) 6.5 (14.33) 60 12.1 
PR4 60 152 (305.6) 620.5 (90) 6.5 (14.33) 60 10.8 
PR5 60 152 (305.6) 689.5 (100) 6.5 (14.33) 60 9.2 
PR6 60 152 (305.6) 689.5 (100) 6.5 (14.33) 60 8.5 
PR7 60 152 (305.6) 758.4 (110) 6.5 (14.33) 60 8.7 
PR8 60 152 (305.6) 758.4 (110) 6.5 (14.33) 60 8.2 

       
WE1 60 152 (305.6) 827.4 (120) 3.5 (7.71) 60 8.6 
WE2 60 152 (305.6) 827.4 (120) 3.5 (7.71) 60 5.6 
WE3 60 152 (305.6) 827.4 (120) 4.5 (9.9) 60 5.4 
WE4 60 152 (305.6) 827.4 (120) 4.5 (9.9) 60 6.8 
WE5 60 152 (305.6) 827.4 (120) 5.5 (12.1) 60 5.5 
WE6 60 152 (305.6) 827.4 (120) 5.5 (12.1) 60 4.5 
WE7 60 152 (305.6) 827.4 (120) 6.5 (14.3) 60 5.1 
WE8 60 152 (305.6) 827.4 (120) 6.5 (14.3) 60 5.0 
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Table 3. Variation of Density with AVC Frequency.  
Parameters: 6.5 kg (14.44 lb), 152 oC (305.6 oF) and 827.4 kPa (120 psi). 

Test ID AVC Frequency 
(Hz) 

Compaction 
Time (secs) 

Compacted Specimen Density 
Average % air voids 

 
FR1 20 40 17.7 
FR2 20 80 17.5 
FR3 20 120 16.2 
FR4 40 40 9.5 
FR5 40 80 9 
FR6 40 120 8.8 
FR7 60 40 8.6 
FR8 60 80 7.2 
FR9 60 300 5.4 

 

measured according to AASHTO T-166 method. Results in Table 2 show that the density 

achieved after compaction is consistent over repeated trials. The density increases with 

compaction time, as expected. Tests were also conducted to study the effect of compaction 

pressure on the final density achieved (PR1-PR8 in Table 2). Lowering the compaction 

pressure increased the air void content in the compacted specimen. For instance, reducing 

the forward pressure from 120 psi to 80 psi resulted in an increase in the air void content 

from 6.4% to 17.9% for the same 80 seconds of compaction. Further, at the lower pressure 

of 80 psi, increasing the duration of compaction did not result in a significant change in the 

air void content. The effect of lift thickness was studied by compacting different amounts 

of loose mix. It was found that for the limited range of thickness considered, the lift 

thickness did not play any significant role in achievable densities. However, for low lift 

thicknesses, sometimes it was found difficult to obtain a desired compaction level without 

damaging the aggregates. Tests also reveal the difficulty in compacting the mix at lower 

temperatures. It was found that lowering the temperature or the compacting pressure 

resulted in less compaction for the same duration of compaction (Tables 2 and 3). For 

example, at a mix temperature of 1520C , the maximum allowed according to the mix 
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specification, 60 seconds compaction resulted in an air void content of 6 %. On the other 

hand, reducing the mix temperature to 1220C  resulted in an air void content of 8.8 % for 

the same duration of compaction.  

4.1 Analysis of the vibrations of the AVC during compaction  

While the results presented in Tables 2 and 3 clearly demonstrate the effect of different 

process parameters on the density achieved on compaction, it is necessary to study the 

vibrations of the AVC during each of these tests to determine the feasibility of predicting 

the density based on the vibrations. The spectrograms of the measured vibrations indicate 

that tests with identical process parameters and compacted density have similar vibration 

characteristics. In order to facilitate this comparison, ten key frequency bands were first 

determined from the spectrogram. A bank of ten filters, each with a bandwidth of 0.5 Hz 

was then used to isolate the vibrations of the AVC in these 10 regions at the end of the 

compaction cycle. The output of this filter bank represents the vibration signature of the 

AVC that was then be correlated with the compacted density of the specimen.  

 The final second of the vibration data of the AVC for tests WE7 and WE8 is shown in 

Figure 6. The compaction in both these tests was performed with a compactive pressure of 

827.4 kPa on a 6.5 kgs of loose mix at 1520C . The resulting density in the two cases after 

compacting for 60 seconds was 5.1% and 5.0% air voids, respectively. The vibration 

signatures in both these tests are very similar and are shown in Figure 6. The vibration 

signature for tests PR5 and PR6 are also similar (see Figure 7). The vibration signatures for 

tests TE5 and TE7 are shown in Figure 8. In these tests, identical samples were compacted 

at temperatures of 1320C and 1420C , respectively. The density of the specimen at the end 

of the compaction cycle was measured to be 6.5% and 6.4% air voids, respectively. From 
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the vibration signatures in Figures 8(a) and 8(b), it can be seen that the temperature does 

not affect the vibration signature to any discernable extent. Further from Figures 7 and 8, it 

can be seen that the vibration signatures while different from those in Figure 6, are similar 

for a given set of process parameters. However, it can be seen that the vibration signature 

for compaction at 100 psi (689.5 kPa), Figure 7(b), is markedly different from the vibration 

signature seen when using a compaction pressure of 120 psi (827.4 kPa) (Figure 8(b)). The 

same inference can also be drawn from Figures 8 and 9.  

 

 
   (a) (b)   
Figure 6. Vibration signature of identical tests run at 120 psi (827.4 kPa)  
     (a) Test WE7; (b) Test WE8 

 
   (a) (b)   
Figure 7. Comparison of vibration signatures for identical tests run at 100 psi (689.5 kPa): 
      (a) Test PR5; (b) Test PR6 
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   (a) (b)   
Figure 8. Vibration signature of tests TE5 and TE7 at different temperatures: 

(a) Test TE5; (b) Test TE7 
 

 
Figure 9. Vibration signature of Test WE2 
 
The above analysis shows that while the vibration signatures are consistent for a given set 

of process parameters and compacted density, these signatures are different when the 

process parameters change. Thus, in order to predict the density based on the vibrations of 

the compactor, one has to account not only for the vibrations but also the design 

parameters during compaction. 

4.2 Performance of the compaction analyzer in predicting density during compaction 
 
The data gathered in the previous tests was analyzed to determine the key features of 

interest in the spectrum of the vibratory signals. This information was used to design the 
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feature extractor and the NN classifier components of the compaction analyzer. The NN 

was trained to detect four primary regions corresponding to different densities during 

compaction. The four regions selected are a) free vibrations of the compactor 

corresponding to zero compaction; b) vibrations corresponding to compaction head in 

initial contact with the loose mix, i.e. start of the compaction process; c) vibrations 

corresponding to 92% compaction; and d) vibrations corresponding to 94% compaction of 

the specimen. Here, 100% compaction implies that the density of the specimen is equal to 

its theoretical maximum density. The functioning of the compaction analyzer was verified 

by presenting it with vibration data collected while compacting a specimen during different 

tests. The different features extracted from the accelerometer output during the compaction 

process and the estimates of the density are shown in Figure 10.  

 The ability of the compaction analyzer to predict the density was tested by manually 

shutting down the AVC when the analyzer indicated that the mix had reached the target 

density. The target densities were selected as the density of the specimen corresponding to 

the four regions that the NN was trained to recognize. Table 4 shows the density specified 

in each case and the density actually achieved during test runs. It is clear from these tests 

that the compaction analyzer can be used to predict the density of the mix during 

compaction in the laboratory. 

 

Table 4. Use of the Analyzer in Compacting Asphalt Mix To A Desired Density. 
Achieved Density S. No Desired Density 

(%Gmm) Test 1 Test 2 Test 3 Test 4 Test 5 
1 92.0 92.9 92.9 92.2 92.8 92.9 
2 94.0 93.6 94.2 94.2 93.7 93.6 
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The results in Table 4 indicate that for a specified target density of 92%, the compacted 

specimen reached a mean density of 92.7% with a standard deviation of 0.304. The 95% 

confidence interval for the first set of tests obtained using the Student’s t-distribution is 

[ ]92.7 0.38± , i.e. [92.32, 93.08]. Similarly when the specified target density is 94%, the 

compacted specimen was found to have reached a mean density of 93.9% with a standard 

deviation of 0.313. The 95% confidence interval in this case was [93.48, 94.25]. The 

results indicate that in both the cases, there is a 95% confidence that the achieved density is 

within 1.25% of the target density.  

5. Conclusions and Future Research 

In this paper, the design and implementation of a neural network-based asphalt compaction 

analyzer was presented. The vibrations of the compactor during the compaction process 

were shown to depend on the density of the mat and the process parameters like mix type, 

lift thickness, mix temperature, etc. Data from laboratory and field experiments was used 

FIGURE 10. Output of the classifier showing the prediction of the different density 

 
Scale (X axis): 10 units = 25 seconds 

 Extracted 
Features  

Classifier  
Output 
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to train and calibrate the compaction analyzer. These results demonstrate the ability of the 

compaction analyzer to continuously predict the density in real time. Variability in mix and 

design as well as the compaction equipment, can be easily accounted for by loading the 

neural network with the appropriate weights obtained during the training phase of the 

calibration process. The ability of the compaction analyzer to predict density of the HMA 

pavement during construction has been validated in the field and the research results will 

be presented in future publications. Currently, research is underway to automate the 

learning and density prediction process. Field calibration and testing is also underway to 

validate the performance under a wide variety of conditions. The use of such an intelligent 

compaction analyzer will significantly aid in the quality control process during the 

construction of a pavement and will result in long lasting and better quality roads while 

reducing the cost of construction and maintenance of this critical infrastructure.  
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