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Neural Network-based Intelligent Compaction Analyzer for Estimating 
Compaction Quality of Hot Asphalt Mixes 

 
S. COMMURI, ANH T. MAI, AND M. ZAMAN 

 
Continuous real-time estimation of the quality of compaction during the construction of a 

Hot Mix Asphalt (HMA) pavement is addressed in this paper. Densification of asphalt 

pavements during construction is usually accomplished through the use of vibratory 

compactors. During compaction, the compactor and the asphalt mat form a coupled 

system whose dynamics are influenced by the changing stiffness of the mat. In this paper, 

it is shown that the measured vibrations of the compactor along with the process 

parameters such as lift thickness, mix type, mix temperature, and compaction pressure 

can be used to predict the density of the asphalt mat. 

 Contrary to existing techniques in the literature where a model is developed to fit the 

experimental data and to predict the density of the mat, a novel neural network-based 

approach is adopted that is model-free and uses pattern-recognition techniques to 

estimate the density. The neural network is first trained using several vibration patterns 

corresponding to different density levels. During compaction of a HMA mat, the neural 

network then classifies the observed vibrations as those corresponding to a known level of 

compaction. Compaction studies of HMA mixes on a stiff subgrade indicate that the 

changes in the vibration characteristics of the roller are due to increased compaction of 

the HMA base. The results also show that the analyzer can estimate the density 

continuously, and in real-time with accuracy levels adequate for quality control in the 

field. 

Keywords: Intelligent Compaction, Asphalt Pavements, Neural Networks, Compaction 
Analyzer
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1. Introduction 

Compaction of Hot Mix Asphalt (HMA) using vibratory rollers is a commonly accepted 

practice for increasing the density and the stiffness of an asphalt pavement. The rolling 

pattern adopted during construction depends on the desired ‘lift’ thickness, the type of 

roller used, and the properties of the HMA mix. During field compaction, the density 

achieved is usually verified by taking point-wise measurements with a nuclear density 

gauge.  Such readings are time consuming and rarely reflect the overall quality of the 

constructed pavement. The viscosity of the asphalt binder in the mix changes with 

temperature making it harder to compact a HMA layer after it cools down below the 

cessation temperature (typically 132 C° ). This makes it imperative to quickly determine 

the achieved density before the mix cools down to an extent where it cannot be 

compacted any further.  

 The importance of good construction practices and quality assurance in the field for 

achieving the desired levels of compaction is well understood (HAPI, 2003). Improper 

compaction of asphalt pavements is one of the leading contributors to the early 

degradation of pavements. The practice of extracting roadway cores to measure the 

density also leads to early onset of potholes and moisture induced damage in pavements 

(Scherocman, 1984). The ability to estimate the quality of compaction of a Hot Mix 

Asphalt (HMA) pavement under construction has been pursued by many researchers.  For 
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example, Yoo and Selig (1979) studied the dynamic characteristics of vibratory 

compactors and developed an analytical model to predict the amount of energy 

transferred to the asphalt mat during compaction. Machine parameters (frequency, speed) 

are then altered to maximize the energy transferred, thereby increasing the level of 

compaction. However, this method does not directly yield the compacted density. 

Researchers have also tried to study the performance of a compactor by observing its 

vibratory response (Mooney, 2002, 2005). Sandstrom (1998) utilized frequency and 

amplitude of vibration of the roller as it passes over the ground to compute the shear 

modulus and a “plastic” parameter pertaining to subgrade soil. These values were then 

used to adjust the speed of the compactor and its frequency and amplitude. Minchin 

(1999, 2001, 2003) estimated the ‘degree of compaction’ by comparing the amplitude of 

the fundamental frequency of vibration with the amplitudes of its harmonics. By relating 

the ratio of second harmonic of the vibratory signal to amplitude of third harmonic, it was 

possible to predict the compacted density, with 80% accuracy in some cases. To estimate 

density, Swanson (2000) attempted to account for some of the variations seen in the 

vibratory responses of compactors by considering properties of HMA and site 

characteristics, in addition to the vibratory response of the compactor. The use of 

microwave signals in determining the density of the pavement was investigated by 

Jaselskis (1998).  In recent years, some of these techniques have been used to develop 

commercial prototypes by equipment manufacturers. Compactometer (GEODYNAMIK, 

2004), Bomag VarioControl (BVC) (BOMAG, 2005), AMMANN Compaction Expert 

(ACE) (AMMANN, 2005) are some of the Intelligent Compaction tools that are being 

validated by the asphalt community. 
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 While Intelligent Compaction techniques are gradually being accepted by the 

construction industry, the existing techniques are not yet commercially available largely 

due to their inability to account for factors in the field such as the characteristics of the 

compactor, subgrade characteristics, and mix properties that cause inaccuracies in the 

estimated density. These unaccounted parameters make the practical application of the 

techniques difficult. In research conducted at the University of Oklahoma (Commuri and 

Zaman, 2007), the authors implemented a neural network-based strategy to estimate the 

level of compaction. The Intelligent Asphalt Compaction Analyzer (IACA) developed in 

that study was shown to be capable of estimating the density of compaction using an 

Asphalt Vibratory Compactor in a laboratory setting. The neural network was shown to 

have the ability to classify the features extracted from the vibration signals as those 

corresponding to the densities of the asphalt specimen. Further, the generalization 

capabilities of the neural network enabled it to provide reasonable density estimations 

when presented with data different from the set used to train the network.  

 In this paper, the validation of the IACA during compaction under controlled field 

conditions is presented.  The IACA is based on the hypothesis that a vibratory compactor 

and the Hot Mix Asphalt (HMA) form a coupled system with characteristic vibrations 

during compaction. In order to minimize the effect of the subgrade on the vibrations of 

the compactor, a test strip with a rigid subgrade is first constructed and the functioning of 

the IACA is studied. Calibration procedures are developed using the vibration data and 

density measured from the roadway cores. The performance of the IACA is then verified 

against density measured using a Transtech non-nuclear density gauge, PQI 301, and the 

densities measures from the extracted cores from the compacted pavement.  
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2. Theoretical background for intelligent compaction 

The behavior of an HMA pavement under traffic and environmental conditions is 

dependent of the properties of the individual components and of the volumetric 

composition of the mix. In mechanistic-empirical modeling of HMA pavements, the 

stress-strain relationship under a continuous sinusoidal loading is defined by the complex 

dynamic modulus ( )*E . The complex modulus is defined as the ratio of the amplitude of 

the sinusoidal stresses ( )σ  and the amplitude of the sinusoidal strain ( ).ε  Thus, the 

complex dynamic modulus is mathematically expressed by the following equation (Cline, 

2003): 

( )
( )

0*

0

sin
,

sin
t

E
t

σ ασ
ε ε α φ

= =
−

                           (1) 

0

0

where
Peak (maximum) stress,
Peak (maximum) strain,

= Phase angle (radians),
 = angular velocity (radians/second), and

t = time (seconds).

σ
ε
φ
α

=
=  

The “dynamic modulus” is defined as the absolute value of the complex modulus, i.e. 
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=  and is usually denoted as *E .  This modulus is useful in predicting the response 

of the pavement to compactive loading e.g., deflections, stresses, and strains within the 

pavement structure (including HMA layers).  

The material model for the asphalt cement (AC) layer relates the dynamic modulus of the 

AC to parameters such as temperature, asphalt content and air voids content. The 

“Witczak” model (Ayers et al., 1998; Commuri and Zaman, 2007) is a common empirical 
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relationship used to predict the dynamic modulus based on the individual components of 

the HMA. In this model, the dynamic modulus at a given loading time and temperature is 

assumed to be the elastic modulus and depends on a number of design factors like the 

viscosity of the asphalt ( ) ,η  the effective asphalt content (% by volume – effVb ), etc., and 

the construction parameters like the percentage air void. The dynamic modulus, *E  (in 

510 psi), can be expressed using the Witczak equation as follows (Ayers et al., 1998): 
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where ‘f’ is the loading frequency (in Hz), ‘η’ is the binder viscosity at the temperature of 

interest (in 610  poise), ' 'aV  is the air void content (% by volume),  ' 'beffV  is the effective 

asphalt content (% by volume), 34' 'ρ  is the cumulative % retained on the 19 mm sieve (% 

by mass), 38' 'ρ  is the cumulative % retained on the 9.5 mm sieve (% by mass), 4' 'ρ  is the 

cumulative % retained on the 4.76 mm sieve (% by mass), and 200' 'ρ  is the cumulative % 

retained on the 0.075 mm sieve (% by mass).  

 It can be seen from Equation (2) that even when the design parameters are fixed, the 

dynamic modulus is influenced by the amount of air voids in the HMA specimen being 

compacted. Since the vibration of the asphalt compactor during the construction of the 

pavement is a function of the dynamic modulus of the pavement, these vibrations can be 

monitored to estimate the amount of air voids in the compacted HMA. However, such 

estimations of the density assume that the underlying subgrade does not have any 

influence on the nature of the vibrations of the compactor. If this is not the case, then 
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changing subgrade properties cause variations in the vibrations of the roller and such 

variations cannot be correctly accounted for during the construction. 

 In the research presented in this paper, a test site was constructed with a rigid 

subgrade. This rigid subgrade does not cause any appreciable change in the vibrations of 

the roller during the compaction. Thus, any variations in the vibrations of the roller would 

be the result of the densification of the underlying HMA layer.  The design and 

construction of the reinforced concrete slab that functions as a rigid subgrade for the 

validation of the IACA hypothesis is presented in the following section. Compaction of 

HMA mixes is then carried out in a controlled manner on the top of this concrete pad. 

 
3. Design and construction of a test site for the controlled field testing 

In order to minimize the effect of the subgrade on the vibrations of the compactor, a test 

pad consisting of a continuously reinforced concrete pavement (CRCP) is designed so as 

to provide a stiff uniform subgrade over which HMA overlays can be constructed. It is 

anticipated that the properties of such a subgrade would not alter during the course of the 

compaction. Thus, any changes observed in the vibration spectrum of the compactor 

during construction would be a result of changing properties of the asphalt mat. 

 The test site selected was a stretch of unused road on Mendel Plaza near Max 

Westheimer Airport in Norman. The center line of the street was located and a section 

7.62 meters (25 feet) wide by 106.7 meters (350 feet) long and it was divided into five 

stations.  A total of 24 boreholes were selected to give a better soil properties distribution 

throughout the project. Dynamic cone penetration (DCP) tests were performed at each 

hole to a depth of approximately 0.76 meters (30 inches). Bulk samples were then 

collected at every 15 centimeters (6 inches), down to 91.4 centimeters (36 inches) and the 
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moisture content was analyzed. Standard proctor tests were performed on the collected 

bulk samples according to the AASHTO-T99 test method. The maximum dry density 

(MDD) was found to be approximately 1675 3
kg

m
 (104.4 3

lb
ft

) and the optimum 

moisture content (OMC) was approximately 19%.  This information was utilized in the 

design of the concrete slab for the test site.   

 The existing subgrade was stabilized using cement kiln dust and compacted to 

1675 3
kg

m
 (104.4 3

lb
ft

). The subgrade moisture content was also determined to be 

within two percent of the optimum moisture content (19%). A concrete slab 4.27 meters 

(14 feet) wide and 106.7 meters (350 feet) long and 15.25 centimeters (6 inches) thick 

was then constructed on top of the compacted subgrade. The completed test strip is 

shown in Figure 1. 

4. Experimental setup for use in simulated field tests  

The IACA functions on the hypothesis that the vibratory roller and the underlying HMA 

pavement form a coupled system whose response is determined by the excitation 

frequency and the natural vibration modes of the coupled system. In order to analyze the 

vibrations of the roller, tri-axial accelerometers are fixed on the frame of the roller and 

the vibrations of the roller are captured using a data acquisition system. The following 

discussion relates to the extraction of the frequency content of the vibration signal and the 

analysis performed by the IACA. 

a. Fast Fourier Transform (FFT) (Ingle, 2007). The frequency content of a continuous 

time signal ( )x t  can be analyzed using the well known Fourier Transform. In the case of 

sampled signals, the Discrete Time Fourier Transform (DTFT) operates on aperiodic, 
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discrete signal and relates it with a periodic, continuous frequency spectrum. If 

[ ], 0.... 1,= −x n n N  be a collection of ‘N’ samples of ( )x t  obtained by sampling ( )x t  at a 

rate of sf  Hz, then the DTFT ( )jX e ω  decomposes the sequence [ ]x n  into sine and 

cosine waves, with frequencies equally spaced between zero and one-half of the sampling 

rate. The frequency spectrum of [ ]x n  is represented by ( )ωRe X  and ( )ωIm X , with 

0 ω π≤ ≤ , where  
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 The Discrete Fourier Transform (DFT) of the sequence [ ], 0.... 1,= −x n n N  is a finite 

length sequence  
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The Fast Fourier Transformation (FFT) is a practical approach to the numerical 

computation of the DTFT of a finite length sequence and provided the power contained at 

each frequency in the spectrum of the signal. 

b. Experimental Setup. The experimental setup used to examine the changes in the 

frequency content of vibrations during the compaction process is shown in Figure 2. This 

experimental set up comprises of an Ingersoll-Rand DD138HF dual drum vibratory 
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compactor instrumented with accelerometers, and a real-time data acquisition system to 

analyze the vibration characteristics and predict density. Vibrations of the roller during 

compaction are translated into voltages using a tri-axial accelerometer capable of 

measuring accelerations along three orthogonal axes. A CXL10HF3 accelerometer from 

Crossbow (Crossbow, 2005), capable of measuring 10g acceleration up to 10 kHz, was 

mounted on the axle of the drum of the roller to measure the vibrations of the drum 

during compaction tests. The signal produced by this accelerometer is then read by the 

data acquisition system.  The data acquisition system used in this case, the xPC target 

(The MathWorks, 2005), is a rapid prototyping tool that can convert graphical models of 

the data acquisition circuitry into software that can be executed in real-time. The xPC 

target is an Intel Pentium processor-based embedded computer and is configured using 

Simulink (The MathWorks, 2005). The Simulink software is widely used for graphical 

programming and has capabilities that allow designing and testing systems using real 

data. Furthermore, models created in Simulink can be compiled to run in real time on 

different hardware platforms.  

 The development of the compaction analyzer is based on the hypothesis that the 

features extracted from the vibration signal of a compactor are sufficient and reliable to 

determine the level of densification achieved during the compaction process (Commuri 

and Zaman, 2007). The following steps are used to achieve this goal: 

• Read the signals from the instrumented compactor and filter the signals to 

eliminate noise. 
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• Perform a Fast Fourier Transform (FFT) on the data from the accelerometer and 

determine the power (in decibels) of the signal at different frequencies. Extract 

the key features of the signals, i.e. frequencies and the corresponding power. 

• Compare the extracted features with the features corresponding to a set of known 

densities.  

• Calculate the predicted density based on the results from the previous step and the 

knowledge of the process parameters, i.e. mix type, mat temperature, type of 

compactor, etc. 

 The sensor module consists of accelerometers for measuring the vibrations of the 

compactor during operation, infrared temperature sensors for measuring the temperature 

of the mix, means for selecting the amplitude and frequency of the vibration motors, and 

means for recording the mix type and lift thickness. The vibration signals were sampled 

at 1000 samples/second using a Mathworks xPC real-time computer running on an Intel 

Pentium 4 processor and with IO301 embedded data acquisition system. The sampled 

input is presented to the feature extractor (FE) module. The FE module implements a Fast 

Fourier Transform (FFT) of the input signal to extract the features corresponding to 

vibrations at different salient frequencies. Pre-processing the data to extract the features 

reduces the amount of data to be considered in the classification process, and therefore 

the algorithmic complexity of the classifier is reduced. The Neural Network Classifier is 

a multi-layer Neural Network (NN) that is trained to classify the extracted features into 

different classes. The Compaction Analyzer then post-processes the output of the NN and 

predicts the degree of compaction in real time.  
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 In the experimental setup described in this paper, a window of 256 contiguous 

samples were used to compute the FFT at each instant in time. The window had an 

overlap of 128 past values. The size of the window and the overlap were fixed to provide 

equal resolution to the time and frequency content of the signal. The output of the FFT is 

a vector with 256 elements, where each element corresponds to the signal power at the 

corresponding frequency. Since the original signal is sampled at 1 kHz, the frequency 

spectrum is uniformly distributed from 0 and 500 Hz. The upper frequency limit, 500Hz 

in this case, is called the Nyquist frequency and is equal to half of the sampling rate. This 

frequency indicates the highest frequency content in the input signal that can be 

reconstructed back using the sampled signal.   

 In order to classify these vibrations, the 200 elements corresponding to the response 

above the excitation frequency of the compactor are used as input to the classifier. The 

NN classifier implemented is a three layer NN with 200 inputs, 10 nodes in the input 

layer, 4 nodes in the hidden layer, and 1 node in the output layer. The inputs of the NN 

correspond to the outputs of the feature extraction module, i.e. in this case 200 features in 

the frequency spectrum were considered. The output corresponds to a signal indicative of 

the level of compaction reached. The method to extract the training data, and validate the 

performance of the Compaction Analyzer is discussed in the next section. 

5. Experimental Results 

a. Verification of IACA hypothesis in the field.  In order to verify the suitability for 

application in real-life conditions, vibration data from several construction sites across 

Oklahoma was collected and studied to determine the effect of the process parameters 

(lift thickness, mix type, subgrade, etc.) on the vibrations of the compactor during the 
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compaction of the asphalt pavement. The spectrograms for some typical parameters are 

shown in Figure 3. It can be seen that the vibration characteristics are impacted by the 

process parameters. The study indicated that the spectrograms, while showing differences 

between different projects, remain consistent over the course of a single construction for 

a given set of construction parameters (lift, lift thickness, compactor vibration settings, 

etc.). Further, the intensity of the colors in the spectrogram indicates the power density 

associated with the vibrations. Regions with the maximum power intensity, shown in red 

in the spectrograms were visually located and their locations correlated with the GPS 

measurements. Figure 4 shows the power spectral density of the measured vibrations and 

the density of the roadway (in the center of the roller path) measured using a Troxler 

Nuclear density gauge. It can be seen that the observed spectral densities correspond with 

the measured densities.  

b. Testing of IACA under controlled Field Conditions. The performance of the IACA 

prototype was analyzed during the compaction of asphalt mixes on the controlled test 

strip described in Section 3. The pavement was 91.44 m (300 feet) long, 3.6576 m (12 

feet) wide, 7.63 cm (3 inch) thick, and was constructed using a S3 (PG64-22OK) mix 

(see Table 1). Initially, several overlays were constructed using the S3 mix and the 

vibrations of the machine were collected and the corresponding spectrograms were 

computed. Several readings were also taken during each roller pass using a PQI 301 non-

nuclear density gauge. On completion of the overlay, several cores were extracted from 

the compacted pavement and their density was measured in the laboratory in accordance 

with the AASHTO T 166 and OHD L-45 specifications. The measured core densities 
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were used to calibrate the PQI 301 density gauge. The calibration data was used to adjust 

the raw density readings of the PQI 301 gauge.  

 The vibration data from the spectrogram was correlated with the density 

measurements in order to extract the data for training the neural network. Locations on 

the mat with densities of 90%, 92%, 94% were identified and the FFT output 

corresponding to these locations were identified using the GPS measurements. Eight 

columns of FFT data, corresponding to a linear travel of 1 foot, were selected at each of 

these locations to constitute the training data for the neural network. The training error 

for each epoch of the training is shown in Figure 5. The training is stopped once the 

required precision ( 610− , corresponding to 1 prediction error in 610 trials using the 

training data) is obtained.  

 The performance of the trained IACA was verified during the construction of an 

asphalt pavement on the test strip. The output of the accelerometer and the GPS 

measurements of the location of the compactor were collected and the spectrogram was 

plotted against the distance traveled by the compactor for each roller pass. After each 

roller pass, the density was measured at specific points on the asphalt mat using the PQI 

301 gauge (Table 2). The densities measured after each pass are shown in Figure 6. It can 

be seen from this figure that the density increases after each pass. However, “roll over” 

occurs after the third pass and subsequent roller passes cause a reduction in the density of 

the compacted pavement. The spectrogram of the vibrations of the compactor over the 

first two passes is shown in Figure 7, where the effect of increased density on the 

vibration of the compactor can be easily observed. 
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 The data from Table 2 was used to train the IACA to extract the relevant features 

from the vibration signal and estimate the level of compaction. The estimated density 

during the final pass of the first stretch is shown in Figure 8. It can be seen that the 

predicted density correlates very well with the densities measured using the PQI 301 

gauge. Figure 9 shows the final compacted density of the entire test strip as predicted by 

the IACA. Comparison with the densities measured from the cores extracted from the 

completed pavement show a very good correlation between the measured and predicted 

densities (Figure 10). 

6. Conclusions 

In this paper, the design of a neural network-based Intelligent Asphalt Compaction 

Analyzer (IACA) was presented. A procedure to calibrate the IACA using field 

compaction data was presented and the performance of the IACA was validated during 

construction in controlled field settings. The experimental results show that the IACA can 

be trained to extract the features from the vibrations of the compactor and use these 

features to estimate the level of compaction. The calibration procedure is straightforward 

to implement and can easily take into account the different parameters, like 

base/intermediate/surface course, lift thickness, mix type, construction equipment, etc., 

encountered at each site. The estimated density correlates well with the density measured 

from compacted cores and the measurement error is comparable to the errors observed 

using tools that measure the density at discrete points. Furthermore, the IACA output is 

continuously available to the operator in real time and can serve as a useful guide during 

the compaction process.  
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 The validation of IACA at different construction sites is currently underway and the 

results will be communicated in a forthcoming paper. 
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Table 1. Gradation for mix S3 (PG64-22OK) 
Sieve No. Job Formula (% passing sieve) 

25.4 mm ( 1 in) 100 
19 mm (0.75 in) 98 
12.7 mm (0.5 in) 88 

9.52 mm (0.375 in) 72 
No. 4;  4.75 mm (0.187 in) 40 
No. 8;  2.36 mm (0.0929 in) 30 

No. 16;  1.18 mm (0.0464 in) 21 
No. 30;  0.6 mm (0.0236 in) 16 
No. 50;  0.3 mm (0.0118 in) 11 

No. 100;  0.15 mm (0.0059 in) 8 
No. 200;  0.075 mm (0.0029 in) 4.2 
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Table 2. Pass by pass density reading using PQI 301 
 

Left Center Right 

Pass 

Point 

Moisture 
(%) 

Density
(pcf) 

Relative 
Density 

(%) H20 
Density

(pcf) 

Relative 
Density 

(%) H20 
Density

(pcf) 

Relative 
Density 

(%) 
1 4.6 143.2 92.2       4 142.8 91.9 
2 5 144.1 92.8       4.6 143.6 92.5 
3 4.9 144 92.7           91.9 
4 4 142.5 91.8             

1 

5                   
1 4.4 143.8 93.1       4.8 147.5 93.1 
2 4.9 144.8 93.4 4.8 144.4 93 4.7 144.9 93.4 
3 5 144.7 93.2 5 144.2 92.9 4.8 144.7 93.3 
4 4.8 144.3 93.3 5.4 145.3 93.6 4.8 145.1 93.5 

2 

5 5.1 145.3 93.6 5.3 143.5 92.5 6.7 147 94.1 
1 4.3 144.8 93.3 4.3 144.2 92.9       
2 4.9 145.1 93.5 4.1 143.9 92.7       
3 5 145.4 93.7 4.7 144.3 92.8       
4 4.9 145.3 93.4 5.1 145.2 93.6       

3 

5 5.4 146.6 94.4 5.4 143.4 92.4       
1 3.9 143.6 92.5 3.5 142.9 92.1 4.2 145.8 93.5 
2 4.9 144.8 93.2 4.1 143.8 92.7 4.4 144.9 93.4 
3 4.7 145 93.1 4.6 145.4 93.4 4.2 144.5 93.1 
4 4.3 144.7 93.2 6.3 146.4 93.3 4.6 145.5 93.5 

4 

5 4.9 144.5 93.1 5.3 144.1 93.8 7.7 145.6 94.1 
1 4.4 144.6 92.9 3.4 143.1 92.1       
2 5.1 145.7 92.8 4.1 144.1 92.9       
3 4.6 142.8 93.1 4.9 146.3 94.2       
4 4.4 144.8 93.3 4.5 145.3 93.1       

5 

5 5 145.8 92.1 5.6   93       
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Figure 1. Completed test strip with CRCP subgrade 
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(a)  

 
 
 

 
 
 
 
 
 

(b) 
Figure 2. Experimental setup: (a) Instrumentation of the compactor; (b) Functional schematic of the analyzer 
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Figure 3. Spectrograms of the vibrations of the compaction for different process parameters 
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Figure 4. Output of the compaction analyzer along with actual density measurements 

from a nuclear density gauge 

15 feet 
(4.4.6 m) 

7 feet (2.1m) 
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Figure 5. Output prediction error of the neural network after each training cycle
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Figure 6. Changes in the density of the asphalt mat over successive roller passes 
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Figure 7. Spectrogram showing the effect of changes in density between the first pass and the second pass 
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Fig. 8. Comparison of predicted and measured density (a) Density predicted by the IACA; (b) Density measured by PQI 301 

(b) 

(a) 
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   Figure 9. As-built density of the test pavement estimated by the IACA 
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PQI301 vs Core Density

R2 = 0.7383
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     (a)        (b) 
Figure 10. Comparison between measured density and density of the extracted core: (a) PQI301; (b) IACA   
 

IACA vs Core Density
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